
DRAM Bandwidth and Latency Stacks:
Visualizing DRAM Bottlenecks

Stijn Eyerman
Intel Corporation

Belgium

stijn.eyerman@intel.com

Wim Heirman
Intel Corporation

Belgium

wim.heirman@intel.com

Ibrahim Hur
Intel Corporation

USA

ibrahim.hur@intel.com

Abstract—For memory-bound applications, memory band-
width utilization and memory access latency determine per-
formance. DRAM specifications mention the maximum peak
bandwidth and uncontended read latency, but this number is
never achieved in practice. Many factors impact the actually
achieved bandwidth, and it is often not obvious to hardware
architects or software developers how higher bandwidth usage,
and thus higher performance, can be achieved. Similarly, latency
is impacted by numerous technology constraints and queueing
in the memory controller.

DRAM bandwidth stacks intuitively visualize the memory
bandwidth consumption of an application and indicate where
potential bandwidth is lost. The top of the stack is the peak
bandwidth, while the bottom component shows the actually
achieved bandwidth. The other components show how much
bandwidth is wasted on DRAM refresh, precharge and activate
commands, or because of (parts of) the DRAM chip being
idle when there are no memory operations available. DRAM
latency stacks show the average latency of a memory read
operation, divided into base read time, row conflict, and multiple
queue components. DRAM bandwidth and latency stacks are
complementary to CPI stacks and speedup stacks, providing
additional insight to optimize the performance of an application
or to improve the hardware.

I. INTRODUCTION

Memory bandwidth is one of the major performance param-

eters of a processor, next to core count, chip frequency and

cache size. The performance of memory-bound applications

is often determined by how much bandwidth they can use—

think of the slope at the left in the roofline model [19].

Memory specifications refer to the peak bandwidth a certain

memory chip can obtain; for example, a common DDR4-2400

module has a peak bandwidth of 19.2 GB/s (2400 MT/s × 8 B

memory channel width). However, this bandwidth assumes

perfect circumstances and cannot be achieved in practice.

Because performance is determined by bandwidth usage, it

is helpful to determine the causes of suboptimal bandwidth

usage and how they can be resolved.

Although memory latency is often a secondary parameter,

it is equally important for performance. The processor cores

and memory form a closed loop: cores generate requests

to memory, and will eventually stall and not generate new

requests until the access is done. If the access time is too

high, the cores will not be able to generate enough requests

to fully utilize the available bandwidth. On the other hand,

the closer bandwidth usage comes to the peak bandwidth, the

more queueing latency will be added to the access latency,

again limiting the request rate.

We propose bandwidth and latency stacks as a way to

intuitively visualize the bandwidth usage, memory latency

and bottlenecks of an application. A stacked representation

is an established way to represent performance bottlenecks,

e.g., CPI stacks [10] and speedup stacks [9]. The top of the

bandwidth stack represents the peak bandwidth. The bottom

component shows the achieved bandwidth (split into read and

write bandwidth), meaning that the rest of the stack represents

the “lost” bandwidth. This bandwidth loss can have many

causes: DRAM refresh cycles block the full chip, a page

miss in a bank causes a precharge-activate cycle, or timing

restrictions at the channel, rank and bank level delay an

operation. It might also be that the core(s) do not provide

enough memory requests to saturate the bandwidth, or that

the addresses requested are not uniformly distributed across

the parallel memory banks. Each of these causes is represented

as a component in the stack, sized according to its impact on

bandwidth loss.

The top of the latency stack equals the average latency of a

read request. The bottom component equals the minimal read

time in optimal circumstances: no queueing and an access to

an already open page. The other components quantify the extra

latency due to page misses, write bursts and queueing.

Measuring bandwidth and latency stack components and

sizing them meaningfully is not evident: memory specifica-

tions contain dozens of timing restrictions at multiple levels

(channel, rank, bank group, bank) and the organization is

highly parallel. Operations occur in parallel and timing re-

strictions overlap, making it hard to unambiguously account a

cause to suboptimal memory usage. We clarify in this paper

how to construct bandwidth and latency stacks in a meaningful

and useful way. We also evaluate them using simulation and

show how they can be used to analyze and optimize memory

usage and performance. Additionally, we show how bandwidth

stacks can be used to more accurately extrapolate bandwidth

usage when scaling up the core count.

We begin by discussing related work and a high-level

overview of how DRAM is organized. Next, we discuss the

construction of bandwidth and latency stacks. After explaining

our experimental setup, we validate the intuitiveness and

meaningfulness of the newly proposed stacks using synthetic

322

2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-6654-5954-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ISPASS55109.2022.00045

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

si
s o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(I

SP
A

SS
) |

 9
78

-1
-6

65
4-

59
54

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

PA
SS

55
10

9.
20

22
.0

00
45

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

benchmarks. We then collect stacks for the graph-oriented

GAP benchmarks, and show how they contribute to perfor-

mance analysis and extrapolation, followed by our conclu-

sions.

II. RELATED WORK

Performance analysis of processor systems is challenging,

because of the complexity of (out-of-order) cores, on-chip

network and memory, and the interplay of these components.

Performance stacks are a visually insightful way to represent

the components that impact performance. For example, a

CPI or cycle stack [10] represents all execution cycles of

an application, and its components show how much time is

spent in active execution cycles, waiting for memory opera-

tions to finish, resolving mispredicted branches, etc. FLOPS

stacks [11] identify, for compute-bound applications, why the

maximum floating-point operation throughput of a machine

is not achieved due to memory, limited instruction-level par-

allelism, insufficient vectorization, etc. Speedup stacks [9]

show the ideal speedup of a parallel application (equal to

thread count), and its components reflect the causes why this

ideal speedup is not reached: sequential parts, synchronization,

conflicts in cache and network, etc.

A stacked representation is in most cases a simplified view

of performance. It suggests that the performance limiting

components can be isolated and added. In reality, many events

occur in parallel and have an impact on each other. As an

example, cycle stacks can be measured at different stages in

the processor [8], resulting in different stacks that are all

representing the same application. Stacks are a first order

indication, and are popular because of their intuitiveness.

The roofline model [15], [19] is an intuitive model to charac-

terize a system and analyze performance. It is a graph showing

compute intensity (operations per byte) on the X-axis and

performance on the Y-axis. An application whose performance

is beneath that of the roofline model and that is memory

intensive (left slope of the roofline), does not reach the peak

memory bandwidth usage and has suboptimal performance.

Increasing bandwidth usage increases performance for these

applications.

Performance profiling tools, such as Intel VTune [5], can

detect application phases where bandwidth usage is low and/or

memory latency is high. Eklov et al. [7] propose “Bandwidth

Bandit”, a tool to quantify how sensitive an application is to

bandwidth contention. Xu et al. [20] use machine learning to

detect whether an application or specific data structure suffers

from (remote) bandwidth contention. Helm and Taura [13]

developed a hardware profiling tool that measures memory

latency and show that the relative latency compared to uncon-

tended latency is a better indicator for bandwidth contention

than bandwidth usage. These tools profile and quantify band-

width contention and the corresponding latency increase, but

do not attribute the contention and delay to the DRAM specific

root causes, which is the goal of bandwidth and latency stacks.

Cho et al. [4] define data bus busy time, bank busy time

and inter-bank interference time as metrics to analyze DRAM

performance.

Processor and memory simulation [2], [3], [17], [18] is a

commonly used tool to determine and analyze performance.

Simulation can model future designs that are not yet available,

and it enables detailed performance analysis because each

internal event can be monitored. A memory simulator can

produce a trace of DRAM commands, which can be used to

construct bandwidth stacks. Well-known memory simulators

are DRAMSim [18] and Ramulator [17]. DRAMSim3 includes

a visualization tool to plot bandwidth usage, latency and power

consumption over time, without measuring the contributions of

the different components like in the proposed bandwidth and

latency stacks. Alternatively, command traces can be collected

during program execution on the hardware, e.g., by inserting

an (FPGA) profiler between the memory controller and the

memory chip [14].

III. MEMORY ORGANIZATION AND TIMING CONSTRAINTS

Modern DRAM memories (e.g., DDR4 [16]) are organized

hierarchically. The channel is the connection between the

DRAM memory and the memory controller, located on the

processor chip. It comprises the command bus and the data

bus. A channel is connected to one or more ranks, which

are independent memory packages. Multiple ranks per channel

increase the channel usage and achieved bandwidth, but also

complicates the timing of commands.

A rank consists of a number of banks. Banks operate in

parallel to increase the performance and peak bandwidth.

Banks consist of multiple SDRAM chips that operate together

to provide one row of data to a page buffer (8 KB is a common

size), from which data is read and transferred to the memory

controller. The growing number of banks per rank, to increase

bandwidth, has led to an intermediate level, the bank group.

Requests to the same bank group have more timing restrictions

than accesses to different bank groups.

DRAM is accessed by the memory controller by sending

DRAM commands along the command bus. Read and write

operations from the processor are translated to commands by

the memory controller. If a read operation is to a bank that

has the matching row open in the page buffer, the memory

controller just needs to issue a read command. However, if the

wrong row is in the page buffer, a precharge command should

be sent first to write back the current row and precharge the

bitlines. Then an activate command loads the row into the page

buffer, followed by a read command to obtain the requested

data. Similar commands are required for write operations.

Because the capacitors that store the data are leaking, rows

need to be regularly refreshed by issuing a refresh command,

during which the chip is inaccessible.

Commands can only be issued when strict timing require-

ments are met. These timings are documented in the vendor

provided specifications of the chip. For example, it takes

a while to load a row into the page buffer on an activate

command, so the read command to that row should not be

issued before the activate is ready. Refresh should happen at

323

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

refresh read

write

refresh

refresh

refresh

readpre/act

pre/actbank 0

bank 1

bank 2

bank 3

co
m

m
an

ds
bandwidth stack

Tr2w

Fig. 1. Bandwidth stack accounting example. Commands for four banks and resulting stack components. The read/write operation is the time the channel is
occupied to transfer the data, these cannot be done in parallel. Precharge/activate can be done in parallel in the banks, which is why we add bank-idle (dark
blue) components for the idle banks. Tr2w is the read to write delay, generating a constraints component.

prescribed times to avoid loss of data, and no other commands

can be issued during refresh. Read commands require an

address, and the data is put on the channel after some time,

while for write commands, the data is put on the channel

together with the command. This induces extra overhead

when switching between read and write commands. Writes

are buffered in the memory controller until there are idle

cycles or the buffer fills up. At that point, the write buffer is

drained, performing a burst of writes to minimize the read-to-

write overhead. There are dozens of timing restrictions, which

makes an intuitive analysis of DRAM bandwidth and latency

not straightforward.

IV. BANDWIDTH STACK ACCOUNTING MECHANISM

We construct one stack per memory controller/channel,

which can be aggregated afterwards. The ideal case, achieving

peak bandwidth, is when the channel is completely busy, i.e.,

sending data at its maximum rate. Therefore, we account

useful cycles when data is sent across the channel, either data

that is read from memory or data that needs to be written to

memory. On cycles where no data is transferred, we need to

figure out why no data is sent, and account these cycles to

the respective loss component. It is important to not double

count cycles to multiple components, otherwise we lose the

intuitive meaning of the stacked representation, i.e., the sum

of all components equals total time (or total bandwidth).

To avoid double counting, we propose a hierarchical ac-

counting approach, giving the highest priority to the most

meaningful reason. We first check if the DRAM is currently

refreshing, which means that no operation can be started.

These cycles are accounted to the refresh component.

If the DRAM is not refreshing, we check all the banks.

If one or more of them is executing a precharge or activate

command, a new page is opened and a data transfer is

pending until the page is open. We account these cycles

to the precharge/activate component. However, if one or a

few banks are active, and the others are not performing a

command, potential bandwidth by exploiting bank parallelism

is not used. So assigning these cycles fully to the respective

commands is not representative: if more banks were busy,

the precharge/activate latency could be hidden by read/write

commands on the other banks. Therefore, if there are n banks

and at least one is busy, we assign 1/n cycles to each bank1,

either to the precharge/activate or bank-idle component. The

bank-idle component reflects cycles that could be used by

additional requests, provided that they are distributed across

the banks and not accessing the busy banks. If there is a large

bank-idle component, and it does not disappear by increasing

the request rate, there is an issue with the distribution of

requests across the banks.

If all banks are idle, we do not assign bank-idle cycles, we

first check if there is another (rank or bank group) constraint

preventing the start of a read or write command, such as the

read/write to read/write timing constraints, and account to the

constraints component if that is the case. If not, the DRAM

chip is completely idle, and we assign the cycle to the idle
component. Figure 1 shows an example where commands

are issued to different banks in parallel, and which stack

components are incremented on each cycle.

In summary, the lost bandwidth components mean and can

be addressed by:

• Idle: The full DRAM chip is idle; increase the request

rate (more threads, more memory-level parallelism).

• Bank-idle: Some banks are idle while others are active;

increase the request rate, and if that does not work, make

the distribution across the banks more uniform.

• Precharge/activate: Time is spent in closing and opening

pages in banks; increase page hit rate by optimizing

locality.

• Constraint: Different timing constraints limit throughput;

try to avoid constant switching between reads and writes.

• Refresh: DRAM rows are refreshed; intrinsic to DRAM

operation, nothing to do about.

Note that it is not always possible to address these issues.

The memory address stream is often a characteristic of the

application that cannot be changed. The bandwidth stack then

shows that this is the case, and that there is no further margin

to improve bandwidth utilization.

Due to the complexity of the accounting, bandwidth stacks

are targeted to be collected during processor and/or memory

simulation. Even for simulation, complexity and speed needs

to be considered, to not impractically slow down simulation.

Instead of accounting cycle by cycle, as explained in the

1To simplify the accounting, we add 1 to each counter, and divide these
specific counters by n during postprocessing.

324

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

conceptual description above and which would be very time-

consuming, we collect the traces of memory operations on

the different levels. We then analyze them on the fly (we do

not keep the full trace), by looking at the first read or write

on the channel and analyzing the commands before that first

channel transfer to find the events that prevented a transfer.

Because each command takes a few cycles, we account

multiple cycles in one step, which is much faster than a cycle-

by-cycle approach. As an alternative to integrated simulation,

a command trace (including timings) can be collected from

the hardware [14] or a DRAM simulator [17], [18], and the

bandwidth stack can be constructed offline from this trace

using the accounting mechanism described in this section.

After collecting the components as cycle counts, a post-

processing step transforms them into bandwidth components

expressed in GB/s. Peak memory bandwidth equals the chan-

nel bandwidth, so each cycle corresponds to the amount of data

the channel can transfer in a cycle. For example, if the data

bus is 8 byte, and 2 transfers can be done per cycle (double

data rate), each cycle corresponds to 16 bytes of data. Next,

we divide by the total simulation time to obtain a bandwidth

number in GB/s. For example, if we simulate 1 million

memory cycles at 1.2 GHz, and the precharge component is

accounted as 100,000 cycles, its bandwidth component equals

100,000 cycles×16 B

1,000,000 cycles
×1.2 GHz = 1.92 GB/s

V. LATENCY STACKS

To complement the bandwidth stacks, we also collect la-

tency stacks. For each load operation that accesses main

memory, we collect the DRAM latency, divided in multiple

components. The base component is the minimum latency

to perform a read without any contention or constraints.

Precharge/activate (pre/act) is the extra latency to precharge

and activate a row in case of a page miss. The remaining

latency is queueing time, i.e., the time a request has to wait

until it is started. To provide more insight, we subdivide

the waiting time further. The time a request was delayed

because the DRAM was refreshing is accounted to the refresh
component. During a write burst, no reads can be scheduled,

so we account this time to the writeburst component. The

remaining queueing latency is due to bandwidth and/or timing

constraints, and is added to the queue component.

Latency stacks are more straightforward to measure than

bandwidth stacks, because we do not need to take into account

overlap effects: the components are measured for each individ-

ual read operation, and then averaged over all read operations.

We only consider read operations, because they have a direct

impact on core performance: loads that need to access main

memory stall the core until they are finished. Writes, on the

other hand, usually do not stall a core.

Although latency and bandwidth are correlated, bandwidth

stacks and latency stacks provide different information. High

bandwidth usage often incurs high queueing times, and thus

higher latency. However, sometimes latency is high when

bandwidth usage is still far from the peak bandwidth. In this

case, the latency stack can provide an explanation. The higher

latency is then often the cause of low bandwidth consumption:

cores are stalled and generate memory requests at a lower rate.

Another example of the complementarity between band-

width and latency stacks is the interpretation of the bank-idle

bandwidth component. If the bank-idle component is high, it

can either be because of a low request rate or because there are

many accesses to the same bank at the same time. In the first

case, there is no significant queueing latency in the latency

stack, while the second case will show a high queueing delay.

To increase bandwidth usage in the first case, request rate

should be increased (e.g., more threads), while in the second

case, bank interleaving should be improved.

VI. EXPERIMENTAL SETUP

We have implemented the bandwidth stack and latency stack

accounting mechanism in an in-house version of the Sniper

multicore simulator [3], extended with a DRAM model based

on the Ramulator DRAM simulator [12], [17]. Because the

Sniper core models are not synchronized cycle by cycle (for

high simulation speed), memory accesses can occur out of

order, so the first step is to reconstruct an in-order command

trace for each memory controller (on the fly). Next, we apply

the bandwidth stack algorithm to collect the components of the

stack. The latency stack accounting is done per read operation.

We extend the DRAM model to differentiate between the

queueing components, and check whether a read was delayed

because of refreshes or write bursts. Similar to the cycle

stacks in Sniper, bandwidth and latency stacks can be collected

aggregated over the full processor (all memory controllers),

per memory controller and/or through time (showing a stack

per time unit, which is useful for detecting phase behavior).

To show the usefulness of bandwidth and latency stacks,

we simulate a single DDR4-2400 memory controller with FR-

FCFS scheduling policy, attached to 1 to 8 Intel Skylake-like

cores [6]. The cores are 4-wide out-of-order cores, with a 224-

entry ROB. L1 instruction and data caches are 32 KB each,

the private L2 cache is 1MB. To factor out caching effects, we

keep the shared last-level cache the same for all core counts

(8 NUCA slices for a total of 11 MB).

The memory module has one channel and one rank, 4 bank

groups and 4 banks per bank group, for a total of 16 banks.

The page buffer is 8 KB (128 64-byte cache lines per row).

The frequency is 1.2 GHz, and the data bus width is 8 byte.

With two transfers per cycle (double data rate), the transfer rate

is 2400 MT/s, resulting in a peak bandwidth of 19.2 GB/s.

We simulate increasing traffic (i.e., attaching more cores),

different bank indexing (impacting the distribution of accesses

across cores), open and closed paging policy, and different

read/write fractions. The goal is to show that the effect on

the resulting bandwidth stacks is as expected from the band-

width and latency stack component definition. As validation

workload we use synthetic benchmarks with a sequential and

a random memory access pattern and a configurable load/store

fraction. Synthetic benchmarks are more straightforward to

understand and analyze than real applications, which makes it

325

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

0
2
4
6
8

10
12
14
16
18
20

1c 2c 4c 8c 1c 2c 4c 8c

sequential random

G
B/
s

read write precharge activate
refresh constraints bank_idle idle

0

50

100

150

200

250

1c 2c 4c 8c 1c 2c 4c 8c

sequential random

ns

base act/pre refresh writeburst queue

Fig. 2. Bandwidth (top) and latency (bottom) stacks for the sequential and
random pattern with loads only, on 1 to 8 cores.

easier to show the intuitiveness and usefulness of bandwidth

stacks. We also simulate the GAP benchmarks [1], which

are representative for graph workloads and are known to be

memory bound, to show how the stacks can be used to analyze

real-world applications.

VII. SYNTHETIC BENCHMARKS

A. Read-only

Figure 2 shows the bandwidth and latency stacks for the

sequential and random access benchmark with only loads (no

stores), on 1 to 8 cores attached to one memory controller with

a peak bandwidth of 19.2 GB/s. The sequential pattern on one

core reaches 6.4 GB/s read bandwidth. There is a large idle

component, meaning that one core does not provide enough

requests to saturate the bandwidth. The constraints component

accounts for 0.8 GB/s lost bandwidth. The sequential pattern

causes successive requests to the same bank: each row in a

bank contains 8 KB of data, or 128 cache lines of 64 B. As

a result, successive requests also access the same bank group,

which has a lower bandwidth than the channel according

to the specification of the modeled DDR4 configuration: a

bank group can transfer one cache line in 6 memory cycles,

while the channel only needs 4 cycles. This constraint on

the bank group bandwidth is visualized by the constraints

component. During the bank group constraint waiting time,

the other banks are idle, which is visible through the bank-

idle component (2.6 GB/s). The refresh component is constant

for all stacks: DRAM is refreshed at a fixed rate. There is no

precharge/activate component: page hit rate is 99% because

of the sequential pattern. The latency stacks shows that the

latency is close to the base read latency, with small refresh

and queueing components.

Increasing the core count increases the request rate and thus

also the achieved bandwidth. The increase is proportional to

the number of cores, until the maximum bandwidth (minus

the refresh rate) is achieved at 4 cores. At that point, queueing

latency increases significantly: the request rate is larger than

the bandwidth, leading to long waiting times. Note that the

relative size of the bandwidth stack constraints and bank-idle

components is lower for 2 cores and disappears for 4 and

8 cores. Each core accesses different parts of the sequential

pattern, spreading the resulting requests over bank groups,

which reduces the impact of the lower bank group bandwidth.

The DDR4 chip we simulate has 4 bank groups, so at 4 cores,

these components mostly disappear.

The random pattern has much lower bandwidth usage.

The sequential pattern has perfect spatial locality and perfect

predictability, meaning that caches and prefetchers are very

effective in hiding the memory latency from the core, which

increases the request rate. These structures cannot handle a

random pattern, so the core sees the full memory latency and

is thus often stalled on memory operations, which reduces

the request rate and thus the achieved bandwidth. Due to

the random pattern, page hit rate is 0%, which explains

the precharge/activate components in both the bandwidth and

latency stacks. There is also a large bank-idle component in

the bandwidth stack: banks are busy longer because they need

to precharge/activate for every access, meaning that there are

more cycles where one or a few banks are busy and the others

are idle. However, there is no large queueing component in

the latency stack, indicating that the bank-idle component is

caused by a low request rate. The constraints component is

also large and increases with core count; this component now

also includes extra constraints between pre/act commands.

As core count increases, the bandwidth usage also increases,

but not fully proportional: the bandwidth usage at 8 cores is

only 6.4 times higher than that of 1 core, despite the fact

that the bandwidth usage at 8 cores uses only 51% of the

19.2 GB/s peak bandwidth. The bandwidth stack provides the

explanation: at 8 cores, there is no idle component, meaning

that the memory chip is active all of the time processing

requests. Furthermore, the page misses cause bandwidth losses

due to precharge/activate and the corresponding constraints,

resulting in a relatively small bank-idle component (24% of

the total bandwidth). This means that three quarters of the

banks are busy at any time, resulting in a 75% chance of

accessing a busy bank, which in turn causes queueing time,

reflected by the increased queueing component in the latency

stack. The extra latency makes the cores stall longer, which

reduces the request rate and thus the achieved bandwidth.

It is interesting to compare the sequential pattern at 2

cores and the random pattern at 8 cores: the former has a

326

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

0
2
4
6
8

10
12
14
16
18
20

0% 10% 20% 50% 0% 10% 20% 50%

sequential random

G
B/
s

read write precharge activate
refresh constraints bank_idle idle

0

20

40

60

80

100

120

140

0% 10% 20% 50% 0% 10% 20% 50%

sequential random

ns

base act/pre refresh writeburst queue

Fig. 3. Bandwidth (top) and latency (bottom) stacks for the sequential and
random pattern with increasing store fraction on 1 core.

higher bandwidth usage and a lower queueing delay than the

latter, which is contrary to the intuition that queueing latency

increases with higher bandwidth usage. The bandwidth stack

explains this behavior: due to page misses and constraints,

there are fewer idle cycles in the random pattern than in the

sequential pattern, leading to more queueing.

B. Impact of writes

In the next experiment, we add store operations, causing

writes to memory. The cache organization with write-allocate

policy induces both a memory read and a write on a store

operation to a non-cached line: a read to load the cache line

into cache, and a write somewhat later when the dirty cache

line is evicted. Figure 3 shows the effect of increasing the

store fraction from 0% to 50% for the sequential and random

pattern on one core (the 0% stacks are the same as the 1c

stacks in Figure 2).

Adding stores on the sequential pattern decreases the read

bandwidth, which is not fully compensated by the additional

write bandwidth (total bandwidth usage of 5.8 GB/s for 10%

writes versus 6.4 GB/s read bandwidth for the 0% write

pattern). This is contrary to expectation: because a store adds

both a read and write request and cores do not stall on stores,

we expect both read and write bandwidth to increase. The ex-

planation is found in the large bank-idle component, combined

with the large queueing component in the latency stack. This

indicates that there is a problem with bank interleaving, as

explained in Section V. The writes do not occur immediately

at the execution of the store, but on the eviction of the cache

line, which can be significantly later. This means that the

ideal bank interleaving pattern of the sequential pattern is

broken: writes can access the same bank as the current read

pattern, but on a different page. This leads to queueing, and

also to precharge/activate components because the read and

write pattern access a different page. The queueing and bank

conflict latency reduces the core request rate, explaining the

lower overall bandwidth usage.

Increasing the store ratio to 20% and 50% further increases

the queueing time, leading to lower read bandwidth (partly

compensated by the additional write bandwidth). We also see

an increase in the writeburst latency. Writes are buffered in

the memory controller to prioritize reads, which are more

critical for the core. If there are idle cycles or the buffer

fills up, a burst of writes is issued, during which no reads

are done. This burst is intentional to limit the overhead of

switching between reads and writes. However, the sequential

store pattern also causes a sequential write pattern at cache

evict because of the LRU cache replacement policy. Writes

in the write buffer therefore access the same bank, and are

serialized on a write burst, because they cannot exploit bank

parallelism. This causes a long time to issue the writes and

empty the write buffer, during which all reads are waiting,

causing the high queueing delay. Note that the writeburst delay

can also have an indirect impact on the queueing delay: reads

that are delayed because of a write burst create a read burst

after the write burst is done, delaying the reads that arrive after

the write burst. Because these reads arrive after the write burst,

their delay is not accounted to the writeburst component, but

to the queue component: they are delayed by other reads.

For the random access pattern, we do see a monotonic

increase in the achieved bandwidth when increasing the store

ratio: both the read and write bandwidth increase. There is

no substantial increase in the queueing time, because writes

are now better distributed across the banks, reducing the write

burst and bank conflict time. There is also an increase of the

precharge/activate and constraints bandwidth components.

C. Open versus closed page policy

The timing when pages are closed is determined by the

page policy in the memory controller. An open page policy

keeps pages open until another page on that bank is requested.

To load another page, the current page has to be written

back to the DRAM arrays (precharge command) and a new

page is read (activate command). A closed page policy closes

a page (by requesting a precharge) as soon as there are

no pending accesses to that page anymore. If another page

is requested later on, only an activate command needs to

be issued, avoiding the latency of the precharge command.

However, if the same page is accessed, there is an extra activate

penalty compared to the open page policy. All results in the

previous sections used an open page policy.

Figure 4 shows the bandwidth and latency stacks for the

read-only sequential and random pattern on two cores, using

327

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

20

open closed open closed

sequential random

G
B/
s

read write precharge
activate refresh constraints
bank_idle idle

0
10
20
30
40
50
60
70
80

open closed open closed

sequential random

ns

base act/pre refresh
writeburst queue

Fig. 4. Comparing bandwidth and latency stacks for open and closed page
policy, for the read-only sequential and random pattern on 2 cores.

an open and closed page policy. As expected, the sequential

pattern performs worse (lower bandwidth usage and higher

latency) with a closed policy: most requests are to the currently

open page, closing the page too early leads to longer latency.

One might expect a larger increase in the precharge/activate

component in the latency stack, but the largest increase is

in the queueing component. This is because after closing a

page, the first access has an extra activate latency, but the

following accesses (to the same bank and page) have to wait

for the precharge and read to end, which is accounted to the

queueing latency component. This phenomenon is also visible

in the bandwidth stack: there is a larger bank-idle component.

Distributing subsequent accesses across banks would reduce

queueing in this case.

For the random access pattern, bandwidth usage slightly

improves for a closed policy (+11%) and latency reduces. This

is also expected: each request accesses a different page, and

closing pages earlier avoids the precharge latency, as is visible

in the reduced pre/act latency component. The precharge

component also disappears in the bandwidth stack, meaning

that precharges are done in parallel with data transfers. The

bank-idle component reduces because requests take less time,

resulting in a larger full chip idle component.

D. Bank indexing

The bank indexing scheme determines which bank is ac-

cessed given a physical memory address. Figure 5(a) shows

how the bank group, bank, row and column (cache line in a

page) are indexed based on the physical address for our default

setup. There is only one channel and one rank in our setup, so

we do not need to index channel and rank. Cache lines are 64

byte, so the lower 6 bits determine the offset in a cache line.

Pages contain 128 cache lines, so the next 7 bits determine the

column in a DRAM page. In order to maximize the distribution

of the requests across banks and bank groups, the next two bits

select which of the 4 bank groups to address, and the next 2

determine which of the 4 banks within that bank group. Each

bank consists of 32 Ki rows, so the upper 15 bits determine the

row index. Note that this means that this memory controller

can access 4 GB of data (32 address bits).

In a few cases in the previous sections, we noticed a

large bank-idle component, combined with a large queueing

$-line offsetcolumnbank-grbankrow
672215

$-line offsetcolumn bank-grbankrow
67 2215

(a)

(b)

Fig. 5. Default (a) and cache-line interleaved (b) indexing schemes.

0

5

10

15

20

def int def int

seq w50 1c open seq w0 2c closed

G
B/

s

read write precharge
activate refresh constraints
bank_idle idle

0
20
40
60
80

100
120
140

def int def int

seq w50 1c open seq w0 2c closed

ns

base act/pre refresh
writeburst queue

Fig. 6. Comparing default (def) and cache line interleaved (int) indexing for
2 use cases with high bank-idle and queueing components.

component, which indicates poor bank-level parallelism. This

occurs in the sequential pattern, where successive requests

access the same page on the same bank, causing contention

and queueing. A solution to this issue is to distribute the

sequential addresses across the banks, by interleaving cache

lines across the banks. Figure 5(b) shows the alternative index

scheme. The lower bits next to the cache line offset are now

used to index the bank group and bank, moving the column

index bits to higher address bits. We do not move the column

bits higher, beyond the row bits, to retain page locality: once

all banks are accessed, the stream returns to the first bank on

the same page.

Figure 6 shows the bandwidth and latency stacks for the

default (def) and cache line interleaved (int) indexing scheme

for 2 cases where bank parallelism is a problem: a sequential

stream with 50% stores and a sequential stream with a

closed page policy on 2 cores. For both, bandwidth usage

increases and latency decreases, which means our analysis

based on the bandwidth and latency stacks was correct.

The activate/precharge components increase: each sequential

stream now opens a page on all banks, which causes more

page misses because there are multiple streams, i.e., the read

and write stream for the w50 case and the streams of the 2

independent cores for the 2c experiment. This is compensated

by the decrease in the queueing and writeburst components:

sequential accesses now don’t queue up in the same bank.

This indexing scheme, however, is in general not beneficial:

for configurations where there is no large queueing component,

the activate/precharge component still increases considerably,

which is not compensated by a decrease in queueing, leading

to a performance loss.

VIII. GAP BENCHMARKS

In the previous sections, we showed using simple synthetic

streams that the proposed bandwidth and latency stacks reveal

328

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

meaningful information on why the expected bandwidth is

not reached and what the potential solutions are. We now

collect these stacks for realistic benchmarks. The GAP bench-

marks [1] are basic graph kernels, representative for emerg-

ing graph workloads. Graph kernels are memory intensive,

meaning that their performance is determined by memory

behavior, and are therefore suited to analyze using bandwidth

and latency stacks. Graph workloads typically have a mix

of sequential and random patterns and cannot be categorized

exclusively in one of the two patterns discussed previously.

Similar to the synthetic workloads, we simulate (and collect

stacks of) the benchmarks for 1 to 8 cores, for an open and

closed page policy. In general, the GAP benchmarks have

better performance with a closed policy, due to the irregular

access patterns caused by the irregular graph structure, so we

only show results with the closed page policy. One exception

is triangle count (tc), which mainly does sequential accesses

and thus favors an open page policy. For the sake of brevity

and because many results look very similar, we highlight some

of the more interesting results.

A. Phase behavior and cycle stack correlation

Like many applications, the GAP benchmarks have differ-

ent phases: different parts of the code and/or different data

leading to different behavior. Because a single stack hides this

phase behavior, our bandwidth and latency stack accounting

mechanism records the data for small time samples, creating a

through-time stack representation. Figure 7 shows the through-

time processor cycle, memory bandwidth and memory latency

stacks for breadth-first search (bfs) on 8 cores. There is highly

varying behavior, depending on the type of algorithm (forward

calculation until 35 ms, backward calculation afterwards) and

the size of the working set (e.g., the first backward phase

between 35 ms and 75 ms, and the second backward phase

between 75 ms and 93 ms). There is a dip on all graphs

around 30 ms, the cycle stack shows that this is because 7

of the 8 cores are idle (87.5% idle component), due to limited

parallelism (which is why the algorithm switches to the highly

parallel backward variant).

Bfs is highly memory bound, indicated by the large dram

components in the cycle stack. The size of the dram compo-

nents in the cycle stack correlates well with the bandwidth

usage in the bandwidth stack and the queueing component in

the latency stack. However, the cycle stack impact of memory

operations in the first phase of the application is higher than

in the phases after 35 ms, although the latter have higher

bandwidth usage and higher latency. This means that the

out-of-order core hides less of the memory latency, because

there are too few independent instructions that can be done

concurrently with the memory access. Improving memory

performance on that phase will therefore improve performance

more than on the other phases.

Looking at the first phase in particular, we notice a large

bank-idle component in the bandwidth stack and a visible

writeburst component in the latency stack (also noticeable in

the other memory-bound phases). This indicates a potential

0%

20%

40%

60%

80%

100%

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 97.01ms

Fr
ac

tio
n

of
 ru

nt
im

e

base
branch

dcache
dram-latency

dram-queue
idle

19.2

 0

 5

 10

 15

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 97.01ms

DR
AM

 b
an

dw
id

th
 (G

B/
s)

read
write
precharge

activate
refresh
constraints

bank-idle
idle

 0

 50

 100

 150

 200

 250

 300

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 97.01ms

D
R

A
M

 la
te

n
c

y
 (

n
s
)

base-dram
base-cntlr

refresh
pre/act

writeburst
queue

Fig. 7. Through-time cycle (top), bandwidth (middle) and latency (bottom)
stack for bfs on 8 cores.

bank interleaving issue, as we also encountered with the

synthetic benchmarks. Therefore, we simulate this benchmark

with the cache-line interleaved indexing scheme, discussed in

Section VII-D. Figure 8 (left) shows the aggregated latency

stack for bfs using the default (def) and cache-line interleaved

(int) indexing scheme. The queueing and writeburst compo-

nents indeed reduce, at the cost of a larger precharge/activate

component. The latter is caused by a lower page hit rate: from

41% for the default scheme to 8% for the interleaved scheme.

As a result, total average latency, as well as bandwidth usage

and performance, is almost the same for the two schemes.

Another way to reduce the writeburst component is to

increase the write queue. A larger write queue causes fewer

write bursts, and also increases the chances to issue writes

on an idle period. Figure 8 also shows the latency stack for

bfs with an 128-entry write queue, instead of the default 32

entries. The writeburst component is indeed reduced, along

with a small reduction in the pre/act component, because read

operations can be reordered more to minimize page misses.

However, because bandwidth usage is already high and write

329

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

0
20
40
60
80

100
120
140

def int wq128 def int

bfs 8c closed tc 1c closed

ns

base act/pre refresh writeburst queue

Fig. 8. Latency stack for bfs on 8 cores (left) and tc on one core (right) for
the default configuation (def), the cache-line interleaved (int) indexing scheme
and an 128-entry write queue (wq128).

bursts now take longer, the queueing component increases,

undoing part of the gains.

Figure 8 (right) shows the latency stack for triangle count

(tc) on one core with a closed page policy. Despite the

very low bandwidth usage (0.9 GB/s), there is a considerable

queueing component. Tc mainly performs sequential accesses,

for which we found a similar issue in the synthetic sequential

pattern: on a page miss, the activate latency makes successive

accesses that go to the same bank wait, causing queueing. The

cache-line interleaved indexing can also address this issue,

by spreading successive accesses across banks. As seen on

the figure, the queueuing component indeed reduces, but this

is again completely offset by the increased page miss rate.

Different from the synthetic sequential pattern, tc has multiple

concurrent sequential streams, even with one thread. These

interfere more if more pages are opened concurrently by one

stream. Tc benefits more from an open page policy, reducing

average latency to 44 ns.

These examples show that although the bandwidth and

latency stacks provide more insight into the memory behavior

and how it impacts performance, it is not always easy to

improve performance by addressing bottlenecks. Optimizing

for one component can impact other components, undoing

the potential gain. Even at the software side, it is difficult

to change access patterns to improve memory behavior. For

example, graph applications are known to have irregular access

patterns with low locality. Improving locality, e.g., using

clustering and partitioning, is on itself NP-hard.

B. Extrapolating bandwidth usage

All of the benchmarks consume less than 1/8 of the peak

bandwidth at 1 core. A straightforward extrapolation would be

that the bandwidth, and thus the performance, scales linearly

to 8 cores in the absence of other limiting factors. Our

experiments show that none of the benchmarks scale perfectly

linearly: the performance and bandwidth usage at 8 cores

is lower than 8 times that of 1 core, despite a lower than

peak bandwidth usage. The bandwidth stacks reveal other

bandwidth limiting factors, such as precharge/activate, timing

0
2
4
6
8

10
12
14
16
18
20

bc bfs cc pr sssp tc

Ac
hi

ev
ed

 b
an

dw
id

th
 (G

B/
s)

8c BW naïve stack

Fig. 9. Measured (8c BW) and extrapolated bandwidth usage at 8 cores, using
the naive and stack-based method for the 6 GAP benchmarks.

constraints and limited bank parallelism. Bandwidth stacks can

be used to more accurately extrapolate bandwidth usage.

The main idea is that not only the achieved bandwidth scales

with the number of cores, but also the other non-idle compo-

nents: if traffic increases, more banks will be precharging/ac-

tivating and more constraints need to be enforced because

there is a denser execution of reads and writes. A first-order

way to extrapolate the bandwidth stack is to multiply each

component with the core count increase factor, except for the

idle components (idle and bank-idle), which will obviously

reduce. We also do not scale the refresh component, which

remains constant. If the sum of the extrapolated components

(without the idle components) exceeds the peak bandwidth, the

performance becomes bandwidth bound. In this case, we scale

down the components proportionally, such that the total stack

equals the peak bandwidth. This leads to a reduced achieved

bandwidth (read and write bandwidth component), which is

the predicted bandwidth usage at the extrapolated core count.

To validate this approach, we start from the 1-core band-

width stack and extrapolate the bandwidth usage to 8 cores,

which we can compare to the actually achieved bandwidth in

the 8-core simulation. We compare to a more naive approach

that multiplies the achieved bandwidth at 1 core by 8 and

saturates at the peak bandwidth (peak bandwidth minus the

refresh rate, to be more accurate). Because the GAP bench-

marks show phase behavior with varying bandwidth usage,

and thus varying scaling behavior, we apply both methods for

each measured sample and aggregate afterwards.

Figure 9 shows the achieved bandwidth at 8 cores (simu-

lated) and the extrapolations using the two methods. It shows

that the stack-based method is more accurate than the naive

method; the average error is 27% for the naive method versus

8% for the stack-based method. Because there are other factors

impacting bandwidth usage, such as synchronization overhead,

cache interference, etc., this method cannot be absolutely

accurate, but the results show that this relatively simple method

already yields more than 3 times more accurate predictions

than the naive method.

330

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

IX. CONCLUSIONS

Memory bandwidth usage is an important metric in per-

formance analysis. DRAM operation is complex, which com-

plicates analyzing bandwidth usage. Memory bandwidth and

latency stacks are an intuitive way to visualize the bottlenecks

preventing high bandwidth usage and what their impact is

on performance. Using synthetic benchmarks, we show that

the stacks are intuitive and meaningful. We evaluate graph

applications to show that bandwidth and latency stacks can

be used together with cycle stacks to get an in-depth view

of an application’s performance and to potentially improve

its performance. Bandwidth stacks also enable more accurate

extrapolations of bandwidth usage when scaling out to more

cores.

REFERENCES

[1] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available: http:
//arxiv.org/abs/1508.03619

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[3] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations,”
in SC, Nov. 2011.

[4] S.-J. Cho, J. Ahn, H. Choi, and W. Sung, “Performance analysis of multi-
bank dram with increased clock frequency,” in 2012 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2012, pp. 2477–
2480.

[5] I. Corporation, “Vtune profiler: Memory access analysis,”
2022. [Online]. Available: https://software.intel.com/en-us/vtune-help-
memory-access-analysis

[6] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
Intel Core: New microarchitecture code-named Skylake,” IEEE Micro,
vol. 37, no. 2, pp. 52–62, 2017.

[7] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten, “Band-
width bandit: Quantitative characterization of memory contention,” in
Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 2013, pp. 1–10.

[8] S. Eyerman, W. Heirman, K. Du Bois, and I. Hur, “Multi-stage cpi
stacks,” IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 55–58,
2018.

[9] S. Eyerman, K. Du Bois, and L. Eeckhout, “Speedup stacks: Identifying
scaling bottlenecks in multi-threaded applications,” in 2012 IEEE Inter-
national Symposium on Performance Analysis of Systems & Software
(ISPASS). IEEE, 2012, pp. 145–155.

[10] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance
counter architecture for computing accurate CPI components,” in 12th
International conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XII). Association for
Computing Machinery (ACM), 2006, pp. 175–184.

[11] S. Eyerman, W. Heirman, K. Du Bois, and I. Hur, “Extending the per-
formance analysis tool box: Multi-stage CPI stacks and FLOPS stacks,”
in 2018 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2018, pp. 179–188.

[12] S. Eyerman, W. Heirman, and I. Hur, “Modeling DRAM timing in
parallel simulators with immediate-response memory model,” IEEE
Computer Architecture Letters, vol. 20, no. 2, pp. 90–93, 2021.

[13] C. Helm and K. Taura, “Automatic identification and precise attribution
of DRAM bandwidth contention,” in 49th International Conference on
Parallel Processing-ICPP, 2020, pp. 1–11.

[14] Y. Huang, L. Chen, Z. Cui, Y. Ruan, Y. Bao, M. Chen, and N. Sun,
“HMTT: A hybrid hardware/software tracing system for bridging the
dram access trace’s semantic gap,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 11, no. 1, pp. 1–25, 2014.

[15] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrading
the loft,” IEEE Computer Architecture Letters, vol. 13, no. 1, pp. 21–24,
2014.

[16] JEDEC, “DDR4 SDRAM standard (JESD79-4D),” 2021. [Online].
Available: https://www.jedec.org/standards-documents/docs/jesd79-4a

[17] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE CAL, vol. 15, no. 1, pp. 45–49, 2015.

[18] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3:
a cycle-accurate, thermal-capable DRAM simulator,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 106–109, 2020.

[19] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[20] H. Xu, S. Wen, A. Gimenez, T. Gamblin, and X. Liu, “DR-BW:
identifying bandwidth contention in NUMA architectures with super-
vised learning,” in 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2017, pp. 367–376.

331

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on August 03,2022 at 14:08:03 UTC from IEEE Xplore. Restrictions apply.

