RIO: ROB-centric In-order Modeling
of Out-of-order Processors

Wim Heirman, Stijn Eyerman, Kristof Du Bois, and lbrahim Hur

Abstract—Architectural studies of the cache and memory hierarchy need a fast simulation model for the processor core that accurately
conveys the impact of memory subsystem changes on application performance. We propose the RIO model (ROB-centric In-order
model for Out-of-order cores), a single-pass core performance model based on finding the earliest possible future issue time for
out-of-order execution. RIO can natively model second-order effects of overlapping and interacting miss events, significantly improving
accuracy over interval simulation. Yet it is no more complex to implement and run, providing a compelling speedup over more detailed
models. We implement RIO in Sniper and evaluate it on 2000+ application traces, and find it has an average absolute prediction error
of 10.3% over Sniper’s most detailed model, while simulating 2.8 x faster on average (up to 5x on memory-bound workloads).

Index Terms—processor performance simulation, mechanistic core models

1 INTRODUCTION

RADITIONAL cycle-by-cycle modeling is generally con-
Tsidered too slow to drive memory studies with high
core counts and large caches, which need relevant chunks
of realistic applications to be simulated in reasonable time.
Higher-abstraction models such as interval simulation are
much faster, but can lack the accuracy needed to make
reliable performance predictions.

We propose a new technique, the ROB-centric In-order
model for Out-of-order processors (RIO). It is a single-pass
model, which visits instructions only once and in-order
while computing their earliest possible execution time. RIO
can be viewed as a hybrid between instruction-window
centric (IWC) modeling [1], and interval simulation [2]. Like
IWC, our technique models the reorder buffer (ROB) as a
central structure, but like interval simulation it only requires
a single pass over all instructions.

Executing the model is therefore much less computation-
ally expensive than IWC because it does not need to perform
bookkeeping on large numbers of pending instructions. It is
also more accurate than interval simulation, because it pro-
vides mechanistic dependency-based modeling rather than
analytical approximations at the boundaries of miss events
such as branch mispredictions and long-latency loads. This
is important especially when such phases occur close to-
gether or overlap, e.g., when branch mispredicts or instruc-
tion cache misses are partially hidden under a long-latency
load. RIO naturally models these second-order effects, while
offering a simulation speed similar to interval simulation. It
is therefore well-suited to drive large multi-core memory
hierarchy studies that use complex applications with high
rates of miss events, such as datacenter workloads.

2 BACKGROUND

Interval simulation is a high-abstraction level performance
model for out-of-order processors [2]. It is based on the

o All authors are with Intel Corporation, {wim.heirman, stijn.eyerman,
kristof.du.bois, ibrahim.hur}@intel.com

observation that the execution profile can be seen as a
sequence of intervals of smooth execution flow, separated
by miss events (cache or TLB misses, branch mispredictions)
during which the core pipeline stalls. Given the processor’s
window size (number of entries in the reorder buffer, ROB)
and width of the dispatch stage,' interval simulation in-
spects the dynamic instruction stream in-order and keeps
two windows’ worth of instructions: the new window of up-
coming instructions and the old window of past instructions.

As instructions graduate from the new to the old win-
dow, the time is estimated at which they would pass the
dispatch stage. During an interval of smooth execution,
the critical path of dependent instructions through the old
window determines at what rate old instructions at the head
of the ROB can be committed, and hence how quickly new
instructions can be dispatched into the ROB. For instructions
that cause miss events, the penalty is computed (access
latency for TLB and cache misses, branch resolution plus
recovery time for branch mispredicts) and added to the
current timestamp. After each miss event, the old window is
flushed under the assumption that all independent instruc-
tions have completed under the miss. For long-latency data
cache misses, in addition, the new window is scanned for
independent memory loads that may resolve in the shadow
of the initial miss event.

In practice, interval simulation is very fast and works
well when miss events are isolated. However, for complex
application codes where miss events of different types and
lengths occur close together, the model can make large er-
rors as it does not take the second-order effects of interacting
miss events into account.

Instruction-window centric (IWC) simulation was pro-
posed as a new mechanistic core model, bridging the gap in
complexity and accuracy between interval simulation and
cycle-accurate simulation [1]. IWC simulation is closer in
concept to a fully detailed simulator, and keeps track on a

1. We use the terminology dispatch, issue, and commit in this paper;
these are equivalent to allocate, execute, and retire, respectively.

cycle-by-cycle basis how instructions flow through the pro-
cessor pipeline. But unlike detailed simulation, IWC simu-
lation only models those microarchitecture components that
are relevant to performance, driven by the insights provided
by the interval model. For instance, after dispatching a
mispredicted branch,? nothing is simulated on the wrong
path—the dispatch stage is simply stalled until the branch
is resolved. This allows IWC simulation to natively model
overlapping misses, in fact it does not explicitly consider
intervals or miss events, it naturally models the behavior of
the processor over subsequent clock cycles. The downside
of this approach is that significantly more work is done
per instruction: instead of visiting instructions in-order and
only once, the IWC core model needs to revisit instruc-
tions each time they move into a new pipeline stage, and
potentially multiple times when structural hazards (e.g., a
limited number of execution units to handle certain complex
instructions) cause additional delays.

3 THE RIO CORE PERFORMANCE MODEL

The RIO core model implements the timing model of an out-
of-order processor core. Relevant parameters are the width
of the dispatch stage (W), size of the reorder buffer (R),
and instruction latencies for each type. The model is fed
by the dynamic instruction stream provided by a trace or
functional simulator, and interfaces with separate models
for the instruction and data caches and subsequent memory
subsystem, and with a branch predictor model.

3.1 RIO data structures and modeling algorithm

The data structure at the center of RIO is a table representing
the reorder buffer (ROB) of the processor. This table contains
all instructions that are dispatched, but not yet committed.
For each instruction, it stores information related to the in-
struction itself (program counter, disassembly, input/output
registers), as well as issued and completed times.® In addition,
the register dependency table (RDT) lists, for every architec-
tural register, a timestamp when its value becomes available.
The memory dependency table (MDT) contains, for the
last IV stores (N being at least the size of the processor’s
load-store queues), the address, access size and completion
time of recent store instructions. Finally, a variable w keeps
track of how many instructions were dispatched during the
current cycle (up to W, the dispatch width of the machine).

The simulation progresses by modeling, in instruction
order, the dispatch and issue stages for up to W instructions
that all dispatch in the same cycle, then models the commit
stage. The local timestamp is incremented as instructions
are dispatched, while skipping over cycles during which no
modeling work needs to be done.

Step 1. First, we initialize the dispatch counter w = 0.

Step 2. The dispatch and execute stages are modeled by
inspecting instructions in program order.

Step 2a. The instruction cache model is interrogated
to determine whether the instruction hits in the I-cache.

2. IWC is functional-first, so the correct branch outcome is known
even before the branch reaches the timing model.

3.In fact, only the completed time is used by the RIO model, the
other fields are for statistics collection and CPI stack construction only.

2

If it does not, w is reset to 0 and the local timestamp is
incremented by the I-cache miss latency provided by the
memory simulation model.

Step 2b. We model the execution stage immediately,
by finding the earliest time at which the instruction can
issue. Like the interval model, RIO honors all instruction
dependencies but will be optimistic in that it assumes a
suitable execution unit is always available. For instructions
that read from registers, each input register’s available time
is read from the RDT. For memory loads, the MDT is
scanned for fully or partially overlapping stores and the
maximum completion time is recorded. We then set the
instruction’s issue time to the maximum out of (i) each
of its input registers from the RDT, (ii) any overlapping
store from the MDT, (iii) the current local timestamp (which
represents the instruction’s dispatch time). We then add the
instruction latency to the issue time to compute the com-
pletion time. For memory loads and stores, the execution
latency is determined by the data cache simulation model.
The completion time is recorded in the ROB. We also look
at all output registers that are produced by this instruction,
and set the timestamp of each of these registers in the RDT
to the completion time. For stores, we insert an entry into
the MDT with the memory address, access size, and issue
time.* The MDT is managed as a FIFO, so adding a new
store pushes the oldest entry out.

Step 2c. For branches, we query the branch predictor
model to determine whether the branch condition (for
conditional branches) or target (for indirect branches) was
predicted correctly. If not, we use the branch’s completion
time (which is when the correct branch outcome or target
will be known), add a constant value for modeling the front-
end refill time, reset the local timestamp to this new value,
and continue to the modeling of the commit stage (step 3).

Step 2d. In the absence of branch mispredictions, we
increment w. If this counter reaches W, a full dispatch width
has been achieved for that cycle, so we increment the local
timestamp by one and proceed to step 3. If the ROB is full,
we also jump to step 3. Else, as long as w remains below W,
the ROB is not full, and there was no branch misprediction,
we restart step 2 for the next instruction in the input stream.

Step 3. We now model the commit stage. We remove
all instructions from the ROB head as long as they have
a completed time that is less than or equal to the local
timestamp.5 If the ROB has filled up (contains R entries), we
look at the instruction at the head of the ROB and ensure
it can be committed. This will be possible once the local
timestamp has reached the instruction’s completed time.
Hence, we jump ahead by resetting the local timestamp to
the completed time of the instruction at the ROB head. We
then again remove any further instructions from the ROB
head as long as they complete before or at the new current
timestamp. This guarantees that we end step 3 with space
for at least one instruction in the ROB, ensuring that step 2
can proceed. We then restart the algorithm at step 1.

4. This assumes perfect store-to-load forwarding of through-memory
dependencies, given that forwarding can happen as soon as both the
address and data values are known. To model lack of forwarding, the
completion time can be used instead.

5. This assumes an infinite commit width, this stage is rarely a
bottleneck in reality.

Reorder buffer (ROB) Time
PC Instruction Issued Completed 10016
0x100 load rax := @rbx 10001 10044

0x101 incrax 10044 10045

0x102 jnz rbx, $207 10001 10016

0x207 store @rax := rbx 10045 10099

0x208 store @rbx := rbx 10016 10035

Register dependency table (RDT) Memory dependency table (MDT)

Register Available Address Size Available
rax 10045 0x12345 8 10099
rbx 10001 0x45678 1 10035

Fig. 1. Data structures used by RIO.

3.2

Figure 1 shows all model state and walks through an exam-
ple code fragment. According to the RDT, register rbx was
produced by an earlier instruction and became available at
timestamp 10001. At this point, the load at PC 0x100 which
uses rbx as an input register, becomes ready so it executed
at timestamp 10001. According to the cache model this was
an LLC hit with latency of 43 cycles so the result (register
rax) becomes available at time 10044. The next instruction
is a 1-cycle increment which updates rax, this can happen
at time 10044 and produces a new value for rax at time
10045 which is recorded in the RDT. The next instruction, a
conditional jump, is independent of the load but depends
on rbx as well so it also executes at time 10001. This branch
was mispredicted, so the next instruction at PC 0x207 can
only happen after the branch resolves and the front-end has
refilled, which happen at time 10016. The first instruction
at the branch target however also depends on rax which
isn’t ready until time 10045. Hence the store, with latency
54 cycles according to the cache model, completes at cycle
10099 which is recorded in the MDT (first entry). The second
store at PC 0x208 also dispatches at time 10016 and only
depends on rbx, which hasn’t changed since time 10001
so this second store can execute immediately, and (with a
latency of 19 cycles) completes at time 10035. At this point,
we have dispatched 2 instructions during cycle 10016—so
if W = 2 we would now reset the dispatch counter w and
increment the local timestamp to 10017 before continuing.
We then model the commit stage. Assuming & = 5, the
ROB is full at this point so we jump the timestamp to the
completion time of the instruction at the ROB head, 10044,
and commit all instructions with a completion time <10044
(in this case, only the load at PC 0x100).

Example

3.3 Discussion

Compared to the interval model, RIO is more accurate
in predicting the cost of branch mispredictions and long-
latency load events. The interval model splits execution
into phases (intervals) separated by miss events, and needs
to make several assumptions about what happens during
transitions between phases. It uses the new window to
determine which independent loads can be overlapped by
miss events, but assumes all independent instructions in the
window will execute—this is overly optimistic when the
miss event is relatively short (e.g., LLC hit, rather than a

40%
35%
30%
25%
20%
15% |-
10% |
5%
0%
-55% -45% -35% -25% -15% -5% 5% 15%
CPI error vs. IWC model

RIO
Interval C—3

Fraction of workloads

25% 35% 45% 55%

Fig. 2. Histogram of modeling errors over all 2000+ input traces.

DRAM access), or if the ROB was not full at the time of
the miss event (e.g., when I-cache miss and branch mispre-
dictions occur in quick succession). On the other hand, the
interval model is often pessimistic when computing branch
penalties. It computes the branch resolution time by finding
the critical path from the head of the old window to the
branch condition (or target). This does not consider the fact
that a portion of this path may have already executed by the
time the branch dispatches.

In contrast, RIO keeps track of which instructions are in
the ROB and when they execute at all times, so the transi-
tional phases around miss events are all handled natively.
RIO is therefore more accurate than interval simulation,
especially for workloads with high rates of miss events,
while its complexity and simulation speed are very similar.

Compared to the instruction window centric (IWC)
model, RIO requires much less computation time. Because
we determine each instruction’s issue and completion times
in one pass, we can Visit instructions in-order and only once.
This is accurate as long as there are sufficient functional
units. The INC model, in contrast, needs to keep track of
dependencies and potentially revisit instructions multiple
times when they have complex ordering requirements.

4 RESULTS

We implemented RIO in our in-house simulator which is
derived from Sniper [3], and already has core models based
on interval simulation and IW-centric simulation available.
In this experiment we only change the core model, and
kept the branch predictor and memory models the same. All
experiments are configured to model a single-core Intel Sky-
lake processor, which is a 4-wide out-of-order x86 processor
with an ROB of 224 entries. We assume the IWC model
as the golden reference and compute the prediction error
when running over 2000 input traces from a wide variety of
application domains (including SPEC CPU 2017, SPECjbb,
high-performance computing, deep learning training and
inference, and various datacenter workloads). All traces are
30 million instructions long, and are preceded by a separate
cache warming phase of at least 100M instructions.

Overall, the RIO model has an average absolute error
of 10.3% when predicting runtime, and a bias (average non-
absolute error) of —0.5%. In contrast, interval simulation has
an average absolute error of 18.1% and a bias of +13.1%.

Figure 2 shows a histogram of the modeling error of
RIO and the interval model, compared to the baseline IWC

RIO model IPC
Interval IPC

IWC model IPC IWC model IPC

Fig. 3. Modeled vs. reference IPC, for RIO (left) and interval (right).

results, over all input traces. For 84% of the traces, the ap-
plication performance predicted by the RIO model is within
£20% of the result computed by the IWC model. In contrast,
interval simulation predicts only 65% of the traces to within
+20% while exhibiting larger outliers: 6% of the traces show
an error of over 50%. Moreover, a disproportionate fraction
(>70%) of traces is predicted too slow, leading to the bias of
the model.

In Figure 3 the modeled (Y-axis) vs. reference (X-axis)
IPC of all traces is shown, for both RIO (left) and interval
simulation (right). Points on the diagonal have accurate pre-
diction, while points above (below) the diagonal indicate the
higher-abstraction model predicts performance as too fast
(slow). The RIO model has more points clustered close to
the diagonal, while interval simulation has a wider variation
while also showing several data points very far from the
diagonal (very high absolute error).

Detailed analysis of outlier traces points at two impor-
tant reasons. One is the interval model’s already mentioned
lack of second-order effects, where real processors can pro-
vide more overlap when miss events are close together
or can compute part of the branch resolution before the
branch dispatches. Another cause for large outliers is in how
the interval model fails to handle store-bound workloads:
when there are no through-memory dependencies, interval
simulation assumes stores are handled fully off the critical
path. In reality, this is only true until the store buffer fills up,
which will happen in applications that are bound by main
memory write bandwidth. In contrast, in the RIO model
stores occupy the ROB until they complete, so a store-bound
workload naturally fills up the ROB which throttles the
request rate to a bandwidth dictated by the memory model.

The errors for the RIO model compared to IWC are
mostly caused by the lack of modeling contention for func-
tional units. When determining the (future) issue time of
an instruction, in step 2b of the algorithm, we assume a
suitable execution unit is always available. In practice, there
are only a limited number of functional units of each type.
Intel’s Skylake can issue up to eight micro-operations in a
given cycle, but only one of them may be a store. This causes
RIO to be optimistic on those traces where the instruction
mix differs significantly from the functional unit mix. On
the other hand, RIO can be pessimistic in modeling the
front-end of the processor. In reality, part of the I-cache miss
latency can be overlapped because the fetch stage typically
runs ahead of the dispatch stage. RIO models these stages
as one and stalls dispatch for the full I-cache miss latency.

In terms of simulation speed, RIO is as fast as the interval
model (within 10%), while being 2.8x faster on average

RIO model speed
O = N W » U1 O
IWC model speed

IWC model IPC

IWC model IPC

Fig. 4. Simulation speed of RIO (left) and IWC simulation (right) as a
function of workload IPC.

than the IWC model. Figure 4 plots the simulation speed
(normalized to IWC’s average speed) for both the RIO and
IWC models as a function of each workload’s IPC. The
speedup of RIO over IWC is higher for memory-bound
(low-IPC) workloads, where the INC model spends a lot of
time iterating over instructions that are blocked by memory
ordering rules or structural hazards. As the ROB and other
structures in future cores grow, the number of pending
instructions waiting for memory will increase, so we expect
IWC’s simulation speed to reduce while RIO’s complexity
remains constant—increasing the speedup of RIO over INC.

5 CONCLUSION

The RIO performance model for superscalar out-of-order
cores is a hybrid of interval and traditional simulation.
We implement RIO in Sniper and compare it to Sniper’s
most accurate IWC model, where it has an average absolute
error of 10.3% over a workload set of 2000+ traces while
providing on average 2.8x the simulation speed. When
compared to interval simulation, RIO can natively model
second-order effects of overlapping and interacting miss
events, and fully supports store-bound workloads—leading
to fewer and smaller outliers of high prediction error. This
makes RIO a useful and reliable performance model for
memory subsystem studies on complex applications with
large memory working sets, which need fast performance
models to cover realistic behavior.

REFERENCES

[1] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout,
“An evaluation of high-level mechanistic core models,” ACM Trans.
Archit. Code Optim., vol. 11, no. 3, 2014.

D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation:

Raising the level of abstraction in architectural simulation,” in

International Symposium on High-Performance Computer Architecture

(HPCA), 2010.

[3] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-
core simulations,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2011.

2

—

