
Prediction Model for Evaluation of Reconfigurable
Interconnects in Distributed Shared-Memory Systems

W. Heirman
Ghent University, ELIS

Sint-Pietersnieuwstraat 41
9000 Ghent, Belgium

wheirman@elis.ugent.be

J. Dambre
Ghent University, ELIS

Sint-Pietersnieuwstraat 41
9000 Ghent, Belgium

jdambre@elis.ugent.be

D. Stroobandt
Ghent University, ELIS

Sint-Pietersnieuwstraat 41
9000 Ghent, Belgium

dstr@elis.ugent.be

C. Debaes
Free University of Brussels

Pleinlaan 2
1050 Brussels, Belgium

christof.debaes@vub.ac.be

H. Thienpont
Free University of Brussels

Pleinlaan 2
1050 Brussels, Belgium

hthienpo@vub.ac.be

J. Van Campenhout
Ghent University, ELIS

Sint-Pietersnieuwstraat 41
9000 Ghent, Belgium

jvc@elis.ugent.be

ABSTRACT
Reconfigurable interconnection networks for distributed sha-
red memory machines exploit properties of the workload
dynamics that are not easily captured by statistical traf-
fic models. Therefore, when designing such a network, one
should make trade-offs based on full-system simulation for
all viable workloads. It is however very time-consuming to
do such simulations. In this paper, we present a technique
that can predict the performance of a machine for different
network parameters, based on the results of only one full
simulation run. We also define confidence intervals for our
prediction, and analyze the impact of several assumptions
that were made.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures—
Distributed architectures

General Terms
performance, design

Keywords
Prediction model, interconnection network, reconfiguration,
distributed shared-memory

1. INTRODUCTION
The electrical interconnection networks connecting the dif-

ferent processors and memory modules in a modern large-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SLIP’05,April 2–3, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-033-7/05/0004 ...$5.00.

scale multiprocessor machine, are running into several phys-
ical limitations [9]. In shared-memory machines, where the
network is part of the memory hierarchy [7], the ability
to overlap memory access times with useful computation is
severely limited by inter-instruction dependencies. Hence, a
network with high latencies causes a significant performance
bottleneck.

It has been shown that optical interconnection technolo-
gies can alleviate this bottleneck [4]. Mostly unhindered by
crosstalk, attenuation and capacitive effects, these technolo-
gies will soon provide a cheaper, faster and smaller alterna-
tive to electrical interconnections, on distances from a few
centimeters upward. Massively parallel inter-chip optical
interconnects [1, 3] are already making the transition from
lab-settings to commercial products.

Optical signals may provide another advantage: the opti-
cal pathway can be influenced by components like steerable
mirrors, liquid crystals or diffractive elements. In combi-
nation with tunable lasers or photodetectors these compo-
nents will enable a runtime reconfigurable interconnection
network [6, 2] that supports a much higher bandwidth than
that allowed by electrical reconfiguration technology. From
a viewpoint higher in the system hierarchy, this would al-
low us to redistribute bandwidth or alter the network topol-
ogy such that node-pairs with high communication between
them have a high-bandwidth, low-latency connection.

However, the switching time for some of these compo-
nents is such that reconfiguration will necessarily have to
take place on a time scale that is significantly above that of
individual memory accesses. The efficiency with which such
networks can be deployed strongly depends on the temporal
behavior of the interprocess data transfer patterns. We have
already characterized the locality in both time and space of
the traffic flowing over the network [5], using large-scale sim-
ulation of the execution of real benchmark programs with
a simulation platform based on the Simics multiprocessor
simulator [8]. We have found that long periods of intense
communication occur between some node pairs suggesting
that slowly reconfiguring networks can result in a significant
application speedup.

Mem Cache

CPU

NI

Network

Mem Cache

CPU

NI

Mem Cache

CPU

NI

Figure 1: Memory hierarchy of a distributed shared-
memory multiprocessor. Memory operations that
miss in the cache and that are not stored in local
memory are handled by the network interfaces (NI)
and generate network traffic, potentially invalidat-
ing cache-lines in other nodes.

Next we would like to measure the application speedup
for a variety of network parameters, of which the recon-
figuration interval will be the most important one. Doing
one full simulation, however, can take several hours, so it is
not feasible to do this for every combination of parameters
and every single benchmark application. Circumventing full
simulation by using a different approach, like statistically
generating network traffic, is not reliable in this case since
no statistical models exist that accurately capture the spe-
cific behaviour of network traffic that is exploited by our
type of reconfigurable network. Therefore, we have devel-
oped a method that can predict application speedup for a
range of reconfigurable networks, based on a network traffic
trace from just one simulation.

This paper reports on our prediction methodology and
analyzes the results. Section 2 describes in more detail the
architecture of both the shared-memory machine and the re-
configurable network that were used in this study. In section
3, the methodology that was followed to obtain the commu-
nication patterns is described. The prediction method is
presented in section 4. Section 5 gives the prediction results
and compares them with the actual speedup. In section 6,
some future work is discussed, the conclusions are summa-
rized in section 7.

2. SYSTEM ARCHITECTURE

2.1 Multiprocessor architecture
Multiprocessor machines come in two basic flavors: those

that have a tight coupling between the different processors
and those with a more loose coupling. Both types can con-
ceptually be described as consisting of a number of nodes,
each containing a processor, some memory and a network
interface, and a network connecting the different nodes to
each other. In the extreme end of the loosely coupled fam-
ily we find examples such as the Beowulf cluster [12], in
which the network consists of a commodity technology such
as Ethernet. This simplistic interconnection network re-
sults in relatively low throughput (1 Gbps per processor)
and high latency (up to several ms, mostly due to protocol
overhead). These machines are necessarily programmed us-
ing the message passing paradigm, and place a high burden
on the programmer to efficiently schedule computation and
communication.

Tightly coupled machines usually have proprietary inter-
connection technologies, resulting in much higher through-
put (tens of Gbps per processor) and very low latency (down
to a few hundred nanoseconds). This makes them suitable
for solving problems that can only be parallelized into tightly
coupled subproblems (i.e., that communicate often). It also
allows them to implement a hardware-based shared-memory
model, in which communication is initiated when a proces-
sor tries to access a word in memory that is not on the
local node, without programmer’s intervention. This makes
shared-memory based machines relatively easy to program.
Since the network is now part of the memory hierarchy, it
also makes them vulnerable to increased network latencies.

Modern examples of this class of machines range from
small, 2- or 4-way SMP server machines, over mainframes
with tens of processors (Sun Fire, IBM iSeries), up to su-
percomputers with hundreds of processors (SGI Altix, Cray
X1). The larger types of these machines are already in-
terconnect limited, and since the capabilities of electrical
networks are evolving much slower than processor frequen-
cies, they make very likely candidates for the application of
reconfigurable optical interconnection networks.

For this study we consider a directory based coherence
protocol, which was pioneered in the Stanford DASH mul-
tiprocessor ([7], see figure 1). Every processor can address
all memory in the system. Accesses to words that are allo-
cated on the same node as the processor go directly to local
memory, accesses to other words are intercepted by the net-
work interface which will generate the necessary network
packets requesting the corresponding word from its home
node. Since processors are allowed to keep a copy of remote
words in their own caches, a cache coherence protocol has
to be implemented. The network interfaces keep a directory
of which processor has which word in its cache, and make
sure that, before a processor is allowed to write to a word,
all copies of the same word in the caches of other proces-
sors are invalidated. Network traffic thus consist of both
coherence-related traffic (control packets such as invalidate
requests) and data traffic (words that were not in a cache
due to cold, conflict, capacity or coherence misses).

2.2 A simple reconfigurable network
architecture

Previous studies concerning reconfigurable networks have
mainly dealt with fixed topologies (usually a mesh or a hy-
percube) that allowed swapping of node pairs, incrementally
evolving the network to a state in which processors that of-
ten communicate are in neighboring positions [10, 11]. How-
ever, algorithms to determine the placement of processors
turned out to converge slowly or not at all when the char-
acteristics of the network traffic change rapidly.

Therefore, we assume a different and more modest net-
work architecture in this study. We start from a base net-
work with fixed topology. In addition, we provide a second
network that can realize a limited number of connections
between arbitrary node pairs – these will be referred to as
extra links. A schematic overview is given in figure 2. To
simplify routing the extra links are used exclusively by the
two linked nodes, multihop transfers use only the base net-
work.

In reality, some limitations will of course apply. Since the
number of neighbors for each node is limited (due to maxi-
mum optical pin-counts per chip, or the rising complexity of

Base network (fixed)
Extra links (reconfigurable)

Figure 2: Reconfigurable network topology. The
network consists of a base network, augmented with
a limited number of direct, reconfigurable links.

a router with a large number of in- and outputs) only a few
extra links can at the same time connect to one node, and
probably not every arbitrary node pair can be connected
using only one link. However, for the current study we do
not yet take these limitations into account.

An advantage of this setup, compared to other topolo-
gies that allow for more general reconfiguration, is that the
base network is always available, which is most important
during periods where the extra network is undergoing re-
configuration and may not be usable (figure 3). Routing
and reconfiguration decisions are also simplified because it
is not possible to completely disconnect a node from the oth-
ers – the connection through the base network will always
be available.

To make optimal use of the extra connections, they should
speed up memory accesses that are in the critical path of the
application. Since it is very hard, if not impossible, to de-
termine which accesses are in the critical path of any given
application, we place the extra links between the node pairs
where communication is the most intense (measured in bytes
transferred per fixed-length interval). This way, congestion
– and the resulting latency – can be avoided, and a large
fraction of the traffic, hopefully including most of the criti-
cal accesses, can be given a single-hop pathway, minimizing
routing and arbitration delays and resulting in the lowest
possible latency. The remaining traffic will use the base net-
work, possibly being routed over several intermediate nodes,
and hence will experience a higher latency.

Since the network traffic changes over time, the node pairs
with the most intense communication will change and thus
we will need to revise the position of the extra links over
time. To this end we would need to know what traffic pat-
terns will be present in the future. This can for instance be
done by predicting future patterns based on network traf-
fic from the past, or by annotating the program – based on
the result of static analysis of the sharing patterns in the
source code, or from measurements of a previous execution
of the same program (profiling). For the current discussion
however, we assume the presense of a central entity that can

time
network

observer

measurement

reconfiguration

topology decision

extra links live

Figure 3: The observer measures network traffic,
and at certain intervals makes a decision where to
place the extra links. Reconfiguration will then take
place, during which time the extra links are unus-
able.

0%

20%

40%

60%

80%

100%

 0.1 1 10 100

T
ra

ffi
c

fr
ac

tio
n

Minimum burst length (ms)

Figure 4: Traffic size fractions per minimum burst
length.

make a perfect prediction of the most important node pairs
for the next interval.

Because reconfiguration is not immediate (depending on
the technology, reconfiguration can take from 100 µs up to
several ms), the interval between decision times will be one
of the most important parameters. This interval should be
long enough to amortize on the cost of reconfiguration, dur-
ing which the extra links are unusable, but it must be suffi-
ciently short to keep pace with the changing demands made
by the application. In [5], we have shown that a significant
fraction of the network traffic is part of long bursts of com-
munication (see figure 4 – taken from [5]). This behaviour
can be exploited by our type of network. In this paper,
we improve the method used to predict application speedup
presented in [5] and validate our predictions against actual
simulations.

3. METHODOLOGY
We have based our simulation platform on the commer-

cially available Simics simulator [8]. It was configured to
simulate a multiprocessor machine based on the Sun Fire
6800 Server, with 16 UltraSPARC III processors at 1 GHz
running the Solaris 9 operating system. Stall times for
caches and main memory are set to realistic values (2 cy-
cles access time for L1 caches, 19 cycles for L2 and 100 cy-
cles for SDRAM). The interconnection network is a custom
extension to Simics, and models a 4x4 torus network with

contention and cut-through routing. For the simulations
validating our predictions, a number of extra point-to-point
links can be added and removed to/from the torus topol-
ogy at any point in the simulation. The network links in
the base network are 16 bits wide and are clocked at 100
MHz. In the reported experiments, the characteristics of an
extra (optical) link were assumed to be equal to those of
the base network, yielding an average packet latency that is
the same for the extra link as for a single base network link.
However, our simulation and prediction methodology allow
for any other latency ratio. Both coherence traffic (resulting
from the directory based MSI-protocol) and data (the actual
cache lines) are sent over the network, and result in memory
access times representable for a Sun Fire server (a few hun-
dred nanoseconds on average for accesses that require use of
the network). Source, destination and size of each network
packet are saved to a log file for later analysis.

Since the simulated caches are not infinitely large, the net-
work traffic will be the result of both coherence misses and
cold/capacity/conflict misses. This way, the network traffic
is not underestimated as is done in other studies that do
not include references to private data in the simulation. To
make sure that private data transfer does not become exces-
sive, a first-touch memory allocation was used that places
data pages of 8 KiB on the node of the processor that first
references them.

The SPLASH-2 benchmark suite [13] was chosen as the
workload. It consists of a number of scientific and technical
applications and is a good representation of the real-world
workload of large shared-memory machines. Because the de-
fault benchmark sizes are too big to simulate their execution
in a reasonable time, smaller problem sizes were used. Since
this influences the working set, and thus the cache hit rate,
the level 2 cache was resized from an actual 8 MiB to 512
KiB, resulting in a realistic 80% hit rate.

The simulation slowdown (simulated time versus simula-
tion time) was a factor of 50,000 resulting in execution times
of several hours per benchmark on a Pentium 4 running at
2.6 GHz with 2 GiB RAM.

4. PREDICTING APPLICATION SPEEDUP

4.1 Overview
In section 2.2 it was assumed that the network can make

n connections between arbitrary node pairs, and that we
would choose those node pairs that communicate most in-
tensely. Since the switching time is finite, the extra links will
stay in place for some larger period of time, called the recon-
figuration interval ∆t. After every interval of ∆t seconds,
we predict the communication pattern that will be present
in the next interval, and place the n extra links between
the node pairs that are predicted to have the most intense
communication. We now derive a prediction of application
speedup that can be parameterized for n and ∆t, which are
the most important parameters for our reconfigurable net-
work.

The speedup prediction is derived using the following steps:

• A single full simulation is done of the benchmark, using
a non-reconfigurable network, yielding a list of memory
accesses and a list of network packets.

• Using the list of network packets, the top n node pairs
are found for each interval of ∆t seconds.

• The memory accesses that would benefit from the ex-
tra links are identified.

• The latency of each memory access is reviewed, for
accesses related to the top n this latency is divided by
a certain factor.

• Using the latency distribution over the different pro-
cessors, an average speedup and a best and worst case
are derived.

In the rest of this section, each of the above stages is
explained in more detail.

4.2 Full simulation
We start by doing one full-system simulation (per bench-

mark), as described in section 3. Only the base network is
active, so this simulation also serves as the baseline against
which we calculate the speedup to determine the efficiency
of a reconfigurable network. Our simulator creates a list
of memory references that cannot be satisfied by the local
node, and a second list of all packets that were sent through
the network. Each memory reference is annotated with the
time the request started, the requesting node, the home node
and the measured access latency. For network packets, we
store the sending time, the source node and the destination
node.

4.3 Determining the top n node pairs
The packet trace is divided into intervals of ∆t seconds.

For each interval, sums are made of the number of bytes
that were exchanged between each of the p(p − 1)/2 node
pairs (with p the number of processors or nodes). The extra
links are bidirectional, so traffic in both directions must be
added together1. The n node pairs that exchanged the most
traffic are stored, and will be further referred to as the top n
node pairs for this interval. With a perfect traffic predictor,
these would be the node pairs between which an extra link
is to be made.

When doing the simulation to validate our speedup pre-
dictions, in which the extra links are added to the network,
it is not possible to have a perfect traffic predictor since this
requires non-causal behaviour. Therefore our simulator uses
a predictor that uses the top n links from the previous inter-
val of ∆t seconds. For slowly varying traffic this should give
good results, for benchmarks that have highly fluctuating
traffic patterns the simulation will of course yield a speedup
that is less than that obtained with a better or even perfect
traffic predictor.

Instead of blindly using the n links with the most traffic,
some optimisations could be made. It is for instance pos-
sible that one node is generating heavy traffic to a number
of other nodes, this one node will therefore be the endpoint
of several extra links. Since the node degree is physically
limited (e.g., due to the available off-chip bandwidth or a
limitation on the number of wavelengths), this is not a re-
alistic situation. Also it is possible that a node pair in the

1An optical interconnection (light source → waveguide →
detector) is unidirectional, so a link consists of two such as-
semblies. In theory it is therefore not necessary for the extra
links to be bidirectional. However, since the implementation
of a shared-memory model uses a request-response protocol
it is not considered very useful to speed up the request but
not the response or vice versa.

top n is already directly connected by a link from the base
network. In this case the distance between the node pair
is already minimal and placing an extra link between them
will not improve latency, unless adding this link can signifi-
cantly decrease congestion. Finally, in our simulation, extra
links are only used for traffic that has the same endpoints
as the link, not for traffic that might use the extra link as
only a part of its path.

Solving these limitations would require topology-generating
and routing protocols that are significantly more complex
than those in the current case, and may not be compat-
ible with the high-speed low-latency environment inside a
shared-memory machine. Therefore we have decided to forego
on these issues for now, and delay their study for future
work.

4.4 Correlating memory accesses
The metric that makes network performance visible to the

processors, is the memory access latency. It is also the met-
ric that would most easily allow us to say something about
application speedup. Therefore we now correlate the mem-
ory access latency to the top n node pairs. Every memory
access that requires network traffic is initiated by the pro-
cessor on one node and serviced by the directory on another
node, the home node of the memory word. We now con-
nect this memory access to the node pair made up by these
two nodes. If this node pair is in the top n for the interval
in which the memory access is made, the access is consid-
ered to be in the top n. Memory access latencies (a few
µs) are significantly shorter than the considered reconfigu-
ration intervals (100 µs and upwards), so there should be no
problems of accesses spanning several intervals.

There are memory accesses that require intervention by a
third node, in particular if the memory access is a write and
some third node needs to invalidate or write back the word.
However, these transactions involving 3 or more nodes are
not very common (in our simulations, their fraction in total
memory access latency was always less than 10%). Besides,
about half the time of these accesses is still spent in com-
municating between the two primary nodes, so we pretend
these transactions only use the primary nodes.

4.5 Calculating new latencies
Traffic that can use an extra link will reach its destination

in only one hop, compared to potentially several hops for
traffic using the base network. For the 4x4 torus network
used in our simulation, the average distance is 2.13 network
hops. For traffic between a top n node pair a direct link is
used, the extra link, so the number of hops here is always
1. This traffic will therefore, on average, traverse a factor
of 2.13 less nodes than traffic using the base network. We
now assume that memory accesses between top n nodes will
have a latency that is reduced by the same factor2.

For each memory access we know the source and desti-
nation node, and the distance between them. Therefore,
we could customize the speedup for each separate access in-
stead of using the average value. However, the placement
of subprocesses and data on the nodes may change between
different simulation runs, and thus also between the origi-
nal, base network only simulation and an execution with the

2This assumes the base network links and the extra links
have the same properties. If this is not the case, the 2.13
ratio can be adjusted accordingly.

reconfigurable network. Therefore, we have decided to use
the average latency reduction for all accesses.

The reduction in congestion when using more links, and
the fact that wormhole routing is used, both make that la-
tency does not always scale linearly with the number of hops
a packet should traverse. Modeling congestion is however
not trivially done in the current setting, and has not been
attempted for this study.

To summarize: in our original simulation all traffic uses
the base network, so the relation between memory access
latency in the original simulation with a non-reconfigurable
network, and a simulation using a reconfigurable network
is the following: memory access latencies in the top n are
divided by 2.13, the others are not affected. This relation-
ship remains the same for different values of n and ∆t, but
different sets of memory accesses will benefit from the extra
links.

4.6 Estimating application speedup
Total execution time consists of processor computation

time (including cached and local memory accesses) and re-
mote memory accesses or communication time. The for-
mer is in principle not affected by the network architecture,
whereas a fraction of the latter (those memory accesses for
which this processor and their home node form a pair that
is in the top n) can be sped up.

We could consider the minimal reduction in execution
time across all processors, assuming that the others will
have to wait for the slowest one. It is, however, also possible
that the processor with the smallest speedup was actually
waiting some part of the time for other processors, so the
global speedup will be closer to the best speedup across all
processors. The identification of the critical processor, de-
termining the actual speedup, is very difficult and highly
depending on the specific algorithm and implementation of
each benchmark. Therefore, we propose to use the aver-
age speedup across all processors as our prediction of total
speedup, and use the best and worst speedups to denote a
confidence interval.

Note that in-order processors are simulated, whereas a
modern out-of-order processor can overlap some of the mem-
ory access latency with usefull computations. However, there
is usually a significant dependency between instructions,
which makes that even a very agressive out-of-order proces-
sor can only execute a few dozen instructions (correspond-
ing to an equal number of nanoseconds) before blocking on
the memory access (which takes something in the order of
1 µs). Therefore out-of-order execution should not influence
the results too much.

5. RESULTS AND DISCUSSION

5.1 Results
The predictions and confidence intervals for a number of

benchmarks are shown in figure 5. For each benchmark pro-
gram, the predicted speedup is shown as the first bar. Best
and worst estimates are also shown as error bars. The second
bar is the result of an actual simulation with the reconfig-
urable network in place. All simulations were done using a
reconfiguration interval of 1 ms and 16 extra links.

We see that for some benchmarks, our prediction can give
a good idea of the attainable speedup. For other bench-
marks the average prediction is not good, but the actual

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

ba
rn

es

ch
ole

sk
y fft

fm
m lu

oc
ea

n.
co

nt

oc
ea

n.
nc

on
t

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

vo
lre

nd

wat
er

.n
sq

wat
er

.sp

A
p

p
lic

at
io

n
 s

p
ee

d
u

p

Predicted speedup

Measured speedup

Figure 5: Predicted speedup (with average, upper
and lower estimates) and measured speedup for se-
lected benchmark applications.

speedup is inside our confidence interval. For three bench-
marks (barnes, radiosity and raytrace), the actual speedup
is outside the confidence interval. In the following section,
we validate our assumptions and try to explain the cause of
these errors.

5.2 Validation of assumptions

5.2.1 The traffic predictor
Our speedup predictions were made for a reconfigurable

network that could make a perfect prediction of the n most
communicating pairs for the next interval. In our simulation
however, we had to use a less omniscient traffic predictor,
one that uses the top n node pairs from the previous interval
as its prediction.

To test the effect of this limited traffic predictor, we have
adapted the speedup prediction detailed in section 4 to take
the actual traffic predictor into account. This can be done
by modifying the third step, in which memory accesses are
selected that will benefit from the extra links: we select the
accesses that are made between a node pair that is in the
previous top n, rather than the current top n. The rest
of the steps are not modified. The predicted speedups are
shown in figure 6, and are very similar (within 5%) to the
estimated speedups using a perfect traffic predictor. This
proves that our limited traffic predictor does a good job and
confirms that network load varies rather slowly over time.

5.2.2 Access latency reduction
A second assumption we can evaluate is whether the av-

erage link distance is indeed 2.13. It is conceivable that
the operating system, or the algorithm used in the bench-
mark, distribute data such that most data is found on a
node closeby. However, this is not the case: we found the
average distance spanned by the extra links to be 2.1± 0.1
for al benchmarks. Network traffic using one of the extra
links will indeed traverse, on average, 2.13 less hops.

The relationship between reducing the number of hops
and the reduction in memory access latency is however not

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

ba
rn

es

ch
ole

sk
y fft

fm
m lu

oc
ea

n.
co

nt

oc
ea

n.
nc

on
t

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

vo
lre

nd

wat
er

.n
sq

wat
er

.sp

A
p

p
lic

at
io

n
 s

p
ee

d
u

p

Predicted speedup

Measured speedup

Figure 6: Predicted and measured speedup, here
the predictions take the actual traffic predictor into
account.

very clear at this point. Congestion seems to play an impor-
tant role, especially since the reduction in congestion (mea-
sured as the time a packet spends waiting in a buffer, as
opposed to actually moving through the network) is signifi-
cant (from 50% of total traffic latency in the initial simula-
tion to 15% when extra links are added, averaged across all
benchmarks). Further analysis of the impact of congestion
is therefore necessary, including its distribution across the
network and its influence on memory accesses that are or
are not on the critical path of the application.

5.2.3 Application variability
Finally, the control path taken by an application can change

when the relative timing of the processors is influenced.
Some algorithms distribute tasks between processors by us-
ing a global task queue. If one processor is delayed because
of a memory reference that takes longer to execute, subse-
quent tasks will likely be assigned to different processors.
For some scientific benchmarks, the convergence of compu-
tations depends on the order in which tasks are executed.
Since changing the relative network latencies can affect this
order, it may well affect the rate of convergence of the bench-
mark, resulting in either a larger or a smaller number of
iterations.

To determine whether this effect might be the cause of
the largest prediction errors, we have analyzed the bench-
mark’s computation times (the time not spent waiting for
memory accesses). The horizontal axis in figure 7 shows the
(relative) difference in computation time between the simu-
lation run without extra links (only the base network) and
the simulation with extra links. The vertical axis shows the
prediction error (measured runtime versus predicted aver-
age processor runtime). We clearly see that there is a large
correlation, meaning that most of the misprediction is due
to the application following a different control path before
and after adding the extra links to the network.

For applications that exhibit such behaviour, it is not pos-
sible to accurately estimate application speedup in this way.
Several simulations would need to be done to determine the

-40%

-30%

-20%

-10%

10%

20%

30%

40%

-30% -20% -10% 10% 20%

Computation time variability

P
re

d
ic

ti
o

n
 e

rr
o

r
LU

barnes

raytrace

radiosity

Figure 7: Correlation between speedup prediction
error and variability in computation time.

0%

10%

20%

30%

40%

50%

60%

70%

ba
rn

es

ch
ole

sk
y fft

fm
m lu

oc
ea

n.
co

nt

oc
ea

n.
nc

on
t

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

vo
lre

nd

wat
er

.n
sq

wat
er

.sp

L
at

en
cy

 r
ed

u
ct

io
n

Predicted

Measured

Figure 8: Reduction in average remote memory ac-
cess latency, predicted and measured values (aver-
age reduction: 40.3%, average predicted reduction:
32.4%).

variability, and an average speedup can be computed with
a certain confidence interval. Alternatively, one could only
predict the average memory access latency, without trans-
lating this to application speedup. This can be done with
our technique, and is much less influenced by application
variability. Whereas execution speedup remains the most
important metric, the reduction in access latency can cer-
tainly be used as a performance metric for comparing dif-
ferent network parameters.

Figure 8 shows the average reduction in remote mem-
ory access latency, both predicted and measured. Averaged
across all benchmarks, the average latency is reduced from
1215 ns to 821 ns (predicted) or 725 ns (actual). The sys-
tematic underprediction is mainly due to the fact that our
prediction does not take the reduction of congestion into
account.

0%

10%

20%

30%

40%

50%

60%

70%

100 us 1 ms 10 ms
Reconfiguration interval

S
p

ee
d

u
p

n = 4 n = 8 n = 12 n = 16

Figure 9: Predicted and measured speedup for the
FFT benchmark. Results are shown for reconfigu-
ration intervals (∆t) of 100 µs, 1 ms and 10 ms, and
4, 8, 12 and 16 extra links (n).

6. FUTURE WORK
Several assumptions were made in the prediction model,

they have been stated throughout section 4. Some of them
are fairly trivial, others need more work to either validate or
invalidate them. We will also attempt to include congestion
effects in our prediction model.

As discussed in section 4.3, there are a number of short-
comings to the approach of using the top n node pairs with-
out further discrimination. A few improvements were pro-
posed, such as limiting the degree of each node and consid-
ering the gain of a path using the extra link compared to
the path over the base network. Both of these relate to the
underlying architecture of the reconfigurable network, and
require extensions to our simulator as well as our predictor.

Finaly, we will validate our prediction model for a wider
range of n and ∆t and other parameters, and use it to ex-
plore the design space for reconfigurable interconnect net-
works. Some preliminary measurements for the FFT bench-
mark are given in figure 9, showing that our prediction
model can give good results over the considered range of
parameters.

7. CONCLUSIONS
In this paper, we have addressed the problem of evalu-

ating and designing a partially reconfigurable interconnect
network for shared-memory multiprocessors. We have pro-
posed a technique for predicting the average network latency
and total runtime for variable network parameters (number
of extra links n, reconfiguration time ∆t, link latency, . . .)
based on a single simulation run per benchmark and per
base network configuration. We have also defined confi-
dence intervals for our prediction and found that, for most
benchmarks, predicted runtime speedups fall within those
intervals. We have analyzed the impact of several assump-
tions made in our model, and found the benchmark control
flow itself to be responsible for the largest errors. Most of
the remaining errors (an almost systematic overestimation
of memory access latency) are probably due to congestion
reduction, which is not yet incorporated in our model. Fu-

ture work will be aimed at improving the link allocation
method and adapting our prediction model accordingly. We
will also attempt to include congestion effects in our predic-
tion model.

8. ACKNOWLEDGMENTS
This paper presents research results of the PHOTON Inter-

university Attraction Poles Program (IAP-Phase V), initi-
ated by the Belgian State, Prime Minister’s Service, Science
Policy Office. C. Debaes is indebted to the FWO for his
post-doctoral fellowship.

9. REFERENCES
[1] M. Brunfaut et al. Demonstrating optoelectronic

interconnect in a FPGA based prototype system using
flip chip mounted 2D arrays of optical components
and 2D POF-ribbon arrays as optical pathways. In
Proceedings of SPIE, volume 4455, pages 160–171,
Bellingham, July 2001.

[2] K. Bui Viet, L. Desmet, J. Dambre, K. Beyls,
J. Van Campenhout, and H. Thienpont.
Reconfigurable optical interconnects for parallel
computer systems: design space issues. In VCSELs
and Optical Interconnects, volume 4942, pages
236–246, Brugge, October 2002. SPIE.

[3] L. Chao. Optical technologies and applications. Intel
Technology Journal, 8(2), May 2004.

[4] J. Collet, D. Litaize, J. V. Campenhout,
M. Desmulliez, C. Jesshope, H. Thienpont,
J. Goodman, and A. Louri. Architectural approach to
the role of optics in monoprocessor and multiprocessor
machines. Applied Optics, 39:671–682, 2000.

[5] W. Heirman, J. Dambre, J. Van Campenhout,
C. Debaes, and H. Thienpont. Traffic temporal
analysis for reconfigurable interconnects in
shared-memory systems. In Reconfigurable
Architectures Workshop, April 2005.

[6] C. Katsinis. Performance analysis of the simultaneous
optical multi-processor exchange bus. Parallel
Computing, 27(8):1079–1115, 2001.

[7] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D.
Weber, A. Gupta, J. L. Hennessy, M. Horowitz, and
M. S. Lam. The Stanford DASH multiprocessor. IEEE
Computer, 25(3):63–79, March 1992.

[8] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. IEEE Computer, 35(2):50–58,
February 2002.

[9] D. A. B. Miller and H. M. Ozaktas. Limit to the
bit-rate capacity of electrical interconnects from the
aspect ratio of the system architecture. Journal of
Parallel and Distributed Computing, 41(1):42–52,
1997.

[10] T. M. Pinkston and J. W. Goodman. Design of an
optical reconfigurable shared-bus-hypercube
interconnect. Applied Optics, 33(8):1434–1443, 1994.

[11] J. L. Sánchez, J. Duato, and J. M. Garćıa. Using
channel pipelining in reconfigurable interconnection
networks. In 6th Euromicro Workshop on Parallel and
Distributed Processing, January 1998.

[12] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband,
U. A. Ranawake, and C. V. Packer. Beowulf : A
parallel workstation for scientic computation. In
Proceedings of the International Conference on
Parallel Processing, Boca Raton, USA, pages 11–14.
CRC Press, August 1995.

[13] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings of
the 22th International Symposium on Computer
Architecture, pages 24–36, Santa Margherita Ligure,
Italy, 1995.

