
1

Modeling DRAM Timing in Parallel Simulators with
Immediate-Response Memory Model

Stijn Eyerman, Wim Heirman, Ibrahim Hur

Abstract—Accurately modeling memory timing in a processor simulator is crucial for obtaining accurate and useful performance
predictions. DRAM has a complex timing and reordering scheme, which results in highly varying access latencies depending on the
type of operations, address stream patterns and bandwidth load. Therefore, DRAM simulators model the DRAM timings as a clocked
state machine. However, some processor simulators, in particular loosely synchronized parallel simulators, assume an
immediate-response memory model, requesting an immediate estimation of the memory latency. In this paper, we discuss the
modeling issues in transforming a state machine DRAM simulator into an immediate-response simulator, which can be directly plugged
into a processor simulator supporting an immediate-response memory model and/or a relaxed parallel simulation model. We show that
the adapted model is accurate within 2% compared to the state machine simulator.

Index Terms—Memory timing simulation, parallel simulation, high-level simulation

F

1 INTRODUCTION

A S the gap between memory and compute speed continues to
increase, more and more applications become memory-bound.

Therefore, performance estimation models need to incorporate accu-
rate memory timing models to provide accurate and useful projections.
Modern DRAM modules (e.g., DDR4) have a complex timing behav-
ior, and efficient memory controllers reorder memory operations to
optimize memory performance. As a result, the latency of a memory
operation can vary a lot, and memory operations can be reordered to
increase throughput.

To accurately model this behavior, most memory simulation mod-
els are clocked state machines: each individual memory command
(precharge, activate, read, write, refresh, etc.) is modeled as a state
transition, and the next command starts when the previous is finished,
following the timing specifications. If, in the meantime, other requests
arrive in the memory controller, they are queued, and when the
command bus is free, the next request is selected from the queue
following the scheduling policy. When a request finishes (its last
command is done), it is removed from the queue and its latency is
known.

Processor simulators model the timings of instructions within the
cores and caches of a (multicore) processor. Some processor simula-
tors focus on core modeling and have a very simple memory model,
often a fixed latency. A fixed latency has the advantage that the latency
is immediately known, and the latency can be added to the instruction
latency. We refer to this model as an immediate-response model: the
latency is obtained in a single function call. A state-machine memory
simulator can not be plugged in easily into a processor simulator with
an immediate-response memory model, because the latency is only
known after the request completes, during which the processor also
makes progress, i.e., the processor model cannot be stalled until the
request finishes. On the other hand, an immediate-response model
is more straightforward to implement (and maintain) and is usually
faster, because the latency is determined in one step as opposed
to multiple state changes. However, an immediate-response model
cannot model reorderings and command interleaving, as the latency
of a request must be known before seeing the next requests.

In this paper, we target an immediate-response memory model
that can be directly plugged into a dito processor simulator, and that

• All authors are with Intel Corporation, {stijn.eyerman, wim.heirman,
ibrahim.hur}@intel.com

approximates the timings of a state-machine simulator as closely as
possible. This paper makes the following contributions:

• We raise the issue that processor simulators with an
immediate-response memory model interface and/or that use
relaxed synchronization cannot use accurate state machine
DRAM models.

• We discuss the fundamental modeling issues in matching an
immediate-response memory model with a more accurate state
machine model.

• We modify a state machine DRAM simulator into an
immediate-response simulator, resulting in an average 2%
error or lower versus the state machine model, while being
1.7× faster.

• We integrate this model into a multicore performance sim-
ulator, and show that more accurate DRAM models have a
considerable impact on the performance simulations compared
to a fixed-latency model.

2 PROCESSOR AND MEMORY SIMULATORS

Processor timing simulators need to incorporate a memory timing
model, because the performance of memory-bound applications is
determined by memory performance. Separate memory timing sim-
ulators, such as DRAMSim2 [6] and Ramulator [5], use a clocked
state machine to accurately model the individual DRAM commands
and their timings. Therefore, most of the commonly used processor
and GPU simulators, such as gem5 [2] and GPGPUSim [1], moved to
an asynchronous memory model interface: they send a request to the
memory model, along with a callback function that should be called
when the request is finished. In the meanwhile, the processor simulator
continues its simulation, potentially sending more requests to the
memory model. When the callback function is executed, the processor
timing model continues the simulation of the instruction. Integrating
a state machine memory model with a processor simulator therefore
requires that the simulated processor clock is always synchronized
with the simulated memory clock.

However, high-level simulators (such as interval simulation [4])
or simulators that focus on specific aspects of a processor (such
as the simulators used for branch predictor/cache replacement/value
prediction championships) use a simple immediate-response model:
the memory model needs to immediately respond with the latency,
such that the processor model can continue modeling the timing



2

of the memory operation before proceeding to the next instruction.
Immediate-response models often assume a constant memory access
time, possibly extended with a queue model to estimate queuing time.
Memory timings are, however, highly variable depending on whether
an access is a page hit or miss, or whether or not it is reordered to
increase the page hit rate. Not only the access latency is variable, the
available bandwidth can also differ depending on the read/write ratio.

Additionally, fast parallel multicore simulators are loosely syn-
chronized to limit synchronization overhead. A memory controller is
accessed by multiple cores, each with their own clock, where some
clocks might be further in the future than others. This means that the
memory model receives requests out of order: a core that is lagging
behind can send a request that should have appeared before already
submitted requests from the other cores. State machine simulators
cannot handle this timing anomaly, they assume a monotonically
increasing clock. Therefore, loosely synchronized parallel simulators
have to resort to an immediate-response memory model.

Because of this synchronization issue, the most commonly used
processor simulators have a single-threaded simulation model, even if
multiple cores are simulated. To the best of our knowledge, there are
no parallel processor simulators with a state machine memory model.
An immediate-response model with the accuracy of a state machine
model could increase the parallelization opportunities for accurate
simulators. For parallel simulators, such as Sniper [3], and high-level
simulators, such as interval simulation, it can improve accuracy by
moving away from an inaccurate constant memory latency model.

3 MODELING EVENTS IN AN IMMEDIATE-RESPONSE
MODEL

During our attempt to transform a state machine (SM) memory
simulator into an immediate-response (IR) model, we encountered
three fundamental issues that required a novel modeling approach to
enable accurate memory latency projections. Before discussing these
issues and our solutions, we briefly explain the memory timing model
that is used in SM simulators and how we mimic that in our IR model.

3.1 Memory Timing Model
In the memory controller (MC), each memory request (load or store)
is translated into one or more memory commands, e.g., a precharge,
activate and read command for a load to a bank that has a different
page currently open. Each of these commands has several timing
restrictions wrt to other commands, which can differ across the
memory structure levels (channel, bank, rank). For example, on a
channel (which is directly connected to the MC), the MC needs to
make sure that there are at least 4 cycles between two read or write
operations, to leave enough room to send the cache line data. On the
bank level, timings between precharge, activate and read need to be
enforced to make sure that the command has physically finished.

In a state machine simulator, these timings are modeled as a
‘ready’ clock per command per level. For example, there is a ready
clock for read commands for each bank, indicating when the next read
command can start. On arrival, requests are pushed in the read or write
queue, and on every tick of the memory model clock, the queues are
checked to see if a command is ready, i.e., all ready clocks at each
level for that command are at or before the current memory clock.
If a command is scheduled, all of the timing constraints it induces
are added to the respective ready clocks, delaying future commands.
Once a request has finished all its commands, it is removed from the
queue and a callback function is called, reporting that the request has
finished.

In our immediate-response model, we should be able to schedule
requests out of order although we need to process them and estimate
their finish time in arrival order. Therefore, we do not keep a single
ready clock, but a recent history of timings, containing the timings of

t2

Tr2r

t1

t2t1

t2t1

t2t1 t1+2Tr2r

(a)

(b)

(c)

(d)

Fig. 1. Out-of-order arrival model. (a) A read access is scheduled at t2,
after which an earlier access arrives at t1 > t2 −Tr2r. (b) Scheduling the
access at t1 after the access at t2. (c) Overlapping the timing constraints
to allow the access to start at t1. (d) Our solution: splitting the timing
constraint of t1 such that there is no overlap and all gaps are filled.

the last few commands and their timing restrictions. When a request
is made, it contains its simulated arrival time, which could be earlier
than already processed requests. The request is split up into individual
commands, and all commands are scheduled one after another, but in
a single transaction, because we need to answer immediately with the
expected latency. For each command, the history is checked, and the
command is scheduled at the earliest simulated time after its arrival
time, which could be before already scheduled commands if it does
not violate the timing restrictions.

Our IR model also models DRAM refresh cycles. Refresh happens
at fixed points in time, namely multiples of the refresh period. If there
is such a point in between the simulated time of the previous request
and that of the current request, we schedule a refresh command. Note
that if a request is already scheduled at that particular point in time,
the refresh is scheduled later, obeying all timing restrictions between
commands.

While this transformation from an SM to an IR model seems
straightforward, there are a few issues that need to be investigated
and that require non-straightforward solutions, which we discuss in
the next sections.

3.2 Out-of-Order Arrival and Scheduling
In parallel simulators, requests may occur out-of-order, which means
that future requests are already scheduled, while an earlier request
should have been scheduled before. Scheduling the earlier request
before the future requests might violate the timings, but we cannot
move later the already scheduled requests, because their latency is
already reported to the core simulation model.

Figure 1 sketches the issue: a read command is scheduled at t2
and adds the restriction that no other read can be scheduled between
t2 and t2 +Tr2r, with Tr2r the minimum read-to-read command time1.
Somewhat later, a read command is scheduled at t1, which is earlier
in simulated time. However, t2 − t1 < Tr2r, so a there is a timing
violation. In a globally synchronized SM simulator, we would first
see the command at t1 and then that at t2, which we need to delay
until t1 +Tr2r > t2.

In our IR model, we could argue that since we violate the timing
constraints, we need to schedule the request at t1 after the request
at t2, so at t2 + Tr2r (Figure 1b). More generally, we look for the
next gap that fits a full block of length Tr2r to schedule the request.
This will lead to many small gaps that cannot be filled, and therefore
an underutilization of the capacity. This does not occur in the SM
simulator, which can potentially schedule each command back to
back, resulting in a performance underestimation by the IR model.

Inversely, we can decide to schedule the t1 command at time t1
(like in the SM simulator) and ignore the timing constraint violation,

1. We use this notation for readability, the actual model uses the conventional
DRAM timings, such as tRAS, tRCD, etc.



3

i.e., we let the timing constraints overlap (Figure 1c). Clearly, this will
lead to an overutilization of the capacity if there are many overlaps,
and thus a performance overestimation.

With the insight of achieving average overall accuracy in mind,
the solution is to schedule the command at t1 but to add the timing
constraint that would overlap after that of t2, such that the next
command can start at t1 + 2Tr2r at the earliest, see Figure 1d. Note
that the processor simulator still sees the request at t2, because that
was reported before we encountered the request at t1. Compared to
the SM model, the timing of the request at t1 is correct, but that at
t2 is too early. Any later request will need to start at t1 + 2Tr2r at
the earliest, which is in line with the SM model. The earliness of t2
is compensated by a longer delay for the next request, which comes
t1 +2Tr2r − t2 > Tr2r after t2.

Next to the command-to-command delays (where both commands
are the same), there are also inter-command delays. For example, at
the rank level, there is a delay of starting a new read operation after
a write operation (write to read delay Tw2r). These delays can and
should overlap. For example, a write at t = 0 forces the next read to be
at t = Tw2r at the earliest. A subsequent write (without an intervening
read) at t = Tw2w < Tw2r does not delay reads until t = 2Tw2r, but until
t = Tw2w+Tw2r, i.e., the Tw2r delays overlap. This should be taken into
account in the IR model: inter-command delays can overlap with each
other, but cannot overlap with intra-command delays.

3.3 Delayed Writes
Writes to memory, mainly writebacks from caches, are treated dif-
ferently from reads. They are not critical for performance, because
the cores are not waiting for their completion, in contrast to reads.
Therefore, they are buffered and processed on idle memory cycles
(with no reads pending) or when the write buffer gets full. Addition-
ally, because there is an extra penalty of switching between reads and
writes, writes are done in bursts.

Delaying writes is not straightforward in a IR memory model.
Fortunately, the processor simulator does not request a latency number
on writes, because writes are not stalling a core, except when a burst
of writes delays a subsequent read. Therefore, we can keep them in
a queue and we do not need to model their timing immediately. On
every read request, we check whether since the previous read, there
were cycles with no pending reads. If so, we first model draining the
write queue up to a certain occupancy, before modeling the timing
of the current read operation, which could be delayed because of
the write burst. We also start this process whenever the write queue
occupancy exceeds a certain threshold.

3.4 First-Ready Policy
Memory controllers use a first-ready first-come-first-serve (FR-FCFS)
scheduling policy: of all pending requests, the one that can be
scheduled first is selected; if multiple requests can be scheduled, the
oldest is selected. For example, of all requests going to the same bank,
the ones going to the currently open page are scheduled first, because
they only need a read command to finish. Thereafter, a new page
is opened and the requests to that page are scheduled. Similarly, if
there are many requests to the same bank followed by some requests
to other banks, the later requests can be scheduled in between the
first requests to exploit bank parallelism. The latter case is already
naturally modeled by our IR mechanism: a burst of requests to the
same bank will induce a large delay on that bank’s access history,
but later requests to different banks will see idle time on their bank’s
history, which means that they can be scheduled at an earlier simulated
time than the last seen access to the contended bank.

The open page based reordering is not modeled: accesses to the
same bank will be scheduled in their arrival order, because we cannot
see future accesses. To model this reordering, we do not only look

t2t1

open page: A B

t3

Fig. 2. Open page history. The next request is to page A and can be
scheduled at t3 at the earliest. At t3, B is the currently open page. If the
next request arrives at t1, page A is open during its queuing time, so we
model a page hit, but we do not reopen page A at t3. If it arrives at t2,
only page B was open, so we model a page miss, and open page A at
t3. In both cases, the request access time is at t3.

at the page buffer content at the moment the read request can be
scheduled, but we scan the full open page history between its arrival
time and its schedule time, see Figure 2. If during that period, the
requested page was opened by another request, we assume that the
current request was scheduled while that page was open and will see
a page hit. However, we cannot schedule this request at that particular
time (because of the timing constraints), so we schedule it later, but
assuming a page hit, and thus requiring a single read command. In
reality, this request would have been scheduled earlier, so in this case,
we do not update the open page history with the timing of the current
request, because its timing is wrong (too late). This avoids unrealistic
chains of open pages, i.e., requests that arrive after the page has
been closed (in simulated time), will not see page hits because of
this delayed page hit.

4 EXPERIMENTAL SETUP

We use Ramulator [5] as our baseline state machine memory simula-
tor. Ramulator has been validated against other DRAM simulators and
hardware, and is, according to the authors, one of the fastest DRAM
simulators. It also has an interesting implementation for our study:
the timing engine (the SM scheduler) is completely separate from
the specific memory timings model (DDR3-4-5, GDDR, LPDDR,
HBM, etc.). Each memory model can introduce new commands and
timing restrictions, without requiring changes to the timing engine.
By transforming the timing engine to a immediate-response model,
we can reuse the specific memory timing models unchanged and we
are ready to use new Ramulator models as they appear. We refer to
the baseline Ramulator model as SMRam, and use IRRam for our
transformed IR model. For our initial results, we compare the SMRam
and IRRam using the simple core simulator in Ramulator.

Next, we integrate IRRam into the Sniper multicore simulator [3],
which models a fixed memory latency by default. Because of the
IR approach, it can be plugged in without changing anything to the
Sniper timing model. Note that we cannot easily integrate SMRam
into Sniper, because that would require drastic changes to the Sniper
core model and cycle-by-cycle synchronization, which significantly
reduces simulation speed. We show that modeling memory more
accurately has a considerable impact on performance compared to
using the same fixed latency and bandwidth for all applications.

We perform all experiments on 1-billion instruction traces of the
SPEC CPU 2017 benchmarks. These traces are collected using the
SimPoint methodology, with a maximum of 10 representative traces
per benchmark, for all reference inputs, resulting in 272 different
traces. To show the accuracy of our technique on diverse workloads,
we do not average results per benchmark; instead we consider each
trace as an individual workload. We evaluate three memory tech-
nologies: DDR3, DDR4 and GDDR5. For the Sniper simulations, we
configure a single core based on the Intel Skylake architecture.

5 EVALUATION

As a first soundness test, we evaluate SMRam and IRRam on 2
synthetic traces: one with sequential addresses and one with random
addresses. IRRam is 0.3% and 1.6% off compared to SMRam for



4

0%
10%
20%
30%
40%
50%
60%
70%
80%

<-
9%

[-9
%
,-7

%
]

[-7
%
,-5

%
]

[-5
%
,-3

%
]

[-3
%
,-1

%
]

[-1
%
,1
%
]

[1
%
,3
%
]

[3
%
,5
%
]

[5
%
,7
%
]

[7
%
,9
%
]

>9
%

Fr
eq

ue
nc

y

Error

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4

D
D

R4
 m

od
el

 IP
C

constant model IPC

0

2

4

6

8

10

12

0 2 4 6 8 10 12

D
D

R4
 m

od
el

 B
W

 u
sa

ge
 (G

B/
s)

constant model bandwidth usage (GB/s)

(a) (b) (c)

Fig. 3. DDR4 model evaluation: (a) Simulated time error histogram of IRRam versus SMRam on the 272 SPEC CPU 2017 traces, both using
Ramulator’s simple core model. (b,c) IPC and bandwidth comparison between a constant memory model and a DDR4 timing model. Points under
the bisection have a lower value for the DDR4 model than for the constant model.

sequential and random, respectively, and reports the same page hit
rate (99% and 0%).

Next, Figure 3(a) shows the error histogram of running the 272
SPEC CPU2017 traces on IRRam for DDR4 versus baseline SMRam.
The simple Ramulator core model is an out-of-order superscalar core
(width 4) where all non-memory operations and cache hits take one
cycle (ignoring dependences), only the timing of memory accesses is
simulated using the memory timing model.

The average absolute error is 2.1%, 1.3% and 0.9% for DDR3,
DDR4 and GDDR5, respectively. The error is less than 5% for
87% (DDR3), 91% (DDR4) and 98% (GDDR5) of the traces. In
comparison, a constant latency model, similar to the default Sniper
model, has an average error of 11%, with outliers of more than 50%.
The average error on the page hit rate, defined as IRRam page hit rate
minus SMRam page hit rate, is 3.1%, 1.8% and 1.1% for the three
memory technologies, with again the vast majority of errors smaller
than 5%. The page hit rates of all traces vary between 0.1% and
97.8%. IRRam is on average 1.7× faster than the original SMRam,
and up to 4.5× for traces with low memory traffic.

Next, we integrate IRRam model into Sniper, and compare against
the default constant bandwidth constant latency memory model. The
constant model includes a queuing delay estimation: if memory traffic
gets close to the configured constant bandwidth, queuing delay is
added based on a simple bus occupancy model. To compare to the
best possible constant memory model, we first run Sniper with IRRam
for DDR4. We then determine the largest achieved bandwidth (12
GB/s), and use that as the constant model’s bandwidth. The maximum
obtained bandwidth is lower than the theoretical peak bandwidth
of 19.2 GB/s, because of timing constraints other than the channel
bandwidth. We also calculate the average access latency across all
simulations, and use that as the constant latency. Note that this is
a unrealistically optimistic model for constant latency: in absence
of an accurate memory model, we cannot determine these values as
accurately. Compared to the simple constant latency memory model,
simulation time increases by 14% on average when using IRRam.

Figure 3(b,c) shows the constant model versus IRRam in terms of
IPC and used memory bandwidth for each of the simulated points.
The memory access latency (total latency minus queueing latency) is
constant at 27 ns for the fixed model and ranges between 17 ns and 60
ns for IRRam. There is a large variation in the IPC (9% on average and
up to 89%) and bandwidth (9% on average and up to 88%), especially
for the memory-intensive traces (low IPC, high bandwidth).

The IRRam IPC and bandwidth usage are mostly lower than that
of the constant model, despite the fact that they have exactly the
same average latency and peak bandwidth. For non-memory intensive
benchmarks, the memory latency is usually lower than average,
however, this does not lead to higher IPC because they are not

sensitive to memory latency. On the other hand, memory intensive
benchmarks have a higher memory latency in IRRam, and they are
sensitive to this higher latency, explaining why they have a lower IPC
in the DDR model than in the constant latency model.

Bandwidth usage is lower, because the constant model does not
take into account the lower bandwidth efficiency when mixing read
and write operations. At higher bandwidths, the usage of IRRam is
sometimes higher, because the available peak bandwidth (19.2 GB/s)
is actually higher than the configured constant bandwidth (12 GB/s).
However, setting the constant bandwidth higher will result in even
higher overestimations of used bandwidth.

Lastly, we also ran a straightforward IR DDR model, which keeps
the open page state and busy times of all banks, without modeling
overlaps, reorderings and bursts. The average IPC is 12% lower than
that of IRRam and page hit rate is underestimated by 15% (and up
to 30%), because of not modeling the first-ready reorderings and
overlaps.

6 CONCLUSIONS

Accurately modeling memory timing is crucial for accurate processor
performance predictions. The complexity of current memory tech-
nology requires a clocked state machine memory simulation model.
However, because of simplicity, speed or relaxed synchronization,
some simulators do not support a state machine model, but instead
require an immediate estimate of the memory latency. We transformed
a state machine memory model to an immediate-response model
to target the best of both worlds: the simplicity and speed of an
immediate response interface and the accuracy of a state machine
model.

REFERENCES

[1] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in ISPASS.
IEEE, 2009, pp. 163–174.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[3] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations,” in
SC, Nov. 2011.

[4] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation: Raising
the level of abstraction in architectural simulation,” in HPCA-16. IEEE,
2010, pp. 1–12.

[5] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible DRAM
simulator,” IEEE CAL, vol. 15, no. 1, pp. 45–49, 2015.

[6] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE CAL, vol. 10, no. 1, pp. 16–
19, 2011.


	Introduction
	Processor and Memory Simulators
	Modeling Events in an Immediate-Response Model
	Memory Timing Model
	Out-of-Order Arrival and Scheduling
	Delayed Writes
	First-Ready Policy

	Experimental Setup
	Evaluation
	Conclusions
	References

