Enabling Branch-Mispredict Level Parallelism
by Selectively Flushing Instructions

Stijn Eyerman
Wim Heirman

Sam Van den Steen
stijn.eyerman@intel.com
wim.heirman@intel.com

sam.van.den.steen@intel.com
Intel Corporation
Belgium

ABSTRACT

Conventionally, branch mispredictions are resolved by flushing
wrongly speculated instructions from the reorder buffer and refetch-
ing instructions along the correct path. However, a large part of
the misspeculated instructions could have reconverged with the
correct path and executed correctly. Yet, they are flushed to ensure
in-order commit. This inefficiency has been recognized in prior
work, which proposes either complex additions to a core to reuse
the correctly executed instructions, or less intrusive solutions that
only reuse part of the converged instructions.

We propose a hardware-software cooperative mechanism to
recover correctly executed instructions, avoiding the need to refetch
and re-execute them. It combines relatively limited additions to
the core architecture with a high reuse of reconverged instructions.
Adding the software hints to enable our mechanism is a similar
effort as parallelizing an application, which is already necessary to
extract high performance from current multicore processors. We
evaluate the technique on emerging graph applications and sorting,
applications that are known to perform poorly on conventional
CPUs, and report an average 29% increase in performance.

ACM Reference Format:

Stijn Eyerman, Wim Heirman, Sam Van den Steen, and Ibrahim Hur. 2021.
Enabling Branch-Mispredict Level Parallelism by Selectively Flushing In-
structions. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO °21), October 18-22, 2021, Virtual Event, Greece.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3466752.3480045

1 INTRODUCTION

Processor development has historically been driven by technology
improvements, providing more transistors and frequency boosts
without increasing energy density [13, 31]. Architecture design
mainly had to focus on extracting as much performance as possible
out of the ever growing amount of transistors, with little focus on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480045

767

Ibrahim Hur
ibrahim hur@intel.com
Intel Corporation
USA

efficiency. This has led to wide and deep out-of-order architectures,
relying on prediction and speculation to increase performance, even
though mispredictions lead to a high amount of uselessly fetched
and executed instructions. Nowadays, the halt of frequency and
power efficiency scaling puts an increasing focus on efficiency,
with the advent of specialized architectures and accelerators as the
extreme examples [21].

Branch prediction is an important contributor to the performance
of out-of-order processors: if the prediction is correct, the core
does not have to stall fetch until a branch is executed. However,
branch predictor misses have an increasingly higher power and
performance penalty as the core’s instruction window gets larger
to exploit more parallelism: the amount of wrong-path instructions
that need to be flushed increases with window size. Furthermore,
CPU applications are becoming more irregular, both in terms of
memory behavior and branch predictability. This is because regular
code is now increasingly executed on architectures with a higher
peak compute rate, such as GPUs, leaving the less regular code for
the CPU [5]. Additionally, emerging big data analysis algorithms,
such as graph analysis [17], sparse neural networks [44] and graph
neural networks [42], operate on sparse and irregular data, resulting
in high branch miss penalties.

In this paper, we propose a mechanism to increase the efficiency
and performance of a conventional out-of-order processor, by not
flushing all instructions after a mispredicted branch. The mecha-
nism detects instructions in the speculative stream that reconverge
to the correct path and only flushes those instructions that need
to be refetched and re-executed to ensure correct execution. This
increases performance, as the non-flushed instruction do not need
to be refetched and re-executed, and also saves energy for the same
reason.

Not flushing data and control independent instructions to in-
crease efficiency has been extensively explored in prior work, as
discussed in the next section. Our proposal differs from these pro-
posals by its software-hardware cooperation: software indicates
independent code fragments, while hardware uses this information
to only flush instructions that truly depend on the branch miss. The
goal is to maximally exploit instruction reuse while minimizing the
additions to the core micro-architecture.

The novel instructions to indicate independent code fragments
might seem to limit usefulness, as the application needs to be an-
notated and recompiled to use the mechanism. However, it is our

https://doi.org/10.1145/3466752.3480045
https://doi.org/10.1145/3466752.3480045

MICRO 21, October 18-22, 2021, Virtual Event, Greece

opinion that software-hardware cooperation is key in increasing
processing efficiency, for two reasons:

(i) A hardware only solution often involves detection and/or
prediction structures, setting off part of the efficiency gains of the
proposed mechanism. By using software to indicate independent
code fragments, no complex detection, prediction and/or rollback
hardware needs to be implemented.

(ii) Programmers and compilers are already forced to cooperate
with hardware to extract the highest possible performance, for ex-
ample by implementing parallel applications to exploit the compute
power of multicore machines. Parallelizing an application includes
thinking about synchronization, which is a form of dependence
analysis.

Regarding the second point, we show how independent loop iter-
ations can be easily detected using OpenMP “parallel for” pragmas,
a commonly used parallelization technique.

In this paper, we make the following contributions:

e We propose a hardware-software cooperative technique to
increase performance and efficiency with minimal changes
to the hardware and software.

o We describe different implementation options that provide
different performance/complexity tradeoffs.

e We evaluate our proposal using simulation on graph bench-
marks, showing an average 29% and up to 54% performance
increase.

We first discuss prior work and refresh memory on the branch
recovery mechanism in conventional out-of-order processors. Next,
we elaborate on the software and hardware aspects of our proposal.
We then explain our experimental setup and show results, analyzing
the performance impact of different software and hardware options.
Finally, we conclude and discuss future work.

2 PRIOR WORK ON BRANCH MISS
OPTIMIZATIONS

Branch convergence and selective flushing have been recognized
as potential performance optimizations for out-of-order pipelines
more than 20 years ago by Rotenberg and Smith [35]. They imple-
ment a selective flush mechanism in a trace processor, an architec-
ture that is not commonly used nowadays.

Since then, a lot of proposals have been made to exploit branch
convergence to improve performance. We can roughly divide them
into two categories: the first advocates a dramatic redesign of the
processor pipeline to extract the largest performance benefit, while
the second category proposals have a very small impact on the
pipeline design, but only reuse a small fraction of the convergent
instructions.

Skipper [11] belongs to the first category: it skips instructions
that are control and data dependent on a hard-to-predict branch,
and fetches and executes these instructions after the branch is
resolved. It adds multiple predictors and roll-back mechanisms to
the core for a relatively low (10%) performance gain. Furthermore,
correctly predicted hard branches (50% probability) also cause out-
of-order fetches, potentially delaying forward progress. Collins et
al. [12] propose a more accurate reconvergence predictor, which
can be used in control-independent architectures. Pajuelo et al. [34]
use convergence detection and a vectorization scheme to issue

768

Stijn Eyerman, Wim Heirman, Sam Van den Steen, and Ibrahim Hur

multiple iterations of control independent code while a hard-to-
predict branch is being resolved. Al-Zawawi et al. [4] propose a
novel ROB-less design, based on re-execution buffers to execute
control and data dependent instruction after a mispredicted branch.
Mao et al. [30] describe a mechanism to implement the reuse of
converging instructions in composable multi-processors.

An example of the second category (small additions, limited
benefit) is the proposal by Roth and Sohi [36]. They keep outcomes
of squashed instructions and reuse the values if the inputs are still
valid. This has a limited impact on performance, as reconvergent
instruction still need to be re-fetched and dispatched. Selective
Branch Recovery (SBR) [18] can be applied when the recovergence
point is the start of the correct path. By transforming wrong-path
instructions into move instructions and re-executing them, data
dependences are preserved. SBR only works for a subset of branch
misses, i.e., those for which the start of the correct path is already
fetched, while our mechanism can handle all branch misses. Naresh
et al. [27] propose to only reuse convergent instructions in the
frontend pipeline, flushing all dispatched instructions.

Our proposal lies somewhere in the middle between these two
categories: we target minimal changes to the architecture, and
maximal reuse of convergent instructions. We avoid expensive pre-
dictors, dependence checkers and roll-back mechanisms by relying
on compiler hints to denote control and data independent regions.
NOREBA [19] uses a similar strategy: compiler inserted instruc-
tions inform the hardware which branch independent instructions
can commit out of order. Furthermore, we reuse the existing out-of-
order mechanisms for register renaming, flushing instructions and
redirecting fetch. Our mechanism does involve some non-trivial
changes to the micro-architecture, but our goal is to keep these
additions as limited as possible.

As an alternative to reusing converging instructions within a
thread, multithreading can be used to spawn threads for control and
data independent regions [1, 2], which avoids flushing instructions
of other regions on a misprediction. Creating and spawning threads
has a high overhead, especially when the independent regions
are small. Furthermore, optimized parallel code already uses all
available hardware thread contexts.

Another way of reducing the performance degradation due to
hard-to-predict branches is predication [10, 23]. Branch paths fol-
lowing branches that miss often are turned into predicated instruc-
tions, fetching both the taken and not taken path. Depending on
the branch condition, the results of these instructions are commit-
ted or invalidated. Instructions after the convergence point are
not predicated and can be executed while the branch resolves. No
instructions need to be flushed. The performance benefit of predica-
tion is a subtle balance between adding data dependences, fetching
more instructions and avoiding flushing instructions. Therefore, a
performance monitoring system is needed to avoid performance
inversion of predicating instructions [10, 24]. Additionally, pred-
ication options are limited in current architectures (x86 only has
cmov, 64-bit ARM instruction set removed most of the predicated
instructions), and the compiler has strict conditions for applying
if-conversion, such as no function calls and a limit on the number
of instructions. As a result, none of the applications we evaluate can
use predication to reduce the branch penalty. Our technique does
not add dependences, has no restrictions on the type and number

Enabling Branch-Mispredict Level Parallelism
by Selectively Flushing Instructions

of instructions, and is only triggered when the branch is effectively
mispredicted, while predication is done for all occurrences of the
converted branch. Interestingly, Chauhan et al.[10] report that 72%
of the hard branches converge for the benchmarks they evaluate,
which is a distinct set from the benchmarks we used. This shows
that convergence can be exploited in a large set of applications.

Farzad et al. [37] found that wrong-path control and data inde-
pendent code accounts for 6% to 12% of the total power consumption
in embedded processors, which could potentially be saved by not
flushing them. Malik et al. [29] discuss the performance benefit of
parallel branch resolution, highlighting the importance of maxi-
mizing branch-miss level parallelism (BLP) in control independent
architectures. Our proposal implements BLP: branches in different
slices execute concurrently and are not flushed due to misses in
other slices.

Branch resolution is often delayed by long-latency cache misses
on which the branch depends, as is the case for our evaluated appli-
cations. The indirect memory prefetcher [43] reduces the latency
of irregular indirect memory accesses, speeding up branch resolu-
tion and thus indirectly reducing the branch penalty. Pipette [32]
exploits pipeline parallelism in irregular applications and adds a
mechanism for quickly switching between stages when a stage is
blocked due to long memory accesses. These techniques are orthog-
onal to our proposal.

3 OUT-OF-ORDER EXECUTION AND
BRANCH PREDICTION

Ultimately, the goal of out-of-order processing is to approach data
flow execution: instructions are executed as soon as their inputs are
ready, independent of the status of instructions that appear earlier
in the instruction stream. However, to enable precise interrupts and
to ease the implementation of synchronization between threads,
instructions appear to be executed in order, by ensuring in-order
commit.

Branch prediction increases the continuous flow of instructions
into the reorder buffer, to provide a large window of instructions
to select multiple ready-to-execute instructions. Branch mispredic-
tions are, however, very costly: because we need to ensure in-order
commit, all instructions after a detected branch miss need to be
flushed and re-fetched along the correct path. The total penalty of
a single branch misprediction equals the time spent fetching in-
structions along the wrong path, which could be many in a deeply
pipelined processor [16]. For the branch miss heavy applications
evaluated in our study (see Section 5.1) using a state-of-the-art
TAGE branch predictor [38], wrong path instructions account for
on average 53% more dispatched instructions, branch miss resolu-
tion takes 47% of the execution time and oracle branch prediction
improves performance by 60%.

Many branches have convergent paths: the taken and not-taken
path eventually converge. In this case, flushing all instructions after
abranch miss breaks the data flow execution model: the execution of
converging instructions that are independent of the branch outcome
is cancelled or delayed because of the in-order commit model, not
because of true dependences. Our technique improves on this by
keeping convergent instructions that are known to be independent
of the branch paths in the reorder buffer and by continuing to

769

MICRO 21, October 18-22, 2021, Virtual Event, Greece

execute them while the correct path is being fetched. Using our
proposal, the penalty of a branch miss reduces to the fetch time
of only those instructions that are control and data dependent on
the mispredicted branch. Furthermore, independent instructions
do not need to be refetched, resulting in less energy consumption.

For a better understanding of our proposal, we briefly recap-
ture the conventional branch miss resolution mechanism in an
out-of-order processor. If a branch is executed and it turns out
to be mispredicted, all instructions that are younger are flushed
from the ROB, and the issue, load and store queue entries they oc-
cupy are released, as well as the renamed physical registers. Before
fetching and dispatching instructions along the correct path, the
rename table has to be restored to its state just after the branch
was dispatched, undoing all renamings along the mispredicted path.
Conceptually, there are two main methods to restore the rename
table [3]:

(a) Using checkpoints: At each branch instruction, the rename
table is checkpointed. When a branch turns out mispredicted, the
checkpoint is looked up and restored. This is a quick mechanism,
but requires substantial storage to keep all checkpoints.

(b) Using rollback logs: The renaming operations (architectural
to physical register mappings) of all instructions in the ROB are
logged, and rolled back one by one until the mispredicted branch
is reached. This mechanism has lower storage requirements, but
more time is needed to restore the rename table, because rename
operations need to be undone one by one.

The combination of both is currently the most chosen option
to balance storage requirements and speed: regular checkpoints
(but not at all branches) and a rollback log. When a branch is
mispredicted, the closest checkpoint is looked up and rolled back to
the mispredicted branch. In the remainder of this paper, we assume
a checkpointing mechanism at each branch. However, our proposal
also supports a rollback or hybrid mechanism, because a rollback
mechanism ensures that rename tables at dispatch of all in-flight
instructions can be restored.

4 SELECTIVE FLUSH MECHANISM

Our proposal to selectively flush instructions after a branch miss
and to not waste resources on re-processing instructions on the
convergent path consists of combined software and hardware addi-
tions. The software part is responsible for indicating control and
data independent regions by means of 3 additional instructions.
The hardware part takes this information to selectively flush in-
structions on a branch miss.

4.1 Denoting Independent Regions

Selective flush should only flush instructions that are dependent
on the instructions before the branch miss. To simplify the mecha-
nism, we only consider sequential lists of instructions, i.e., we do
not extract individual (in)dependent instructions. We define a slice
as a sequence of instructions such that all instructions following
the slice are control and data independent! of the instructions in
the slice, up to a certain point in the application, called the slice

!Considering only true RAW dependences, WAR and WAW dependences are removed
by register renaming.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Listing 1: Example loop
loop: slice_start
load A[r1],r2
jl r2,0,else
mul r2,r2,1r2

1

2

3

4

5 j end
6 else: mov 0,r2

7 end: store r2,A[rl]
8 slice_end

9 inc rl

10 jl r1,N,loop
11 slice_fence

12 load A[0],r1

region end, after which instructions can depend on sliced instruc-
tions. When a branch misprediction occurs within a slice, only the
remaining instructions in the same slice should be flushed, while
newer instructions can continue to be executed (until the end of
the slice region).

The typical use case is a loop of independent iterations, see List-
ing 1. The slice is the body of the loop, indicated by the slice_start
and slice_end instructions, and the number of slices in the region
equals the number of iterations. The region is ended after the loop
using a slice_fence instruction, when data calculated in the loop
is used.

Not all instructions within a region should belong to a slice. For
example, the iterator increment and the loop branch (instructions
9 and 10) are always control and data dependent on the previous
iteration increment and branch. Therefore, they are left out of the
slice, although they still belong to the slice region. If a branch that
is not within a slice is mispredicted, all instructions following that
branch should be flushed, as in the regular case. For example, if the
loop branch is predicted taken after the last iteration, we should
flush all wrongly speculated next iterations of the loop.

Instructions in a slice can depend on instructions out of a slice
in the same region. In the example, the loop body depends on the
value of r1, i.e., the iterator, and is also control dependent on the
loop branch. The only requirement is that all instructions following
the slice should be control and data independent of the instructions
in the slice.

Figure 1 shows a typical sliced loop, with its (potential) depen-
dences. The iterator increment and branch are outside the slice, but
within the slice region, i.e., all code before the slice fence. All slices
are independent of each other, except for reduction variables, which
we discuss in Section 4.5. Furthermore, none of the non-sliced code
depends on sliced instructions, up to the slice fence. Code after
the fence depends on the sliced code (otherwise the sliced code
would be dead code), but only through memory, as we explain in
Section 4.4.

Slices and regions are indicated using three new instructions:
slice_start, slice_end and slice_fence. These need to be in-
serted by the programmer or compiler, who is responsible for ensur-
ing that the slice independence conditions are met. This alleviates
hardware from dependence checking, but it puts more burden on
the software. However, dependence checking is already a main task

770

Stijn Eyerman, Wim Heirman, Sam Van den Steen, and Ibrahim Hur

iterator inc slice
loop branch
red_var upd
N
AY
Al
j j . \
iteratorinc N slice \
\
loop branch \
\
‘l
1
red_var upd \‘
|
~, 1
N |
]
\ ‘=
iterator inc slice \ ‘.
—> \
loop branch Vi
Vi
[
1
red_var upd il:
1
Ly
\\ ;
v
ol
Y
| slice fence i
/
)
/]

Figure 1: Typical sliced loop. Full line arrows are register de-
pendences, dashed arrows are dependences through mem-
ory (store to load).

of the compiler, and increasingly also of the programmer to enable
thread parallelism.

Enabling selective flush is a similar effort as parallelizing an ap-
plication. For example, consider the popular OpenMP (omp) frame-
work for parallelizing applications. The iterations of an omp parallel
for loop can be divided among threads and are therefore inherently
independent. These loop bodies can be safely encapsulated in a slice,
exploiting the selective flush mechanism for iterations executed
in the same thread. In fact, by putting parallel for iterations into
slices, we further exploit the parallelism within a thread: instead
of enforcing sequential execution after a branch miss, newer itera-
tions can be executed in parallel with the branch miss resolution.
Furthermore, branch reconvergence and instruction dependence
compiler analysis have been discussed in prior work [6, 19], which
means an automatic compiler implementation is realistic.

4.2 Selective Flush Mechanism

The first addition to the hardware is the ability to decode the three
new slice instructions. Note that these instructions can be taken
from the set of no-op instructions, such that a binary compiled with
slice instructions can also be executed on a processor that does not
support selective flush. The core keeps track of which instructions
are within a slice and which not, e.g., by adding one bit to each ROB
entry. When a misprediction on a non-sliced branch is detected, the
regular branch recovery mechanism is used, i.e, flushing all newer
instructions and restarting fetch at the correct path.

Enabling Branch-Mispredict Level Parallelism
by Selectively Flushing Instructions

MICRO 21, October 18-22, 2021, Virtual Event, Greece

dispatch

@ = | | | [|][]

dispatch

b w= | | | | [|]|

cp1
dispatch

@ == | [[]]]]

dispatch

o ==]
dislgch

() wmmd | | |

|

Figure 2: Selective flush mechanism example. Instructions from Listing 1: line number and first letter of instruction (j=branch).
Different colors denote different slices/iterations, slice instructions are shown as large brackets. (a) Situation after fetching 2
iterations. (b) Misprediction detected in instruction ‘3 j’, 2 instructions flushed (red). (c) ROB relinked to fetch correct path,
dispatch set to checkpoint CP1, checkpoint CP2 taken at ‘regular fetch’. (d) Fetching correct path until end of slice and pointing
back to next out-of-slice instruction (9 i). (¢) Resuming regular fetch from CP2.

When a misprediction on a sliced branch is detected, only the
instructions after the branch in the same slice are flushed, see Fig-
ure 2(b). Additionally, we take a checkpoint (CP2) of the current
rename table, i.e., at the point where instruction fetch should con-
tinue after fetching the correct path within the slice. We call this
checkpoint the ‘regular fetch checkpoint’. Newer instructions that
do not belong to the slice (rightmost ‘9 i’ and further to the left) are
kept in the ROB, and continue to execute. Fetch is redirected at the
correct path, and the mispredicted branch rename table checkpoint
(CP1) is restored (c). When the correct path execution reaches a
slice_end instruction (d), the correct path within the slice is com-
plete. The instructions after the slice_end are already fetched and
potentially executed. At that point, the ‘regular fetch checkpoint’
(CP2) is restored and fetch continues where it left off (e).

When a branch misprediction in a slice is detected and the end of
the slice is already in the ROB, the front-end (fetch-decode-rename)
contains correct path instructions (because they are outside the
current slice). These front-end instructions should not be flushed
and can continue to proceed through the pipeline. The regular fetch
checkpoint is taken when the last of these instructions is renamed.
In the meantime, the front-end is filled with the resolved correct
path instructions within the affected slice, so there is no disruption
in the flow of instructions in the front-end. Redirecting fetch after
the detection of the miss might introduce a one cycle bubble, which
also ensures that no regular fetch and resolved path instructions end
up in the same rename batch and a clean regular fetch checkpoint
can be taken.

After the correct path is resolved, i.e., a slice end instruction
is fetched, the fetch stage continues at the regular fetch point. To
enable a smooth flow, we assume that slice ends are detected early
in the fetch pipeline (similar to branches), such that we do not need
to wait until they are decoded to redirect fetch to the regular fetch

771

point. To avoid deadlocks, we propose to reserve some resources
for resolving correct paths, see Section 4.7.

The regular fetch checkpoint (CP2 in the example) does not
contain the renamings made after dispatching the resolved path.
Because there are no dependences between instructions in the slice
and the next instructions, all registers renamed inside a slice are
dead at the end of the slice and the regular fetch checkpoint does
not depend on the novel renamings along the correct path. An
exception is a reduction variable, which we discuss in Section 4.5.
We assume that the rename table is used only at the rename stage.
The architectural/physical renaming for each instruction is also
encoded in its ROB entry, this information is used at the commit
stage to write back the architectural register and free the physical
register.

4.3 Linked List ROB

Selectively flushing and restoring the wrong path within a slice
breaks the in-order appearance of instructions in the ROB: instruc-
tions of the correct path of one iteration are inserted after instruc-
tions of later iterations. However, we still want to support in-order
commit to avoid impact on off-core mechanisms that rely on in-
order commit, such as precise interrupts and memory consistency
mechanisms. Therefore, we propose to implement the ROB as a
linked list, which enables removing and adding instructions in the
middle of a stream. On a branch miss in a slice, the next pointer of
the ROB entry containing the branch is set at the next free ROB
entry, where the correct path will be fetched, see Figure 2(c). After
finishing the correct path in the slice, the pointer is set to the in-
struction that logically follows, but that has already been fetched
earlier (d). This pointer is saved together with the ‘regular fetch
checkpoint’. Next, the last instruction fetched when detecting the
branch miss points to the next free entry, i.e., after the correct path

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

(d)

Stijn Eyerman, Wim Heirman, Sam Van den Steen, and Ibrahim Hur

77

%

Figure 3: A blocked linked list ROB. Each block consists of multiple instructions; there is one pointer at the end of each block.
In blue are correct path instructions, flushed instructions are in gray, green is the resolved correct path and shaded refers
to gaps in the ROB. (a) Flushed instructions cross block boundary. (b) Situation after resolving the branch miss. (c) Flushed
instructions do not cross block boundary. (d) Inserting a gap at dispatch to enable correct redirection to the resolved path.

(e), and dispatch continues. At the commit stage, the pointers are
followed to ensure in-order commit of instructions. Note that most
instructions will still be stored sequentially, each branch miss in
a slice causes at most 3 redirections. The number of cycles where
commit is stopped prematurely because of a pointer indirection is
therefore limited.

Depending on the implementation of the load and store queues
in the baseline core, they should or should not also be changed
to a linked list. For example, if there are pointers to/from the cor-
responding ROB entries or some kind of sequence numbers, the
relative order for checking address aliasing, load-store forwarding
and ordering for memory consistency, can be determined without
a linked list implementation. If a linked list implementation is nec-
essary, it involves a small extra overhead, because these queues are
smaller than the ROB.

The linked list ROB is arguably the most impacting change to
the regular core design. It involves adding a pointer to each entry,
which adds n[log, n] bits for a ROB of n entries (e.g., 256 byte
for a 256 entry ROB). Linked list ROBs have been used in the IBM
POWERS5 [22] and POWERS [40] architecture to enable dynamically
sharing ROB entries between threads in SMT mode.

To reduce the overhead of pointers, the ROB can be partitioned
into blocks (e.g., of 8 entries), with only one pointer per block. Inside
ablock, instructions are consecutive, while blocks can be dispatched
out of order. Blocks also simplify committing multiple instructions
per cycle by avoiding following pointers. This reduces the overhead
(e.g., to 20 byte for a 256-entry ROB and 8-entry blocks), but it also
leaves holes in the ROB, as out-of-order paths can only start at
block boundaries.

If a branch miss in a slice is detected, the instructions in the slice
are flushed, see Figure 3. If the slice_end is in a different block
as the branch miss (or it is the last instruction of the same block),
see Figure 3(a), we start fetching the correct path after the branch
miss to fill gaps and to keep instructions consecutive as much as
possible (rightmost green area in Figure 3(b)). When the last block
before the end of the flushed slice is filled, we use its pointer to
point to the next free block to continue fetching the correct path.
This means that the flushed entries in the partially flushed block
will remain empty. Once the correct path is fetched, the pointer of
the last correct path block points back to the block with the next

772

instruction, i.e., the first instruction after the flushed instructions.
The remainder of the last correct path block also has to remain
empty, because the pointer is used to point back to the next block.
As soon as all instructions in a block with a gap are committed,
these gaps can be reclaimed.

However, if the missed branch and slice_end are in the same
block (and slice_end is not the last instruction) (Figure 3(c)), there
is no available pointer between the flushed instructions and the
first out-of-slice correct path instruction. To avoid this, we propose
the following mechanism:

e At dispatch, a ‘slice branch’ bit is kept.

o If a conditional branch within a slice is dispatched, this bit
is set.

o If we cross the boundary of a block, the bit is reset.

e When we dispatch a slice_end and the bit is set, we pad
the rest of the block with empty slots, such that the next
instruction after the slice_end starts at the next block, see
Figure 3(d).

Note that this addition is only needed when the ROB is divided
into blocks with multiple instructions. We evaluate the impact of a
blocked implementation in the results section.

4.4 Slice Fence

A slice_fence denotes the end of a slice region. After a slice_fence,
instructions can depend on instructions in slices. If an in-slice
branch miss is detected after fetching a slice_fence, we should
therefore also flush the instructions after the slice_fence. Thereto,
when dispatching a slice_fence, we also take a rename table
checkpoint, as for branches. When an in-slice branch miss is de-
tected and the slice_fence is already dispatched, we also flush
the instructions after the slice_fence, in addition to flushing the
instructions in the slice. We store the rename table checkpoint at
the slice_fence as the ‘regular fetch checkpoint’, i.e., the point
where fetch should restart after dispatching the correct path in the
slice. Like this, instructions after a slice_fence can be executed
speculatively and are only flushed when a branch miss is detected
within a slice.

Instructions after the slice_fence can depend on instructions
within a slice, but the register rename information of instructions
in a recovered slice can be lost in the rename table (see the last

Enabling Branch-Mispredict Level Parallelism
by Selectively Flushing Instructions

paragraph of Section 4.2). Therefore, the dependences between the
slices and the code after the fence should be implemented through
memory and not through registers, by storing and loading data
from memory. In the envisioned use case of a parallel loop, this is
the case: because iterations are executed by different threads, no
data can be transferred through registers, only through memory.
Reduction variables are a special case, which are discussed in the
next section.

4.5 Reduction Variables

Reduction variables are variables that are updated and accumulated
in the loop iterations, such as counting the occurrence of certain
conditions. An important characteristic of a reduction variable is
that it can be updated in any order, i.e., its operation is commuta-
tive (e.g., addition, taking maximum, etc.). Additionally, the other
calculations in the loop do not depend on these variables, they only
depend on each other between different iterations.

In OpenMP, reduction variables have to be explicitly defined,
such that they are correctly updated when the loop is executed by
multiple threads. Typically, a local reduction variable is instantiated
in aregister, and after all iterations are finished, the local variables of
all threads are reduced through shared memory to obtain the final
value. This implementation breaks when applying our selective
flush mechanism: if the reduction variable is wrongly updated
speculatively, the next iteration will take the wrong value, and this
will not be corrected when the correct path is executed because the
newer instructions are not re-executed.

To solve this, we propose to execute reduction variable opera-
tions only when they are not speculative anymore, i.e., when they
are at the head of the ROB. Reduction variable updates are kept in
the reservation stations until they are at the head of the ROB, simi-
lar to what is currently done for atomic operations. Delaying their
execution until commit does not delay other instructions, because
they only depend on themselves, no other instructions depend on
them. Additionally, reduction variables should not be renamed and
should read from and write to architectural registers, which is cor-
rect because they are the oldest instruction when executed. This
is needed because reduction variable update instructions may be
re-fetched on a branch miss in a slice, and an output register renam-
ing would not be transferred to already fetched non-flushed slices.
We propose to introduce a new prefix to indicate instructions that
cannot be executed speculatively (similar to the ‘lock’ prefix in x86).
This prefix is added by the compiler, guided by the programmer’s
annotations (e.g., the reduction keyword in OpenMP).

4.6 Multiple Concurrent Branch Misses

A consequence of the selective flush mechanism is that branch
misses in newer slices can occur when an older branch miss is still
being resolved, because newer instructions continue to execute.
To support multiple concurrent branch misses, we propose to add
a ‘fetch redirect queue’ (FRQ), that contains all detected branch
misses in slices that should be resolved before continuing to fetch
at the ‘regular fetch checkpoint’. The FRQ is a FIFO queue where
each entry contains the following fields:

e The ROB entry of the mispredicted branch, to set the ROB
pointers when dispatching the correct path.

773

MICRO 21, October 18-22, 2021, Virtual Event, Greece

e The program counter of the correct path instruction after
the mispredicted branch, to indicate the start of the correct
path.

e A pointer to the rename table checkpoint of the mispredicted
branch.

Additionally, there is a separate entry (not part of the queue) con-
taining this data for the ‘regular fetch checkpoint’.

On a branch miss in a slice, this data is pushed in the FRQ, and if
the FRQ is empty, the ‘regular fetch checkpoint’ is also set. At the
fetch stage, the FRQ is checked, and if there is an entry at the head,
the correct path is fetched until a slice_end. If another branch
miss in a slice is detected while another slice is being resolved,
its data is pushed in the FRQ, but fetch continues at the currently
resolving slice. When the slice is resolved, the head of the FRQ is
removed and the FRQ is again checked. If there is another entry at
the head, this slice is resolved first. Only if the FRQ is empty, fetch
is resumed from the ‘regular fetch checkpoint’. This ensures that
branch misses are resolved in the order they occur, and the oldest
instructions are executed first, such that commit is not needlessly
blocked.

When instructions are flushed after a non-slice branch miss, the
FRQ is checked if it contains entries that point to flushed instruc-
tions. If so, the corresponding FRQ entry is removed from the queue.
Because all newer instructions are also flushed, all newer FRQ en-
tries will also be removed, preserving a simple FIFO ordering.

4.7 Freeing/Reserving Resources

Selectively flushing and refetching instructions can lead to a dead-
lock if there are no free resources for fetching the correct path. For
example, assume a mispredicted branch that jumps over a section
with store operations, i.e., the correct path is to execute these store
operations. Assume further that before detecting this miss, all store
queue entries have been occupied by newer instructions. Since the
wrong path contains no store instructions, no store queue entries
are freed when the wrong path is flushed. The correct path cannot
dispatch because of the lack of store queue entries, and the store
queue entries of the newer instructions cannot be released because
they cannot commit before the older slice is resolved. A similar
deadlock can occur when there are more regular fetch instructions
in the front-end than the number of free ROB entries after flushing
the wrong path.

To prevent deadlocks, we propose to reserve a certain number
of resources for resolving correct paths when there are in-slice
instructions in the ROB. These cannot be used for the regular fetch.
We identified three resources to reserve: reservation stations (RS),
load queue (LQ) entries and store queue (SQ) entries. By reserving
these resources, we also ensure that enough ROB entries are free to
fetch the correct path. Note that reserving a single resource of each
suffices to prevent deadlocks: eventually, the resolved path instruc-
tions will become the oldest and can commit, freeing resources to
dispatch the next correct path instruction(s).

In case there are still not enough free resources to hold the
regular fetch instructions in the front-end, we flush (part of) the
front-end instructions. This has no impact on the checkpoints (they
are not renamed yet), it only has a small extra performance penalty.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Reserving resources does not only prevent deadlocks, it can also
improve performance. The more resources are reserved, the quicker
we can execute the correct path. On the other hand, reserving
resources slows down the progress in the regular fetch path.

We evaluate the impact of freeing fewer or more resources in
the evaluation section.

4.8 Summary of Additions

In summary, the following additions to a conventional out-of-order
core are needed to support selective flush:

e 3 new slice instructions (no arguments).

e A linked list ROB, which can be block partitioned to limit
the overhead.

e One bit per ROB entry to indicate if an instruction belongs
to a slice.

e The FRQ with a few (e.g., 8) entries, to support concurrent
branch misses. If the FRQ is full, new misses can be resolved
using the conventional scheme, i.e., flushing all newer in-
structions.

o A prefix for the common reduce instructions to execute at
commit.

o A controller to correctly set the ROB linked list pointers on
a branch miss and after resolving the correct path.

These are non-trivial changes, but they mainly relate to ROB book-
keeping. Critical pipeline stages, such as wakening and selecting
instructions to issue in the reservation stations, are not impacted
by our mechanism.

5 EXPERIMENTAL SETUP
5.1 Benchmarks

For evaluating the performance, we selected the GAP benchmark
suite[7]. The GAP benchmarks are optimized CPU implementa-
tions of 6 basic graph kernels: betweenness centrality (bc), breadth
first search (bfs), connected components (cc), pagerank (pr), single
source shortest path (sssp) and triangle count (tc). Graph appli-
cations, and more generally unstructured sparse applications, are
gaining importance to analyze relations within big data sets [33]. Re-
cently, several graph accelerators [15, 20, 26, 41] and graph analysis
software platforms [28] have been proposed, and a US government
project to optimize graph analysis [39] was launched.

As input graphs, we use synthetically generated RMAT graphs [9].

Synthetic graphs have the advantage that we can control their size,
and measure the impact of graph size on performance. The execu-
tion time of the six benchmarks as a function of input graph size
differs considerably. In order to have a similar execution time, the
baseline graph input size differs per application: RMAT-18 for tc,
RMAT-20 for bc, cc, pr and sssp, and RMAT-22 for bf's (for single
core evaluation). The memory footprint of these graphs is 47 MB
(RMAT-18) to 283 MB (RMAT-22), which is much larger than the 1.4
MB LLC cache per core. The miss rate in the LLC varies between
45% and 70%. We also evaluate our technique on larger graphs.
Graph applications typically have data dependent hard-to-predict
branches, which depend on loads from main memory, because of
the high cache miss rate due to the lack of locality. Furthermore,
they are often highly parallel, applying a function on each vertex,

774

Stijn Eyerman, Wim Heirman, Sam Van den Steen, and Ibrahim Hur

which means iterations are independent. Lastly, the small code foot-
print of the GAP benchmarks makes it easy to add slice instructions
at meaningful places.

Additionally, we also evaluate our proposal on merge sort (ms) [25],
which also suffers from a high branch miss rate because of the un-
predictable comparisons between elements. Sorting is a common
kernel for many applications. For example, the SPEC 2017 bench-
mark mcf spends 40% of its execution time in sorting. Mcf uses the
quicksort algorithm, for which is it hard to find or create indepen-
dent slices. Merge sort is particularly fit for parallelization, and thus
also for selective flush, because distinct sections of the array can
be merged in parallel. For the baseline results, we sort a list of 10
million random integers.

Although we only evaluate our proposal on graph applications
and sort, we believe that it will be also beneficial for other branch
miss heavy workloads. Note that our mechanism mostly favors
short parallel sections, whereas conventional thread parallelism
performs best with long parallel sections to reduce the threading
overhead. This is why existing code (such as the SPEC benchmarks)
is difficult to convert without heavily reworking parts of the code.
However, emerging domains, such as machine learning, require
new code which can be implemented with this mechanism in mind.
Furthermore, the advent of domain specific processors in search for
more efficiency, provides a choice to processor designers to imple-
ment this mechanism only for domains where it has a substantial
impact (such as graph analysis).

5.2 Simulator

We implement the selective flush mechanism into an in-house
version of the Sniper multicore simulator [8]. We configure the
simulator to resemble an Intel® Xeon® Platinum 8180 processor,
codenamed Skylake [14], see Table 1. We extend Sniper with a
wrong-path engine, which models the flow of wrong-path instruc-
tions through the core pipeline until they are flushed. This is needed
to accurately model the impact of fetching and flushing only the
wrong-path instructions within a slice. We use Pin’s code cache
and decoder to reconstruct the wrong path, so when both paths
are in the code cache (which is soon for hard-to-predict branches)
we can reconstruct them both in case of a misprediction. Because
selective flush is an internal core mechanism, most of our results
are measured on a single core. For these simulations, we scale down
shared resources (LLC and memory bandwidth) proportionally (i.e.,
28 times smaller).

6 RESULTS AND DISCUSSION

6.1 Placing Slice Instructions and Single Core
Speedup

All of the GAP benchmarks have nested loops, of which the outer
loop is parallelized with OpenMP. Typically, the outer loop iterates
over all vertices of the graph, while the inner loop iterates over the
neighbors of these vertices. For some benchmarks, the iterations of
this inner loop are also independent, meaning that we can choose
to put the slice instructions around the iterations of the outer loop
or the inner loop (slices cannot be nested). Putting the slices in
the outer loop means that on a branch miss, all of the iterations

Enabling Branch-Mispredict Level Parallelism
by Selectively Flushing Instructions

Table 1: Simulated processor configuration

Dispatch/commit width 4

Reorder buffer (ROB) 224 entries
Reservation stations 97
Load/store queue entries 72/56
Branch predictor TAGE [38]
L1 I/D-cache 32 KB/32 KB
L2 private cache 1 MB
LLC NUCA 1.375 MB/core
Core count 28
Network on chip mesh
Memory latency 50 ns
Memory bandwidth 115.2 GB/s
2 M inner loop M outer loop M perfect bpred
1.8
'g 1.6
z 14
812
g 1
§ 0.8
2 0.6
S04
0.2
0
bc bfs cc pr sssp tc ms

Figure 4: Speedup of the selective flush mechanism versus
baseline for slicing the inner (where possible) and outer
loop, and speedup for perfect branch prediction.

of the inner loop after the branch miss will be flushed and re-
executed, while slicing the inner loop only flushes instructions
within one inner loop iteration. However, putting them in the inner
loop prevents the use of selective flush for branches outside the
inner loop, falling back to the default mechanism of flushing all
instructions. In particular, the branch ending the inner loop is often
mispredicted, because the number of neighbors is variable.

The decision where to put the slice instructions depends on the
iteration count of the inner loop, and where most branch misses
occur. We need to make this decision for three of the six GAP
benchmarks. bf's and tc have inner loops with control dependent
iterations (they break out of the loop prematurely), and pr has
no conditional branch in its inner loop. Merge sort’s inner loop
(merging the subarrays) also contains dependent iterations, so only
the outer loop can be sliced. Figure 4 shows the single core speedup
of the selective flush mechanism versus the baseline core, for slicing
the inner and outer loop for the three other benchmarks, and the
outer loop slicing for the rest.

For b, slicing the outer loop gives better performance, while for
cc, slicing the inner loop is better. For sssp it does not matter much.
Therefore, if there is a choice, we propose to test a few options to
determine which one performs best.

775

MICRO 21, October 18-22, 2021, Virtual Event, Greece

1
0.8
0.6
0.4

111l I I 11

,c innnnl il

b0 © b0 © o0 © o0 T 0 T o0 T o0 T

= v ‘C L L 'C v ‘C L o 'C ()

o L o 2 o 2 o L o L o 2 o @

> = = = = > >

bc bfs cc pr sssp tc ms
M exec branch mem other

Figure 5: Cycle stacks of the baseline (orig) and sliced execu-
tion.

Taking the best performing options, the overall average speedup
is 1.29 (harmonic mean). pr has no speedup, because it has no
conditional branches in its loop, other than the inner loop branch.
Without pr, the average speedup is 1.35.

Figure 4 also shows the speedups for an oracle branch predictor,
i.e., the maximum achievable speedup for branch optimization. It
confirms the low margin for pr. For the other applications, our
mechanism closes a large part of the gap between the baseline and
a utopic perfect branch predictor. Perfect branch prediction has
an average speedup of 1.60, meaning that selective flush reaches
almost 50% of the potential gain.

Note that the branch miss rate in the baseline and the sliced
execution is exactly the same. Selective flush decreases the penalty
per miss. There is still an unavoidable penalty, namely the flush
and refetch of miss dependent instructions, so perfect branch pre-
dictor performance can never be reached. In addition, if the slice is
large (e.g., multiple iterations of the inner loop), a large number of
instructions need to be flushed, and the penalty will be closer to
that of the conventional branch miss resolution mechanism.

Figure 5 shows the (simplified) cycle stacks of the baseline and
sliced execution. The stacks are normalized to the cycle count of
the baseline execution. The ’exec’ component refers to the time
needed to execute all instructions assuming all cache hits and no
branch mispredictions. The ’branch’ component is the time lost due
to branch misses, and the ‘'mem’ component is the time the core is
stalled waiting for memory operations that miss in the L1 cache.
The ’other’ component contains other stall cycles, such as decode
bottlenecks.

The evaluated benchmarks are branch miss and memory bound.
The graphs do not fit into the LLC, and traversing a graph leads to
low locality, resulting in a large miss rate. Branches are data depen-
dent, and often depend on loads that miss in the cache, explaining
their large miss penalty.

Our mechanism clearly reduces the branch miss component, ex-
plaining the execution time reduction. The memory component
increases slightly, because some cache misses along the wrong path
turn out to be useful prefetches for the correct path, and in the
baseline execution, their latency is therefore partly hidden by the
branch resolution time. In the sliced execution, this penalty is ex-
posed more, because execution continues during branch resolution.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

2.5
M correct path ®wrong path ® overhead
2
1.5 -
= ||
1
0.5
0
0 © o0 © o0 T o0 T o0 T o0 T o0 T
= [T o ‘C o 'C U ‘C [T U ‘C (]
© £ o Q& o LY o L o LY o L o v
= B Z B Z Bz Z
bc bfs cc pr Sssp tc ms

Figure 6: Dispatched instruction count, normalized to the
number of correct path instructions.

The execution component also increases, because more instructions
need to be fetched, i.e,, the slice instructions.

In that respect, Figure 6 shows the number of dispatched instruc-
tions for both executions, normalized to the number of correct path
instructions in the baseline execution. Wrong path instructions are
fetched after a branch miss until the miss is detected, or in case
of sliced execution, until a slice end is fetched. Overhead refers
to the slice instructions, which are discarded after dispatch but
still take up slots in the frontend. Slicing reduces the number of
dispatched wrong path instructions, and for all but one application,
the overhead of slice instructions is smaller than the reduction
of wrong path instructions. This means we can also claim better
energy efficiency, because fewer instructions need to be processed.

For sssp, the inner loop code is small, resulting in a large over-
head of slice instructions, and an overall increase in total dispatched
instruction count. However, since the slice instructions are pro-
cessed in the frontend only and are discarded at dispatch, they only
have a small impact on total latency, explaining the net positive
performance gain.

The small reduction in wrong-path instructions for ms might
seem strange, given the high performance benefit. Figure 6 shows
the number of wrong-path instructions that are dispatched, which
does not include the instructions flushed in the front-end pipeline.
ms has a small memory component, because the sequential accesses
can be efficiently prefetched. As a result, the branch miss is resolved
quickly and the number of dispatched wrong-path instructions is
low. Selective flush does flush slightly fewer instructions, but most
of the non-flushed instructions are in the core front-end, which
are not counted here. In fact, because selective flush can continue
fetching and dispatching instructions while the mispredicted branch
is recovering, there is no interruption in the front-end, yet another
performance benefit of our mechanism.

6.2 Freeing/Reserving Resources

Figure 7 shows the impact of reserving 1 to 32 entries (of each
type) in powers of two (out of 97 reservation stations, 72 load
queue entries and 56 store queue entries). It shows that until 16
reserved entries, the performance remains pretty constant, or even
improves (for bc). be has its outer loop sliced, so the correct path
can potentially be long (multiple inner loop iterations), which is

776

Stijn Eyerman, Wim Heirman, Sam Van den Steen, and Ibrahim Hur

1.8

ml m2 =
16 1 m2 m4
14

1.2

0.8

0.6

0.4

0.2

0
bc bf: cc pr

Figure 7: Speedup of the selective flush mechanism with re-
serving 1 to 32 RS/LQ/SQ entries for resolving correct paths.

8 m16 m32

C ms

SSsp t

[uny

Speedup

S

1.8
H]l W2 m4 =8 W16
1.6
1.4
1.2
s
'o 1
()
;‘ 0.8
0.6
0.4
0.2
0
bc bfs cc pr sssp tc ms

Figure 8: Speedup of the selective flush mechanism with a
block linked list from blocks of size 1 (no blocks) to 16.

why it benefits from the extra resources. Reserving 32 entries has a
clear negative impact on performance, because it limits the progress
of regular fetch, while not providing much extra performance to
the resolve paths. Note that reserving 32 entries still has a speedup
(or neutral for pr) versus the baseline: due to the branch misses,
high cache miss rate and indirect memory operations, there is not
much instruction-level parallelism to exploit, and therefore these
resources are not used efficiently in the baseline. In the results in
the previous section, we always assume 8 reserved entries.

The small dip for bfs at 4 reserved entries is due to a second-
order interference with the data prefetcher, making the prefetcher
perform slightly worse for this configuration. Disabling the prefetcher
for all configurations does not show this dip, but the overall perfor-
mance is lower.

6.3 Blocked Linked List ROB

A blocked linked list ROB reduces the overhead of pointers and
simplifies committing multiple instructions per cycle. However, as
discussed in Section 4.3, it creates gaps in the ROB when flushing
instructions, reducing the ROB capacity. We model these gaps in our
simulator. Figure 8 shows the resulting performance for different
block sizes, from 1 (no blocks) to 16. Up to a block size of 4, we see
negligible impact, because the number of empty slots is small. For

Enabling Branch-Mispredict Level Parallelism
by Selectively Flushing Instructions

2.2 Hix m2x m4x 8

v 2
<18
© 1.6
214
7 1.2
g 1
= 0.8
g 0.6
204
v 0.2

0

bc bfs cc pr sssp tc ms
Figure 9: Sensitivity to input size.

2 W single core ® multicore
o 1.8
£
< 1.6
© 1.4
o)
v 1.2
E} 1
2 0.8
206
§ 0.4
»n 0.2

0

bc bfs cc pr sssp tc ms

Figure 10: Multicore speedups versus single core speedups.

a block size of 8, we see an average 4.1% reduction in performance,
increasing to 9.5% for blocks of 16 entries.

6.4 Sensitivity Studies

The sensitivity of our mechanism to the input size is evaluated
in Figure 9. We increased the input size by 2X, 4X and 8X versus
the baseline results. There is no clear trend: for cc and sssp, the
speedup increases as the graph gets bigger, while for bfs and tc, the
speedup decreases. We find that the gain is highly correlated with
the branch miss fraction in the cycle stack: for some applications,
this fraction decreases because the memory fraction increases, while
for others, the branch miss fraction also increases because branches
are dependent on memory operations that miss in cache. The higher
the branch miss fraction, the higher the potential gain of selective
flush. The average speedup varies between 1.27 (2x larger graph)
and 1.31 (8% larger graph).

We also evaluated the selective flush mechanism on a full 28-
core configuration, see Figure 10. We increased the input size by a
factor of 16, to have a similar memory footprint per core. In this
experiment, we both exploit the thread parallelism (using OpenMP
threads) as the branch parallelism within a thread (using selective
flush). As for the input size sensitivity, speedups either decrease or
increase versus a single core evaluation. This is again dependent on
the branch miss fraction in the cycle stack. The average speedup of
1.29 shows that the benefit of our technique is orthogonal to that
of thread parallelism.

777

MICRO 21, October 18-22, 2021, Virtual Event, Greece

M baseline W sliced
3 W smt2 smt2 sliced
25 msmtd B smt4 sliced
a 2
>
815
Q
? 1
0
bc bfs cc pr sssp tc ms

Figure 11: Speedups of SMT (2 and 4 threads), sliced execu-
tion and combinations (single core).

Lastly, Figure 11 shows the impact of simultaneous multithread-
ing (SMT) and combining SMT and slicing. We execute 2 and 4
application threads on a single core, for SMT2 and SMT4, respec-
tively. SMT reduces the penalty of branch misses: fewer speculative
instructions are fetched, because instructions of other threads are
also fetched during the branch resolution time. Furthermore, SMT
also hides more memory latency by executing instructions of other
threads during the memory latency. Therefore, we see a larger
speedup for SMT than for slicing. However, combining slicing and
SMT still provides additional speedup. Compared to perfect branch
prediction, slicing still provides 50% of the potential speedup with
SMT2 or SMT4.

For some applications (cc and ms), slicing performs even better
than adding SMT threads. For SMT, multiple threads execute con-
currently, which increases the current working set and puts more
pressure on caches and TLBs. This leads to more conflict misses
and lower per-thread performance, in most cases compensated by
the larger throughput (but not always, e.g., for pr at SMT4). Slicing
does not require more threads, and therefore has no impact on
cache miss rates.

7 CONCLUSIONS AND FUTURE WORK

Branch mispredictions remain an important source of performance
limiters, which gets worse with deeper pipelines and increasingly
irregular applications. Reusing the execution of data and control
independent instructions after a branch miss instead of refetching
them increases performance and energy efficiency. We propose a
novel hardware-software cooperative technique to select reconverg-
ing instructions and not flush them after a branch miss. Independent
slices are denoted by 3 novel slice instructions, inserted by the (per-
formance expert) programmer or compiler. The reorder buffer is
reorganized as a linked list to enable removing and inserting in-
structions in the middle of a stream, enabling the insertion of the
part of the correct path that truly depends on the branch mispre-
diction. An evaluation on emerging graph applications shows an
average performance increase of 29%.

This paper serves as a proof of the efficacy of this technique.
Further research is needed to implement automatic insertion of
slice instructions by the compiler, and to study the impact of the
novel ROB organization on low level (RTL and circuit) design.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

REFERENCES

(1]

(2]

[9

=

[10

(1]

[12]

[13]

M. Agarwal, K. Malik, K. M. Woley, S. S. Stone, and M. L. Frank. 2007. Exploit-
ing Postdominance for Speculative Parallelization. In IEEE 13th International
Symposium on High Performance Computer Architecture (HPCA). 295-305.
Mayank Agarwal, Nitin Navale, Kshitiz Malik, and Matthew I Frank. 2008. Fetch-
Criticality Reduction through Control Independence. In International Symposium
on Computer Architecture (ISCA). IEEE, 13-24.

Haitham Akkary, Ravi Rajwar, and Srikanth T Srinivasan. 2003. Checkpoint
processing and recovery: Towards scalable large instruction window processors.
In 36th IEEE/ACM International Symposium on Microarchitecture (MICRO). 423~
434.

Ahmed S. Al-Zawawi, Vimal K. Reddy, Eric Rotenberg, and Haitham H. Akkary.
2007. Transparent Control Independence (TCI). In 34th Annual International
Symposium on Computer Architecture (ISCA). 448—459.

M. Arora, S. Nath, S. Mazumdar, S. B. Baden, and D. M. Tullsen. 2012. Redefining
the Role of the CPU in the Era of CPU-GPU Integration. IEEE Micro 32, 6 (2012),
4-16. https://doi.org/10.1109/MM.2012.57

Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.
2020. Classifying Memory Access Patterns for Prefetching. In 25th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 513-526.

Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark
Suite. CoRR abs/1508.03619 (2015). http://arxiv.org/abs/1508.03619

Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the Level of Abstraction for Scalable and Accurate Parallel Multi-Core Simulations.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In SIAM International Conference on Data
Mining. 442-446.

Adarsh Chauhan, Jayesh Gaur, Zeev Sperber, Franck Sala, Lihu Rappoport, Adi
Yoaz, and Sreenivas Subramoney. 2020. Auto-predication of critical branches.
In ACM/IEEE 47th International Symposium on Computer Architecture (ISCA).
92-104.

Chen-Yong Cher and TN Vijaykumar. 2001. Skipper: a microarchitecture for
exploiting control-flow independence. In 34th ACM/IEEE International Symposium
on Microarchitecture (MICRO). 4-15.

Jamison D Collins, Dean M Tullsen, and Hong Wang. 2004. Control flow opti-
mization via dynamic reconvergence prediction. In 37th International Symposium
on Microarchitecture (MICRO). 129-140.

Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest
Bassous, and Andre R LeBlanc. 1974. Design of ion-implanted MOSFET’s with
very small physical dimensions. IEEE Journal of Solid-State Circuits 9, 5 (1974),
256-268.

[14] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha

[15]

[16]

[17]

[18

[19]

[20]

[21]

Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. 2017.
Inside 6th-generation Intel Core: New microarchitecture code-named Skylake.
IEEE Micro 37, 2 (2017), 52-62.

Timothy Dysart, Peter Kogge, Martin Deneroff, Eric Bovell, Preston Briggs, Jay
Brockman, Kenneth Jacobsen, Yujen Juan, Shannon Kuntz, Richard Lethin, Janice
McMahon, Chandra Pawar, Martin Perrigo, Sarah Rucker, John Ruttenberg, Max
Ruttenberg, and Steve Stein. 2016. Highly Scalable Near Memory Processing
with Migrating Threads on the Emu System Architecture. In Proceedings of the
Sixth Workshop on Irregular Applications: Architectures and Algorithms (IA3 °16).
2-9.

Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. 2009. A
Mechanistic Performance Model for Superscalar Out-of-order Processors. ACM
Transactions on Computer Systems (TOCS) 27, 2 (May 2009), 3:1-3:37.

S. Eyerman, W. Heirman, K. Du Bois, J. B. Fryman, and I. Hur. 2018. Many-Core
Graph Workload Analysis. In SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. 282-292. https://doi.org/10.1109/
SC.2018.00025

Amit Gandhi, Haitham Akkary, and Srikanth T Srinivasan. 2004. Reducing branch
misprediction penalty via selective branch recovery. In International Symposium
on High Performance Computer Architecture (HPCA). 254-264.

Ali Hajiabadi, Andreas Diavastos, and Trevor E Carlson. 2021. NOREBA: a
compiler-informed non-speculative out-of-order commit processor. In 26th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 182-193.

T.J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. 2016. Graphicionado:
A high-performance and energy-efficient accelerator for graph analytics. In 49th
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1-13.

Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz.
2010. Understanding sources of inefficiency in general-purpose chips. In 37th
International Symposium on Computer Architecture (ISCA). 37-47.

778

[22

[23

™
=)

[25

[26

[27

(28]

[30

[31

(32

(33]

(34

[35

[36

[37

(38]

[39

=
=

[41

[42

[43

[44]

Stijn Eyerman, Wim Heirman, Sam Van den Steen, and Ibrahim Hur

Ron Kalla, Balaram Sinharoy, and Joel M Tendler. 2004. IBM Power5 chip: A
dual-core multithreaded processor. IEEE Micro 24, 2 (2004), 40-47.

Hyesoon Kim, Jose A Joao, Onur Mutlu, and Yale N Patt. 2006. Diverge-merge
processor (DMP): Dynamic predicated execution of complex control-flow graphs
based on frequently executed paths. In 39th IEEE/ACM International Symposium
on Microarchitecture (MICRO). 53—-64.

Hyesoon Kim, Onur Mutlu, Jared Stark, and Yale N Patt. 2005. Wish branches:
Combining conditional branching and predication for adaptive predicated execu-
tion. In 38th International Symposium on Microarchitecture (MICRO).

Donald E Knuth. 1998. The art of computer programming: Volume 3: Sorting and
Searching. Addison-Wesley Professional.

Andrew Kopser and Dennis Vollrath. 2011. Overview of the next generation Cray
XMT. In Cray User Group Proceedings. 1-10.

V. R. Kothinti Naresh, R. Sheikh, A. Perais, and H. W. Cain. 2018. SPF: Selective
Pipeline Flush. In IEEE 36th International Conference on Computer Design (ICCD).
152-155.

Hang Liu and H. Howie Huang. 2019. SIMD-X: Programming and Processing
of Graph Algorithms on GPUs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 411-428.

K. Malik, M. Agarwal, S. S. Stone, K. M. Woley, and M. I. Frank. 2008. Branch-
mispredict level parallelism (BLP) for control independence. In IEEE 14th Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 62-73.
Mengjie Mao, Hong An, Tao Sun, Qi Li, Bobin Deng, Xuechao Wei, and Junrui
Zhou. 2012. Distributed Control Independence for Composable Multi-processors.
In 2012 IEEE/ACIS 11th International Conference on Computer and Information
Science. 124-129.

Gordon E Moore. 1965. Cramming more components onto integrated circuits. ,
114—117 pages.

Quan M Nguyen and Daniel Sanchez. 2020. Pipette: Improving Core Utiliza-
tion on Irregular Applications through Intra-Core Pipeline Parallelism. In 53rd
International Symposium on Microarchitecture (MICRO). 596-608.

M. U. Nisar, A. Fard, and J. A. Miller. 2013. Techniques for Graph Analytics on
Big Data. In 2013 IEEE International Congress on Big Data. 255-262.

Alex Pajuelo, Antonio Gonzalez, and Mateo Valero. 2005. Control-flow indepen-
dence reuse via dynamic vectorization. In 19th IEEE International Parallel and
Distributed Processing Symposium.

E. Rotenberg and J. Smith. 1999. Control independence in trace processors. In
32nd ACM/IEEE International Symposium on Microarchitecture (MICRO). 4-15.
Amir Roth and Gurindar S Sohi. 2000. Register integration: a simple and efficient
implementation of squash reuse. In 33rd ACM/IEEE international symposium on
Microarchitecture (MICRO). 223-234.

Farzad Samie and Amirali Baniasadi. 2011. Power and frequency analysis for
data and control independence in embedded processors. In 2011 International
Green Computing Conference and Workshops. 1-6.

André Seznec. 2011. A new case for the TAGE branch predictor. In 44th [EEE/ACM
International Symposium on Microarchitecture (MICRO). 117-127.

Wade Shen. [n. d.]. Hierarchical Identify Verify Exploit (HIVE). ([n. d.]). https:
//www.darpa.mil/program/hierarchical-identify-verify-exploit

Balaram Sinharoy, JA Van Norstrand, Richard J Eickemeyer, Hung Q Le, Jens
Leenstra, Dung Q Nguyen, B Konigsburg, K Ward, MD Brown, José E Moreira,
et al. 2015. IBM POWERS processor core microarchitecture. IBM Journal of
Research and Development 59, 1 (2015), 2-1.

William S Song, Vitaliy Gleyzer, Alexei Lomakin, and Jeremy Kepner. 2016. Novel
graph processor architecture, prototype system, and results. In IEEE High Perfor-
mance Extreme Computing Conference (HPEC). 1-7.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems (2020).

Xiangyao Yu, Christopher J Hughes, Nadathur Satish, and Srinivas Devadas.
2015. IMP: Indirect memory prefetcher. In 48th International Symposium on
Microarchitecture (MICRO). 178-190.

Xuda Zhou, Zidong Du, Qi Guo, Shaoli Liu, Chengsi Liu, Chao Wang, Xuehai
Zhou, Ling Li, Tianshi Chen, and Yunji Chen. 2018. Cambricon-S: Addressing
irregularity in sparse neural networks through a cooperative software/hard-
ware approach. In 51st IEEE/ACM International Symposium on Microarchitecture
(MICRO). 15-28.

https://doi.org/10.1109/MM.2012.57
http://arxiv.org/abs/1508.03619
https://doi.org/10.1109/SC.2018.00025
https://doi.org/10.1109/SC.2018.00025
https://www.darpa.mil/program/hierarchical-identify-verify-exploit
https://www.darpa.mil/program/hierarchical-identify-verify-exploit

	Abstract
	1 Introduction
	2 Prior Work on Branch Miss Optimizations
	3 Out-of-Order Execution and Branch Prediction
	4 Selective Flush Mechanism
	4.1 Denoting Independent Regions
	4.2 Selective Flush Mechanism
	4.3 Linked List ROB
	4.4 Slice Fence
	4.5 Reduction Variables
	4.6 Multiple Concurrent Branch Misses
	4.7 Freeing/Reserving Resources
	4.8 Summary of Additions

	5 Experimental Setup
	5.1 Benchmarks
	5.2 Simulator

	6 Results and Discussion
	6.1 Placing Slice Instructions and Single Core Speedup
	6.2 Freeing/Reserving Resources
	6.3 Blocked Linked List ROB
	6.4 Sensitivity Studies

	7 Conclusions and Future Work
	References

