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Abstract—Single-ISA heterogeneous multi-cores consisting of
small (e.g., in-order) and big (e.g., out-of-order) cores dra-
matically improve energy- and power-efficiency by scheduling
workloads on the most appropriate core type. A significant body
of recent work has focused on improving system throughput
through scheduling. However, none of the prior work has looked
into fairness. Yet, guaranteeing that all threads make equal
progress on heterogeneous multi-cores is of utmost importance
for both multi-threaded and multi-program workloads to improve
performance and quality-of-service. Furthermore, modern oper-
ating systems affinitize workloads to cores (pinned scheduling)
which dramatically affects fairness on heterogeneous multi-cores.

In this paper, we propose fairness-aware scheduling for single-
ISA heterogeneous multi-cores, and explore two flavors for doing
so. Equal-time scheduling runs each thread or workload on each
core type for an equal fraction of the time, whereas equal-
progress scheduling strives at getting equal amounts of work
done on each core type. Our experimental results demonstrate
an average 14% (and up to 25%) performance improvement
over pinned scheduling through fairness-aware scheduling for
homogeneous multi-threaded workloads; equal-progress schedul-
ing improves performance by 32% on average for heteroge-
neous multi-threaded workloads. Further, we report dramatic
improvements in fairness over prior scheduling proposals for
multi-program workloads, while achieving system throughput
comparable to throughput-optimized scheduling, and an average
21% improvement in throughput over pinned scheduling.

Keywords—heterogeneous multi-core, fairness-aware schedul-
ing

I. INTRODUCTION

Heterogeneous multi-cores can enable higher performance
within a given power budget, or reduced power and energy
consumption within a given performance target, by execut-
ing workloads on the most appropriate core type. Recent
work has demonstrated the potential of heterogeneous multi-
cores to dramatically improve processor energy- and power-
efficiency [2], [6], [11], [15], [16], [17], [18], [19], [29].
Single-ISA heterogeneous multi-cores feature different core
types while implementing the same instruction-set architecture
(ISA). Existing commercial single-ISA heterogeneous multi-
cores include NVidia’s Kal-El [24] which integrates four
performance-tuned cores along with one energy-tuned core,
and ARM’s big.LITTLE design [12], which enables a high-
performance big core with a low-energy small core. For a given
power budget, both these commercial offerings enable varying
number of big and small cores to be simultaneously active.
Doing so enables executing multiple workloads concurrently or

allows a multi-threaded workloads to expose as many threads
as there are cores in the system.

How to best schedule workloads (or threads) on the most
appropriate core type is foundational to single-ISA hetero-
geneous multi-core processor. Making wrong scheduling de-
cisions can lead to suboptimal performance and/or excess
energy and power consumption. A significant body of work
has focused on this scheduling problem for multi-program
workloads. Some prior work uses workload memory intensity
as an indicator to guide application scheduling [2], [6], [11],
[15], [20], [29]. Others make offline scheduling decisions
based on profiling information [6], [29], or use sampling-based
solutions [2], [16], [17]. Model-based scheduling leverages
analytical models to steer scheduling in order to overcome
inaccuracies due to heuristics (e.g., memory dominance) and
scalablity limits due to sampling [21], [31], [33]. Prior work on
scheduling multi-threaded workloads on heterogeneous multi-
cores has primarily focused on accelerating the serial fraction
of code [1] and critical sections [32], and on identifying
and accelerating critical bottlenecks [13] and threads using
synchronization behavior [7].

All of the prior work in scheduling heterogeneous multi-
cores focused on optimizing total system throughput. None of
the prior work considered fairness as an optimization target.
Yet, fairness, or guaranteeing that all threads and/or programs
make equal progress, is of great importance. For example, in
a barrier-synchronized multi-threaded workload, a thread that
gets to run on a big core will just wait stalling on the barrier
until all other threads running on the small cores have reached
the barrier — yielding no performance benefit from hetero-
geneity. Guaranteeing fairness, or making sure all threads
make equal progress, will lead to a more balanced execution,
thereby improving overall application performance. For multi-
program workloads, fairness is of utmost importance when it
comes to system-level priorities and quality-of-service (QoS).
In particular, system software (e.g., the operating system or
the virtual machine monitor) essentially assumes all threads
(or programs) make equal progress when run on the hardware.
Yet, a thread/program that runs on a big core gets more work
done than when run on a small core.

Leveraging existing multi-core schedulers on heteroge-
neous multi-cores does not provide fairness either. Schedulers
in modern operating systems affinitize or pin threads or jobs
to cores in order to minimize overhead of context switching
and increase data locality [14]. We refer to this scheduling
policy as pinned scheduling throughout the paper. With pinned
scheduling, a thread pinned to a big core will make faster



progress compared to threads pinned to small cores, poten-
tially leading to poor fairness and reduced performance. A
straightforward approach to improve over pinned scheduling
would be to allow threads take turns on the slow and fast
cores. Blindly rotating threads between big and small cores
can unnecessarily waste power and hurt performance due to
the effects of context switches especially for threads that have
similar performance on both core types. This suggests the need
for an intelligent scheduling policy that improves fairness by
only moving threads that are suffering from ‘unfairness’.

In this paper, we propose fairness-aware scheduling for
single-ISA heterogeneous multi-cores. We consider a number
of mechanisms for achieving fairness. Equal-time scheduling
strives at scheduling all threads onto a big core for an equal
amount of time. Because equal time does not necessarily lead
to equal progress, especially for heterogeneous workloads in
which threads exhibit different execution behavior, we also
propose equal-progress scheduling which strives at getting all
threads to make equal progress. We consider three different
ways for estimating progress: sampling, history and model-
based estimations. Finally, we also explore tunable scheduling
policies that trade off system throughput versus fairness. All
of these scheduling strategies monitor a thread’s progress or
time during run-time, and dynamically reschedule threads to
improve fairness. Fairness-aware scheduling not only improves
fairness over pinned scheduling, it also improves system
throughput by enabling threads to run on a big core type
for some fraction of time. Further, it achieves a level of
system throughput that is comparable to throughput-optimized
scheduling as proposed in prior work, while dramatically
improving fairness.

By proposing fairness-aware scheduling, we are addressing
the challenge of how to best run multi-threaded workloads (and
multi-program workloads with QoS constraints) on a single-
ISA heterogeneous multi-core. This is obviously not a concern
when running a single program on a single heterogeneous sub-
system, for which the user can discern background tasks from
high-performance tasks — the suggested usage model of the
ARM big.LITTLE system [12]. The challenge pops up when
running multi-threaded workloads on a chip with multiple
such heterogeneous sub-systems, as is the case for Samsung’s
Galaxy S4 processor (Exynos 5 Octa, four big.LITTLE sub-
systems on a single chip). Running one (or some) of the threads
on a big core and the others on a small core is going to
maximize performance for a given power budget, provided that
a fairness-aware scheduling mechanism is in place to make
sure all threads make equal progress and equally benefit from
the big core. By doing so, fairness-aware scheduling not only
improves performance, it also reduces energy consumption.

Our experimental evaluation includes both multi-threaded
and multi-program workloads across a range of heteroge-
neous multi-core architectures. We report average perfor-
mance improvements of 14% (and up to 25%) for the multi-
threaded workloads through fairness-aware scheduling. Equal-
progress scheduling improves performance by 32% on aver-
age for heterogeneous multi-threaded workloads; equal-time
and equal-progress scheduling perform equally well on ho-
mogeneous multi-threaded workloads in which all threads
run the same code. For multi-program workloads on a het-
erogeneous multi-core with one big and three small cores,

fairness-aware scheduling achieves an average fairness level of
86%, a significant improvement over pinned and throughput-
optimized scheduling with fairness levels of 56% and 64%,
respectively. Moreover, fairness-aware scheduling improves
system throughput by 21% on average over pinned scheduling,
while being within 3.6% on average compared to throughput-
optimized scheduling. Scheduling that trades off fairness for
throughput enables reducing the maximum throughput re-
duction compared to throughput-optimized scheduling while
achieving similar levels of fairness compared to fairness-aware
scheduling. Overall, these results demonstrate that fairness-
aware scheduling is key to optimizing performance on single-
ISA heterogeneous multi-cores for both multi-threaded and
multi-program workloads.

II. MOTIVATION

Before elaborating on fairness-aware scheduling, we now
motivate the need for fairness for both multi-threaded and
multi-program workloads on heterogeneous multi-cores.

A. Fairness

We first define fairness for heterogeneous multi-cores,
along the lines of prior definitions of fairness in multi-threaded
and multi-core systems [8], [10]. We denote Thet as the number
of cycles to execute a thread on the heterogeneous multi-core
when run simultaneously with other threads or applications;
Tbig is defined as the time it takes to execute on the big core (of
the same heterogeneous multi-core) when run in isolation. The
slowdown of thread i on the heterogeneous multi-core is then
defined as the slowdown when running on the heterogeneous
multi-core compared to running on the big core in isolation:

Si =
Thet,i

Tbig,i
. (1)

We define a schedule to be fair if the slowdowns of all (equal-
priority) threads running simultaneously on the heterogeneous
multi-core are the same, similarly to prior work on fairness [8],
[10]. A frequently used metric for fairness is to compute the
ratio of the minimum versus maximum slowdowns among all
simultaneously running threads. One problem with this metric
is that it only considers the outlier threads, and does not take
into account the ‘average’ thread. We therefore propose and
use a different metric in our work, which is based on the
statistically well-founded coefficient of variation:

fairness = 1− σS

µS
. (2)

µS is the average slowdown across all threads, and σS is the
standard deviation across all slowdowns of all threads. The
fraction σS/µS is the so-called coefficient of variation and
measures the variability in slowdown in relation to the mean
slowdown — hence, it is a measure for the unfairness, i.e.,
the larger the variability in slowdown, the more unfair the
execution is. One minus the coefficient of variation then is a
measure for fairness. Fairness is a higher-is-better metric, and
a fairness of one means that all threads make equal progress,
relative to running on the big core in isolation.
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Figure 1. Normalized run-time on a homogeneous multi-core with 4 small
cores (4S), 4 big cores (4B), and a heterogeneous multi-core with one big and
three small cores (1B3S) while keeping threads pinned to cores.

B. Multi-threaded workloads

In order to illustrate the importance of achieving fairness,
we first consider a number of multi-threaded workloads from
the Phoenix [28] and PARSEC [4] benchmark suites, and
run these workloads on a heterogeneous multi-core with one
big and three small cores (1B3S); the last-level cache is
shared among all four cores. (We refer to later for a detailed
description of the experimental setup.) We pin each thread
to a core, and compare heterogeneous multi-core performance
against homogeneous multi-cores with four big (4B) versus
four small cores (4S), see Figure 1. A homogeneous multi-
core with big cores achieves a speedup ranging between 1.25×
to 2.5× (run-time reduction by 20% to 60%) compared to
a homogeneous multi-core with small cores. This is to be
expected given the relative performance difference between
big and small cores.

The more interesting result is that a heterogeneous multi-
core achieves no speedup over a homogeneous multi-core with
all small cores for most of the benchmarks. The reason is
that for barrier-synchronized multi-threaded workloads, the
threads pinned onto a small core determine overall application
performance, i.e., all other threads have to wait for the threads
running on the small cores due to synchronization (i.e., barri-
ers). Thus, even though the thread that runs on the big core
makes faster progress compared to the threads running on the
small cores, there is no performance improvement compared to
an all small core system. The situation is different for work-
stealing type of multi-threaded workloads where the thread
running on the big core ‘steals’ work from the small cores. As
such, fairness is not an important criterion for work-stealing
type of multi-threaded workloads.

Thus, for barrier-synchronized multi-threaded workloads,
guaranteeing fairness improves overall performance. Fairness
is accomplished by making sure that all threads get an equal
amount of work done, which enables all threads to reach the
barriers at the same time.
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Figure 2. Fairness for a 1B1S system for pinned versus throughput-optimized
scheduling using PIE for 500 randomly chosen two-job mixes.

C. Multi-program workloads

Figure 2 quantifies fairness for a heterogeneous multi-core
with one big and one small core (1B1S) for both pinned
scheduling and throughput-optimized scheduling while run-
ning multi-program workloads composed of random mixes
of SPEC CPU2006 benchmarks. While random mixes of
SPEC CPU2006 workloads may not be the standard use
case of commercial heterogeneous processors, we use them
as a substitute for emulating the behavior of random tasks
concurrently executing on a heterogeneous multi-core. The
figure shows that pinned scheduling causes some programs
to make poor progress, i.e., the program that runs on the small
core makes less progress than the program that runs on the
big core. Overall, fairness through pinned scheduling equals
55% on average and is as low as 24% for some workload
mixes (see bottom left of the curve in Figure 2). State-of-
the-art throughput-optimized scheduling using PIE [33] not
only improves system throughput by 26.6% on average, it also
improves fairness by a significant margin from 55% to 72% on
average. The reason is that throughput-optimized scheduling
reschedules programs during run-time to improve throughput,
and by dynamically migrating programs between big and small
cores in response to time-varying execution behavior, it also
improves fairness. Yet, fairness is fairly low: 72% on average,
and as low as 27% (see bottom left in Figure 2). In other words,
both pinned scheduling and throughput-optimized scheduling
are largely unfair which may compromise quality-of-service.

III. FAIRNESS-AWARE SCHEDULING

Having motivated the importance of fairness as an opti-
mization criterion on single-ISA heterogeneous multi-cores,
we now propose equal-time and equal-progress fairness-aware
scheduling in the next two subsections.

A. Equal-time scheduling

Equal-time scheduling strives at achieving fairness by
running each thread on each core type for an equal amount
of time. This is done by keeping track of how often (for how
many time slices) a thread has run on all core types, and
reschedule if necessary to make sure all threads have run on
either core type for an equal number of time slices. Round-
robin or random selection of a thread that runs on a small core
to next run on the big core is an implementation of equal-time



scheduling. Note we do not migrate threads among cores of
the same type in order to preserve data locality.

A pitfall with equal-time scheduling is that spending equal
time on either core type does not necessarily imply fairness.
Some threads experience a larger slowdown from running on a
small core than others — these threads get proportionally less
work done when scheduled on a small core. Hence, although
all threads spend equal time on either core type, threads that
experience higher slowdowns on the small cores, will make
proportionally less progress. This leads to an unfair system.
We therefore propose equal-progress scheduling in the next
section which strives at getting equal work done on either core
type, and by consequence achieve equal progress.

Note that when all threads exhibit the same (or similar)
execution behavior — a so-called homogeneous workload —
equal-progress scheduling is in fact identical to equal-time
scheduling. Because of the one-to-one relationship between
time and work done, i.e., equal time leads to equal work,
scheduling all threads on either core type for equal amounts
of time leads to equal amounts of work done on either
core type. This is not the case for heterogeneous workloads
in which threads execute different codes (and are therefore
heterogeneous by design), as we will demonstrate later in
this paper. Similarly, homogeneous-by-design workloads for
which different threads end up processing different parts of
the input data may exhibit heterogeneous behavior, and may
therefore benefit from equal-progress scheduling over equal-
time scheduling.

B. Equal-progress scheduling

Equal-progress scheduling strives at getting all threads
to make equal progress. Or, in other words, it strives at
making sure all threads experience equal slowdown, per the
definition of fairness (Equation 2). Equal-progress scheduling
continuously monitors fairness and dynamically adjusts the
scheduling to achieve fairness. This involves computing the
slowdowns for all threads and scheduling the thread with
the currently highest slowdown on the big core. (If there are
multiple big cores in the system, the threads with the top-n
highest slowdowns are scheduled on a big core.) Scheduling
the thread with the currently highest slowdown on a big core
will reduce its slowdown compared to the other threads (which
are scheduled on a small core). As a result, the threads’
slowdowns will converge and fairness is achieved.

Computing slowdowns for all threads is where the key chal-
lenge lies for equal-progress scheduling. In order to compute
a thread’s slowdown, we need to know the total execution
time on the heterogeneous multi-core as well as the total
execution time if we were to execute the thread on a big core in
isolation, see Equation 1. The former, total execution time on
the heterogeneous multi-core, is readily available by counting
the number of time slices TSi the thread has been running so
far (on both core types). The latter, total execution time on the
big core in isolation, is not readily available and needs to be
estimated during run-time. We estimate the isolated, big core
execution time by counting the number of time slices the thread
was run on the big versus small cores, and by rescaling the
time run on the small cores with an estimated big-versus-small-
core scaling factor R. A thread’s slowdown is then computed
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Figure 3. Equal-progress scheduling: sampling-based, history-based and
model-based.

as follows:

Si =
Thet,i

Tbig,i
=

TSbig,i + TSsmall,i

TSbig,i + TSsmall,i/Ri
. (3)

This formula can be trivially extended to heterogeneous multi-
cores with more than two core types.

We explore three methods for estimating the big-versus-
small-core scaling factor R, see also Figure 3.

• Sampling-based scheduling considers a sampling and
symbiosis phase. During the sampling phase, the
scheduler maps each thread at least once on each core
type, and computes the scaling factor R as the ratio
between the CPI on the small versus big core:

R = CPIsmall/CPIbig.

The scheduler then uses the computed R factor during
the symbiosis phase. We assume the symbiosis phase
is ten times longer than the sampling phase in our
setup.

• History-based scheduling computes the CPI seen on
both small and big cores and uses the ratio for es-
timating slowdown. The benefit over sampling-based
scheduling is that history-based scheduling continu-
ously adjusts the computed big-to-small ratio based on
the most recent CPI values. In order for history-based
scheduling to work in practice, it needs a bootstrap
phase in which all threads get to run on all core types
at least once.

• Model-based scheduling continuously monitors CPI
on either core type and estimates the big-to-small-
core ratio using an analytical model. The key benefit
is that model-based scheduling continuously updates
the big-to-small-core ratio based on the most recent
time slice. Sampling- and history-based scheduling
on the other hand use stale CPI values to compute
the ratio. We use the PIE model [33] for estimating
the big-to-small-core ratio. The effectiveness of the
model-based approach depends on the accuracy of
the model, and may require hardware support for
computing the inputs for the model (as is required for
PIE). The sampling-based and history-based methods
on the other hand do not require hardware support, and
they use real performance measurements, which may



be more accurate than model estimates, albeit being
stale.

C. Trading fairness for throughput

So far, we considered fairness as the only optimization
criterion, i.e., the proposed fairness-aware scheduling mech-
anisms strive at achieving fairness and are oblivious to system
throughput. However, in some practical use cases, fairness is
not the only optimization criterion, and system throughput
is at least equally important. For example, in a batch-style,
throughput-oriented system, maximizing system throughput
might be of primary importance, and fairness among users
or jobs might be a secondary concern. Hence, it might make
sense to provide a flexible scheduling algorithm that enables
trading off fairness for throughput, and vice versa.

We therefore propose a scheduling approach that trades off
fairness and system throughput: Guaranteed-fairness schedul-
ing optimizes for system throughput, yet when fairness drops
below a given threshold θfairness, scheduling defers to op-
timizing fairness until fairness reaches at least the threshold,
after which it defers again to throughput-optimized scheduling.
Guaranteed-fairness scheduling thus needs to continuously
monitor slowdowns and estimate fairness, as done for fairness-
aware scheduling. We consider different fairness thresholds for
guaranteed-fairness scheduling in the evaluation section of this
paper.

D. Rescheduling granularity

The fairness-aware scheduling algorithms proposed in this
paper dynamically reschedule threads across core types during
run-time. This is done at the granularity of a time slice. There
are a number of factors that affect a good choice of time slice
granularity. A small time slice potentially makes the system
more responsive, i.e., the scheduling algorithm can guarantee
fairness at smaller time scales and more quickly react to time-
varying execution behavior. On the other hand, a small time
slice also incurs more migration overhead when threads are
more frequently rescheduled. The migration overhead not only
includes overhead due to a context switch, it also incurs over-
head for warming hardware state, especially in the memory
hierarchy. Whereas context switch overhead incurs a fixed
cost for restoring architecture state, the overhead for warming
hardware state depends on the workload and its working set
size, as well as the memory hierarchy.

Van Craeynest et al. [33] did an extensive evaluation to
quantify migration overhead for both shared and private last-
level caches (LLCs) as a function of time slice granularity.
They found the migration overhead to be less than 1.5% across
all workloads for a 4 MB shared LLC for a 1 ms time slice,
and less than 0.6% for a 2.5 ms time slice. They also explored
migration overhead for private LLCs and found the overhead
to be small as well (although slightly higher compared to
shared caches) because the cache coherency protocol can get
the data from another core’s private LLC instead of memory.
Our own experimental evaluation confirms these findings, and
we consider a 1 ms time slice unless mentioned otherwise.

E. Hardware vs. software scheduling

Implementing fairness-aware scheduling can be done both
in hardware and in software. When implemented in hardware,
the fairness-aware scheduling would need a small time slice,
e.g., 1 ms, while system software (the OS or VMM) uses a
larger time slice, e.g., 4+ ms. By doing so, the hardware would
be able to provide the abstraction to software of homogeneous
hardware, while dynamically rescheduling threads among the
cores in a heterogeneous multi-core within an OS time slice.
For example, a heterogeneous multi-core with one big and
three small cores, may then be exposed to software as a
homogeneous multi-core with four cores and a 4 ms time slice;
the hardware however, would then dynamically reschedule
threads among the cores at a 1 ms time slice. By scheduling
for fairness, hardware would expose itself as a homogeneous
multi-core in which all threads make equal progress. System
software does not need to be changed and is oblivious to the
heterogeneity in hardware. In contrast, implementing fairness-
aware scheduling in software requires modifications to the OS
or VMM to keep track of each thread’s progress, and enables
guaranteeing fairness at a larger time scale. Fairness-aware
scheduling can be implemented in both software and hardware,
and works at different time scales, as we demonstrate later in
the paper.

IV. EXPERIMENTAL SETUP

Before describing and analyzing results, we first describe
our experimental setup.

A. Simulated architectures

We use Sniper [5] for conducting the simulation experi-
ments in this paper. Sniper is a parallel, hardware-validated,
x86-64 multi-core simulator capable of running both multi-
program and multi-threaded applications. We configure Sniper
to model heterogeneous multi-core processors with big and
small cores. The big core is a 4-wide out-of-order processor
core; the small core is a 4-wide (stall-on-use) in-order pro-
cessor core. We assume both cores run at a 2.6 GHz clock
frequency. Further, we assume a cache hierarchy with separate
32 KB L1 instruction and data caches, and a 256 KB L2 cache;
we assume the L1 and L2 caches to be private per core. The
L3 last-level cache (LLC) is shared among all cores, for a total
size of 16 MB. We consider the LRU replacement policy in
all of the caches.

As mentioned before, the time slice granularity is set to
be 1 ms, in order to be able to exploit time-varying workload
execution behavior while keeping migration overhead small.
The overhead for migrating a workload from one core to
another has three components. A fixed 1,000 cycle penalty
for storing and restoring the architecture state (at most a few
kilobytes of state). Additionally, we also model the overhead
due to the time it takes to drain a core’s pipeline prior to
migration. Finally, we account for the migration overhead due
to cache effects. The latter is by far the largest and most
important component, being at least two order of magnitude
larger than the first two components combined.



Table I. MULTI-THREADED BENCHMARKS USED IN THIS STUDY.

Suite Benchmark Input
PARSEC blackscholes simmedium

canneal simmedium
swaptions simmedium
streamcluster simmedium
fluidanimate simmedium
dedup simmedium
ferret simmedium

MapReduce histogram 1.5 GB image
word count 100 MB file
linear regression 100 MB file
PCA 1024 x 1024 matrix
K-means 64 clusters, 65536 points

256-dimension vectors
string match 100 MB file

B. Workloads

We consider both multi-program and multi-threaded work-
loads in our experiments. The multi-program workloads are
composed out of SPEC CPU2006 benchmarks; there are 26
benchmarks in total, which along with all of their reference
inputs leads to 55 benchmarks in total. We select representa-
tive simulation points of 750 million instructions each; these
simulation points were selected using PinPoints [25]. When
running multi-program workloads, we stop the simulation as
soon as the first benchmark in the workload mix reaches the
end of its simulation point; this corresponds to hundreds of
time slices. We quantify system throughput using the STP
metric [8] (also called weighted speedup [30]) which quantifies
the aggregate throughput achieved by all cores in the system.
We use Equation 2 when reporting fairness. We consider 500
randomly chosen two-job workload mixes, and 200 randomly
chosen four-job and eight-job mixes.

The multi-threaded benchmarks considered in this paper
are selected from Phoenix [28] and PARSEC [4], see Table I.
The Phoenix benchmarks are MapReduce workloads with
Map, Reduce and Merge phases, using the Metis [22] library
for shared-memory multi-core processors. These workloads are
homogeneous (i.e., all threads run the same code) and barrier-
synchronized between parallel phases. Most of the PARSEC
benchmarks are homogeneous and barrier-synchronized as
well, expect for dedup and ferret which are pipelined
programs. The latter two benchmarks are therefore hetero-
geneous, i.e., different threads execute different codes and
communicate through a producer-consumer relationship. We
use the simmedium inputs for PARSEC. The run-times for
the multi-threaded benchmarks are such that we simulate
several hundreds upto a couple thousands of time slices. We
run the benchmarks to completion and measure total run-times.

V. EVALUATION

We now evaluate fairness-aware scheduling and com-
pare against two alternative scheduling policies, namely
throughput-optimized and pinned scheduling. Throughput-
optimized scheduling is state-of-art dynamic PIE schedul-
ing [33] which uses a simple analytical model to predict on
which core type to map which program or thread in order
to optimize system throughput. PIE dynamically reschedules
threads to exploit time-varying execution behavior. Pinned

scheduling is our baseline, and reflects current practice in
contemporary operating system schedulers, as done in the
Linux 2.6 kernel [14]. Pinned scheduling maps threads to cores
and keeps threads pinned to cores in order to improve data
locality and affinity. When reporting performance numbers for
pinned scheduling, we consider multiple random mappings
of threads to cores and report average performance across
those random mappings. We believe pinned scheduling is
a reasonable baseline to compare against. In case fairness-
aware scheduling were implemented in hardware, pinned
scheduling reflects system software (randomly) mapping and
pinning threads to virtual cores, while hardware scheduling
reschedules threads to physical cores to optimize fairness. In
case fairness-aware scheduling were implemented in software,
pinned scheduling reflects optimizing for data locality.

A. Multi-program workloads

We first evaluate fairness-aware scheduling in the context
of multi-program workloads.

1) Equal-time versus equal-progress: Figure 4 reports
throughput and fairness for both equal-time and equal-progress
fairness-aware scheduling, compared to pinned scheduling and
throughput-optimized scheduling, for a 1B1S heterogeneous
multi-core with one big and one small core. We consider
history-based equal-progress scheduling here, and evaluate
other equal-progress policies later. The workloads on the
horizontal axis are sorted. Pinned scheduling performs the
worst in terms of fairness, with an average fairness of 55%.
Throughput-optimized scheduling improves fairness somewhat
to 72% on average. By dynamically rescheduling threads
among cores, throughput-optimized scheduling not only im-
proves throughput, it also improves fairness; a thread may
get to run on either core type for some fraction of time.
Fairness-aware scheduling achieves the highest fairness (92%
on average), and equal-progress scheduling slightly outper-
forms equal-time scheduling. The highest unfairness observed
across all the 500 job mixes is no higher than 38%, which is
a substantial improvement over both pinned and throughput-
optimized scheduling with unfairness numbers up to 73%.
Fairness-aware scheduling results in a slightly lower sys-
tem throughput compared to throughput-optimized scheduling:
22.0% and 21.9% for equal-progress and equal-time schedul-
ing versus 26.6% for throughput-optimized scheduling. The
reason why equal-progress scheduling outperforms equal-time
scheduling in terms of throughput is that it takes into account
the amount of work done on either core type, and not just time.

2) Scalability: We now evaluate fairness-aware scheduling
as a function of the number of cores and different ratios
of big to small cores. Figure 5 shows average fairness as
well as throughput values for 1B1S, 1B3S, 3B1S, 1B7S and
7B1S systems. The overall conclusion is that fairness-aware
scheduling achieves the highest fairness across the board, with
average fairness values ranging between 79 and 92%, which
is significantly higher compared to pinned and throughput-
optimized scheduling with average fairness values around 50
and 70%, respectively. Equal-progress scheduling achieves
higher fairness compared to equal-time scheduling for the
1B3S and 1B7S systems, but achieves similar average levels of
fairness for the other systems. The reason is that equal-progress
scheduling computes slowdowns based on actual progress —
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Figure 4. Comparing scheduling algorithms relative to pinned scheduling in terms of throughput (left graph) and fairness (right graph) for a 1B1S heterogeneous
multi-core with one big and one small core.
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Figure 5. Fairness-aware scheduling as a function of core count in terms of throughput (left graph) and fairness (right graph).

not time — which is more accurate and turns out to be more
critical when the number of big cores is small compared to the
number of small cores. In other words, as the relative number
of big cores decreases, the big core becomes a bottleneck and
making accurate slowdown predictions becomes more critical
towards optimizing fairness.

Note also that fairness degrades with decreasing relative
fractions of big cores, even under fairness-aware scheduling.
Fairness degrades from 92% for a 1B1S system (1/2 the cores
are big cores), to 79% for a 1B7S system (1/8th the cores
are big cores). This can be understood intuitively because the
big core is increasingly becoming a bottleneck as the relative
number of big cores decreases in the system. In other words,
fairness is easier to be achieved when the number of big versus
small cores is more balanced.

3) Equal-progress scheduling: As mentioned earlier in the
paper, there are a number of ways for estimating the big-
to-small-core scaling ratio in equal-progress scheduling. We
considered the history-based method so far; we now evaluate
the other two, sampling- and model-based, methods. Figure 6
compares these three methods in terms of throughput and
fairness for a 1B7S system. Sampling-based scheduling per-
forms worst (both in terms of fairness and throughput) because
it periodically estimates the big-to-small-core scaling ratio,
after which the scaling ratio is used during the symbiosis
phase. Sampling incurs overhead and is unable to quickly
adapt to time-varying workload behavior. Note sampling-
based scheduling performs even worse compared to equal-
time scheduling. The history-based and model-based methods
perform much better, and both outperform sampling-based
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Figure 6. Evaluating different methods for estimating the big-to-small-core
scaling factor in equal-progress scheduling for a 1B7S system.

scheduling and equal-time scheduling, as they continuously
update the big-to-small-core scaling ratio.

We find history-based scheduling to typically outperform
model-based scheduling, albeit by a small margin. As men-
tioned before, model-based scheduling does not rely on stale
data to compute the big-to-small-core ratio but is limited by
the accuracy of the underlying model; history-based scheduling
on the other hand computes the big-to-small ratio based
on real hardware measurements instead of a model, which
might provide more accurate big-to-small-core scaling ratios in
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Figure 7. Trade-off between fairness and throughput-optimized scheduling
for a 1B1S system.
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Figure 8. System throughput and fairness for equal-time and equal-progress
(history-based) scheduling as a function of time slice granularity.

case the hardware measurements are fairly recent. Moreover,
optimizing for fairness enforces threads to migrate across core
types, which enables the history-based approach to contin-
uously update the big-to-small-core ratio using fairly recent
performance numbers on both the small and big cores.

4) Trading fairness vs. throughput: As mentioned earlier in
the paper, optimizing system performance is often a complex
trade-off in terms of system throughput (i.e., getting as much
jobs done per unit of time) versus user-level experience (i.e.,
all users should be treated in a fair way). The throughput-
optimized and fairness-aware scheduling policies optimize sys-
tem throughput and fairness, respectively, and are completely
oblivious to the other optimization criterion. We now eval-
uate guaranteed-fairness scheduling which optimizes system
throughput unless fairness drops below a given threshold, after
which it defers to fairness-aware scheduling; once fairness
is above the threshold, it optimizes system throughput again.
Figure 7 evaluates guaranteed-fairness scheduling in terms of
system throughput and fairness. This graph illustrates that
turning the threshold ‘knob’ enables trading off fairness for
throughput and vice versa. Setting the threshold to a higher
value leads to high fairness, alike fairness-aware scheduling.
Setting the threshold to a lower value leads to high levels of
system throughput, alike throughput-optimized scheduling.

5) Time slice granularity: So far, we assumed a 1 ms time
slice. Figure 8 evaluates fairness-aware scheduling across dif-
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Figure 9. Comparing scheduling algorithms relative to pinned scheduling for
a 1B3S system running homogeneous multi-threaded applications.

ferent time slices, including 1, 5 and 10 ms, for a 1B3S system.
The motivation for exploring larger time slices is to evaluate
fairness-aware scheduling in system software; smaller time
slices correspond to implementing fairness-aware scheduling
in hardware so that system software is oblivious to hardware
heterogeneity, as previously discussed. We conclude from Fig-
ure 8 that both equal-time and equal-progress scheduling are
(largely) insensitive to time slice granularity, i.e., similarly high
levels of system throughput and fairness are achieved across
different time slices. Fairness only slightly decreases with
increasing time slices, the reason being that fairness converges
slower with larger time slices; given the fixed workload (and
run-time) this leads to slightly lower fairness values.

B. Multi-threaded workloads

We now evaluate fairness-aware scheduling for multi-
threaded applications.

1) Homogeneous workloads: We first consider all the
MapReduce workloads as well as the homogeneous workloads
from the PARSEC benchmark suite. Figure 9 compares the
various scheduling policies for a 1B3S heterogeneous multi-
core system in terms of execution time normalized to pinned
scheduling. The key result from this graph is that fairness-
aware scheduling improves execution time by 14% on average
and up to 25% over pinned scheduling. Interestingly, equal-
time and equal-progress scheduling perform equally well. The
intuitive understanding is that these workloads are homoge-
neous (all threads execute the same code and exhibit the same
execution behavior), and enforcing equal time therefore leads
to enforcing equal progress as well. Fairness-aware scheduling
forces all threads to make equal progress by running on the
big core for an equal share. This eventually leads to all
threads reaching the barriers at roughly the same time. Under
pinned scheduling on the other hand, the one thread that gets
scheduled onto the big core reaches the barrier before the
other threads; because this thread has to wait for the other
threads on the small cores to reach the barrier, scheduling
one of the thread on the big core does not contribute to
overall performance, yielding no benefit from heterogeneity.
By making sure all threads benefit from the big core, fairness-
aware scheduling forces all threads to make equal progress,
thereby reaching the barrier at the same time and improving
overall run-time.
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Figure 10. Fairness-aware scheduling for different heterogenous multi-core
configurations for the homogeneous multi-threaded applications.
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Figure 11. Comparing scheduling algorithms relative to pinned scheduling
for a 1B3S system running heterogeneous multi-threaded applications.

Throughput-optimized scheduling improves performance
for most benchmarks but not all, leading to an average im-
provement of 10% on average. The reason is that throughput-
optimized scheduling improves fairness, as we have seen for
the multi-program workloads, by migrating threads across
core types while optimizing system throughput. However, the
fact that fairness improves is a side-effect from optimizing
for throughput; fairness-aware scheduling which specifically
ensures that threads make equal progress leads to shorter run-
times.

Figure 10 reports average results across different hetero-
geneous multi-core configurations for the homogeneous multi-
threaded workloads. The conclusion is essentially the same
as what we reported earlier for the individual benchmarks.
Fairness-aware scheduling improves performance substantially
over pinned scheduling: we report average performance im-
provements ranging between 7.5% (for 1B7S) and 35% (for
7B1S). Further, equal-time and equal-progress scheduling per-
form equally well (the benefit from equal-progress scheduling
over equal-time scheduling is marginal). Interestingly, perfor-
mance improves with larger fractions of big cores in the system
(compare 3B1S versus 1B3S, and 7B1S versus 1B7S) under
fairness-aware scheduling. (In contrast, performance does not
improve under pinned scheduling because the application
has to wait for the slowest thread running on a small core
anyways.) The reason is that fairness-aware scheduling gets to
distribute and map threads across small and big cores, and
when there are more big cores in the system, the average
performance seen by all threads will be higher with more big
cores in the system, leading to better overall performance.

2) Heterogeneous workloads: Figure 11 reports normalized
execution time for fairness-aware scheduling for the two
heterogeneous PARSEC benchmarks, dedup and ferret.
The key conclusion from this graph is that although equal-
time scheduling improves performance somewhat over pinned
scheduling (8% for dedup and 6% for ferret), equal-
progress scheduling improves performance by as much as
29% for dedup and 36% for ferret. The reason is that
these workloads are heterogeneous, and, as a result, equal
time does not necessarily correspond to equal progress. As
the different threads execute different code and exhibit dif-
ferent execution behavior, they experience different big-to-
small-core performance ratios and hence accounting for the
different ratios is important for achieving fairness. Equal-
progress scheduling does account for the fact that different
threads make different progress and schedules threads such as
to improve fairness, which ultimately leads to better overall
application performance.

VI. RELATED WORK

We now describe related work in scheduling heterogeneous
multi-cores and homogeneous multi-cores with clock hetero-
geneity.

A. Scheduling heterogeneous multi-cores

There exists a fairly large body of prior work on schedul-
ing for single-ISA heterogeneous multi-cores (with different
core types) running multi-program workloads. Sampling-based
scheduling runs each job in the mix on either core type to
gauge the most energy-efficient core type [2], [17], [26]. A
major limitation of sampling-based scheduling is that it scales
poorly with increasing core count: an infrequent core type
(e.g., a big core in a one-big, multiple-small core system)
quickly becomes a bottleneck. Static scheduling [6], [29]
does not suffer from scalability issues, however, it requires
offline program analysis and/or profiling and is unable to
adapt to input-sensitive and time-varying execution behavior.
Memory-dominance scheduling [2], [6], [11], [15], [20], [29]
schedules programs that exhibit frequent memory-related stalls
on the small core and compute-intensive programs on the big
core. Memory-dominance scheduling however, may lead to
suboptimal scheduling when memory intensity alone is not
a good indicator for workload-to-core mapping. Model-based
scheduling [21], [31], [33] uses models to predict performance
on other core types during run-time in order to dynamically
schedule programs on the most performance-efficient core
type, while taking into account both memory and compute
intensity. Van Craeynest et al. [33] proposed the PIE model
for heterogeneous multi-core with big out-of-order and small
in-order cores. The PIE model uses simple analytical models
to predict how core architecture affects exploitable ILP and
MLP and its impact on CPI. Scheduling using the PIE model
assumes hardware support for computing CPI stacks as well
as a few model inputs. The hardware cost is limited to roughly
15 bytes of storage. Again, all of this prior work focused
on optimizing system throughput while running multi-program
workloads, and none looked into optimizing fairness nor multi-
threaded application scheduling.

A handful of papers considered multi-threaded workloads
and how to best schedule these on heterogeneous multi-core



processors. Annavaram et al. [1] mitigate Amdahl’s Law by
accelerating serial portions of a parallel workload. Suleman
et al. [32] migrate threads executing likely to contend critical
sections to a big core. Joao et al. [13] identify and accelerate
most critical bottlenecks due to critical sections, barriers,
pipeline stages. Du Bois et al. [7] propose a new metric to
measure thread criticality based on synchronization behavior,
which they use to accelerate the most critical thread(s). These
prior works are orthogonal to our work. Whereas we focus
on executing parallel code sections as efficiently as possible
on heterogeneous multi-cores, this other prior work focuses on
serial code sections and/or accelerating workload imbalance as
a result of synchronization behavior.

B. Performance-asymmetric homogeneous multi-cores

A number of recent research papers address scheduling
issues for performance-asymmetric homogeneous multi-cores
in which different cores run at different clock frequencies, i.e.,
all cores implement the same microarchitecture but have a
separate clock domain. None of these papers consider core
microarchitecture diversity on the chip. Age-based schedul-
ing [18] predicts the remaining execution time of a thread in
a multi-threaded program and schedules the oldest thread on
the big core. Bhattacharjee and Martonosi [3] predict critical
threads in barrier-synchronized multi-threaded applications on
homogeneous multi-core hardware, and scale down voltage
and frequency of cores running non-critical threads in order
to conserve power and energy. Li et al. [19] schedule multiple
jobs on the high-frequency core and a single job on the low-
frequency cores in order to improve fairness. Rangan et al. [27]
explore throughput-optimizing and fairness-aware scheduling
algorithms for homogeneous multi-cores for which each core
runs at a different clock frequency due to within-die process
variations. The proposed scheduling algorithms do not readily
apply to heterogeneous multi-cores with core microarchitecture
diversity; in addition, they consider multi-program workloads
only. Michaud et al. [23] propose a scheduling algorithm for
temperature-constrained multi-cores in which threads migrate
between hot and cold cores in order to avoid hotspots while
achieving fairness among threads. Fedorova et al. [9] propose
a scheduling approach for multi-cores (with different cores
running at different clock frequencies) that ensures that each
thread’s execution time is balanced across all cores; the key
difference with the equal-time scheduling approach proposed
in this paper is that we balance time across core types (not
cores), and by doing so we avoid unnecessary migrating among
cores of the same type.

VII. CONCLUSION

Current multi-core schedulers in modern operating sys-
tems affinitize or pin threads to cores, which leads to un-
fair performance on heterogeneous multi-cores. For barrier-
synchronized multi-threaded workloads, unfair performance
leads to thread(s) running on a big core to wait at barriers for
the other threads running on the small cores, yielding no per-
formance benefit from heterogeneity. For multi-program work-
loads, unfair performance may compromise quality-of-service
because of large variability in performance across simultane-
ously running programs. Optimizing for system throughput,
as proposed in a significant body of recent work, improves

fairness somewhat by dynamically scheduling threads across
core types during run-time while optimizing for throughput in
response to time-varying workload behavior, yet, fairness is
still poor.

This paper proposed fairness-aware scheduling which op-
timizes for fairness as its primary optimization objective. We
described two techniques for making sure all threads get to run
on either core types for equal shares. Equal-time scheduling
schedules threads such that they all spend equal amounts of
time on either core type. Equal-progress scheduling strives at
getting all threads to make equal progress, and we described
three methods for dynamically estimating a thread’s progress.
We further explored a scheduling mechanism that trades off
fairness for throughput, and described ways for implementing
fairness-aware scheduling at different time scales and both in
software and hardware.

Our experimental results demonstrate the significance
of fairness-aware scheduling for heterogeneous multi-cores.
We report substantial improvements in fairness over pinned
scheduling (current multi-core schedulers) and throughput-
optimized scheduling (current state-of-the-art in heterogeneous
multi-core scheduling for system throughput), achieving aver-
age fairness levels of 86% for a 1B3S system running multi-
program workloads. Fairness-aware scheduling also improves
system throughput by 21.2% over pinned scheduling, while
being within 3.6% compared to throughput-optimized schedul-
ing. For homogeneous multi-threaded workloads, fairness-
aware scheduling improves performance by 14% on average
and up to 25%, and equal-progress and equal-time schedul-
ing perform equally well. For heterogeneous multi-threaded
workloads, equal-progress scheduling significantly outper-
forms equal-time scheduling, leading to an overall performance
improvement of 32% on average over pinned scheduling.
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