
Herconfigureerbare optische interconnectienetwerken
voor multiprocessorarchitecturen met gedeeld geheugen

Reconfigurable Optical Interconnection Networks
for Shared-Memory Multiprocessor Architectures

Wim Heirman

Promotoren: prof. dr. ir. J. Van Campenhout, prof. dr. ir. D. Stroobandt
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2007 - 2008

ISBN 978-90-8578-215-5
NUR 959, 986
Wettelijk depot: D/2008/10.500/34

The larger the island of knowledge,
the longer the shoreline of mystery.
— Mary B. Yates

Acknowledgements

Quite a number of people have contributed in one way or another to the
creation of this dissertation. I wish to thank them warmly for their support
or participation. Specific thanks go out to:

• My promotors prof. Jan Van Campenhout en prof. Dirk Stroobandt,
for giving me the opportunity to spend five wonderful years of my
life working in a dynamic and challenging field, here in Ghent and at
the various conferences I could attend; and for the valuable input both
on this dissertation and on various matters in the years before, at all
levels of abstraction ranging from the smallest of language issues to
our place in the universe.

• My supervisor dr. Joni Dambre, for the many hours of discussion, the
hundreds of pages of corrected manuscripts, and for guiding me in the
best possible way: leaving me free to find my own way, but always
asking that most important question: Why?

• The other members of the examination commission of this dissertation:
prof. Daniël De Zutter, prof. Ian O’Connor, prof. Dries Van Thourhout
and dr. Christof Debaes; and the many anonymous reviewers of my
papers, both those accepted and rejected, who have provided a most
valuable asset: the outsider’s view.

• Jeroen Beeckman, Alan Benner, Mark Horowitz, David Patterson who
helped me out with some of the figures and references in this work.

• The people from Virtutech, who created the simulation tool Simics
without which this research would not have been possible, and every-
one on their users forum for helping me get started.

ii Acknowledgements

• Everyone involved in the IAP-V and -VI networks and the doc-
toral schools: frequent contact with research groups doing the actual
physics, and designing optical components and optical interconnection
links, proved very valuable to provide me with background informa-
tion and kept me in touch with the developments on those fronts. Since
my primary training was in computer architecture, their importance
can hardly be overstated.

• The people from the Vrije Universiteit Brussel, department TONA-
TW, especially prof. Hugo Thienpont, dr. Christof Debaes, dr. Lieven
Desmet and ir. Iñigo Artundo, who as members of the IAP network
contributed to the above, and who are involved in the design and
building of the SOB system implementation, in a work of simulations
my (at times only) link to the “real” world.

• Iñigo “Goto” Artundo again, with whom I collaborated most closely
during the last five years. Without his frequent input and reflections on
our common research I would probably have given up a long time ago.
Our joint publications are numerous, our conference trips legendary. . .

• dr. Bui Viet Khoi of the Hanoi University of Technology, Vietnam,
for the invitation to an unforgettable stay in his magnificent country,
among other things.

• My colleagues from the PARIS research group, both present and past,
for the much appreciated scientific input and the pleasant work envi-
ronment. I cannot mention all of them here, but to omit David, Fre-
derik, Hendrik, Jeroen, Juan, Lieven, Michiel, Michiel, Michiel, Peter,
Phillipe, Tom, Sean or Wim would be a disgrace!

• Jorge Cham, Randall Munroe and Scott Adams for the necessary mo-
ments of procrastination.

• Catherine, Ben, Peter, Wouter and all my other friends of MaSAC, for
sticking with me even when my simulations did not.

• My parents, my brother and family, for their support throughout the
years, giving me the opportunity to become who I am today.

• And, of course, my dearest Ine, for so many things. . .

Examination commission

prof. dr. ir. Daniël De Zutter
Chairman
Dean, Faculty of Engineering

dr. ir. Joni Dambre
Secretary
ELIS Department, Faculty of Engineering

dr. ir. Christof Debaes
TONA Department, Faculty of Applied Sciences
Vrije Universiteit Brussel

prof. dr. ir. Ian O’Connor
Lyon Institute of Nanotechnology
Ecole Centrale de Lyon, Ecully, France

prof. dr. ir. Dries Van Thourhout
INTEC Department, Faculty of Engineering

prof. dr. ir. Jan Van Campenhout
Advisor
ELIS Department, Faculty of Engineering

prof. dr. ir. Dirk Stroobandt
Advisor
ELIS Department, Faculty of Engineering

Samenvatting

Parallelle verwerking in computersystemen groeit aan belang. Daar waar
de toepassing ervan vroeger beperkt bleef tot supercomputers en grote web-
of databank-servers, brengt de multicore processor parallelle verwerking
naar desktop PC’s, laptops en spelconsoles. Om al deze processors op een
nuttige manier aan het werk te zetten aan één enkel probleem, moeten ze
kunnen communiceren. Hiertoe worden de processors met elkaar, en met de
buitenwereld, verbonden door middel van een interconnectienetwerk. Van
dit netwerk wordt verwacht dat het hoge bandbreedte en lage latentie ver-
zorgt, zodat de processors zich kunnen concentreren op het verzetten van
nuttig werk, en niet moeten wachten op het binnensijpelen van gegevens.
Echter, huidige interconnectietechnologieën, die gebruik maken van elek-
tronische signalen verstuurd over koperdraden, bereiken snel het einde van
hun mogelijkheden.

Optische interconnecties zijn een mogelijke oplossing voor dit probleem,
en worden momenteel onderzocht in onderzoeks- en industriële laboratoria,
inclusief die van grote spelers zoals IBM en Intel. Verwacht wordt dat optisch
communicerende multiprocessors binnen enkele jaren op de markt zullen
komen. Multicore processorchips, met optische verbindingen geïntegreerd
op de chip zelf, kunnen volgen binnen vijf à tien jaar.

Herconfigureerbare netwerken lossen een ander probleem van intercon-
nectienetwerken op. Het verkeer op deze netwerken is meestal sterk niet-
uniform, waardoor sommige verbindingen sterk verzadigd zijn terwijl an-
dere nauwelijks gebruikt worden. De precieze patronen hangen bovendien
sterk af van de toepassing, en kunnen zelfs veranderen tijdens de uitvoe-
ring van eenzelfde programma. Dit maakt het zeer moeilijk een efficiënte

vi Samenvatting

architectuur te definiëren, die hoge prestaties toelaat maar die niet gedimen-
sioneerd is voor de meest veeleisende verkeerspatronen – dit laatste zou tot
een zeer duur, sterk overgedimensioneerd netwerk leiden dat in de meeste
gevallen onderbenut wordt.

Gelukkig laten optische interconnecties, die in de nabije toekomst zeer
waarschijnlijk toch geïntroduceerd zullen worden, toe om herconfigureer-
bare netwerken te maken. Die kunnen, tijdens de loop van het programma,
op een transparante manier aangepast worden aan het momentele verkeers-
patroon. Dit is mogelijk dankzij nieuwe optische componenten, zoals lasers
met variabele golflengte, vloeibare-kristalschakelaars, enz.

Deze thesis richt zich op het toepassen van herconfigureerbare, optische
verbindingen in de context van multiprocessors met gedeeld geheugen. In
dit soort van machines is communicatie impliciet, en gebeurt dus zonder
interventie van de programmeur of de compiler. Machines met gedeeld
geheugen zijn daardoor eenvoudig te programmeren, doordat de program-
meur geen intieme kennis moet hebben van de implementatiedetails van de
machine. Dit soort machines zijn echter wel sterker beïnvloed door een hoge
netwerklatentie. Technieken die het mogelijk maken om communicatie te
overlappen met nuttige berekeningen, welke regelmatig worden toegepast
in message-passing architecturen, zijn hier immers niet mogelijk doordat niet
op voorhand bekend is wanneer communicatie nodig zal zijn. Machines met
gedeeld geheugen hebben daardoor het meeste baat bij herconfigureerbare
netwerken, die precies bedoeld zijn om een lagere latentie aan te bieden.

Eén probleem in deze is echter de snelheid waarmee het netwerk ge-
herconfigureerd kan worden. Idealiter zou het netwerk voor elke aanvraag
opnieuw ingesteld kunnen worden zodat het steeds een minimale latentie
kan aanbieden. De beschikbare optische componenten laten dit echter niet
toe. We gingen daarom op zoek naar lokaliteit in de communicatiestromen,
en vonden dat netwerkverkeer dikwijls gedurende langere perioden rela-
tief constant blijft. Dit feit kan uitgebuit worden door herconfiguratie: de
beschikbare bandbreedte wordt dan zó verdeeld dat de meest volumineuze
stromen de snelste verbindingen kunnen gebruiken. De totale latentie ver-
mindert hierdoor significant. Dit alles kan gebeuren in een automatische,
voor de software onzichtbare manier, wat in lijn blijft met de abstractie van
gedeeld geheugen die de programmeur isoleert van de implementatiedetails
van de onderliggende machine.

Verkeerspatronen. Vermits herconfiguratie noodzakelijkerwijs verloopt
op een tijdsschaal die trager is dan individuele geheugentoegangen, is de
trage dynamica van netwerkverkeer heel belangrijk voor dit werk. Het is be-

Samenvatting vii

kend dat geheugentoegangen lokaliteit bezitten, zowel in de ruimte als in de
tijd, en dat dit geldt op een fractale manier. Deze lokaliteit wordt uitgebuit
door caches, die recent gebruikte gegevens in een klein en snel geheugen
houden – omdat de kans groot is dat diezelfde gegevens niet lang daarna
opnieuw nodig zullen zijn. Wegens de fractale eigenschap van lokaliteit is
dit effect zichtbaar op alle tijdsschalen, gaande van nanoseconden – uitgebuit
door eerste-niveau caches – tot micro- en milliseconden, wat zichtbaar is op
het interconnectienetwerk. We modelleerden dit gedrag als verkeerssalvo’s,
dit zijn perioden van communicatie met hoge intensiteit tussen specifieke
processorparen. Deze salvo’s werden geobserveerd in realistische simula-
ties en bleken tot meerdere milliseconden te duren. Ze kwamen voor op een
achtergrond van meer uniform verkeer met veel lagere intensiteit.

Een herconfigureerbare netwerkarchitectuur. Dit gedrag bracht ons ertoe
de volgende herconfigureerbare netwerkarchitectuur op te stellen: een ba-
sisnetwerk met vaste topologie, wordt aangevuld met herconfigureerbare
extra verbindingen. Het basisnetwerk heeft een reguliere topologie, zoals
een rooster, torus of hyperkubus, en verbindt alle processors. De herconfigu-
reerbare verbindingen worden zó geplaatst dat deze een directe verbinding
met hoge bandbreedte vormen tussen de processorparen met de meest inten-
se communicatie. De locaties van deze extra verbindingen worden herzien
na elk herconfiguratie-interval, typisch in de orde van enkele milliseconden.
Op deze manier kan een groot volume aan verkeer gedragen worden door
de extra verbindingen, terwijl het basisnetwerk steeds beschikbaar blijft voor
achtergrondverkeer, of tijdens herconfiguratie van de extra verbindingen.

We stellen ook een implementatie van deze architectuur voor, die gebruik
maakt van in golflengte verstelbare lasers en een selectieve uitzending. Deze
implementatie laat een efficiënte schaling toe naar een groot aantal proces-
sors. Ze werd ontworpen in samenwerking met de Vrije Universiteit Brussel,
waar nu een prototype gebouwd wordt van de componenten voor selectieve
uitzending.

Versnellen van exploraties van de ontwerpruimte. Het ontwerp van een
interconnectienetwerk omvat het bepalen van een groot aantal vrije parame-
ters. Herconfiguratie voegt hier nog verschillende parameters aan toe, zoals
het herconfiguratie-interval en het aantal ondersteunde extra verbindingen.
Bovendien is de prestatie nu veel sterker afhankelijk van de specifieke ei-
genschappen van het netwerkverkeer, inclusief het tijdsgedrag. Wanneer
een interconnectienetwerk ontworpen wordt moet een afweging gemaakt
worden, die al deze parameters optimaliseert met als doel een architectuur
die een goede prestatie, een laag vermogenverbruik en een beperkte kost

viii Samenvatting

combineert. Dit vereist de evaluatie van een zeer groot aantal alternatieve
ontwerpsvoorstellen.

Vermits de prestatie van bestaande, niet-herconfigureerbare netwerken
slechts in beperkte mate afhankelijk is van veranderingen in de tijd van het
netwerkverkeer, houden bestaande methodes om snel kandidaat-netwerken
te evalueren hier geen rekening mee. We hebben daardoor bestaande metho-
den uitgebreid, en nieuwe methoden ontwikkeld, die wel toelaten een snelle
maar voldoende nauwkeurige schatting te krijgen van de prestaties van
herconfigureerbare netwerkarchitecturen. Onze methoden zijn bovendien
ook bruikbaar op niet-herconfigureerbare netwerken, waar ze een hogere
nauwkeurigheid toelaten dan bestaande methoden – precies omdat tijdsaf-
hankelijk gedrag nu wel in rekening gebracht wordt.

Prestatie-evaluatie. Tenslotte evalueerden we de prestatie van onze voor-
gestelde herconfigureerbare netwerkarchitectuur, over een breed bereik van
applicaties – gebruik makende van echte benchmarkprogramma’s – en archi-
tecturale parameters. We combineerden grootschalige exploraties, gebruik
makend van onze snelle methoden zoals hierboven beschreven, met gede-
tailleerde studies met behulp van zeer nauwkeurige – maar veel tragere –
uitvoeringsgebaseerde simulaties.

Ook werden bovengrenzen gezocht voor de prestatie indien bepaalde
heuristieken, die tijdens de herconfiguratie gebruikt worden, verbeterd
zouden kunnen worden. Zo moet bijvoorbeeld, op het einde van een
herconfiguratie-interval, het netwerkverkeer voor het daarop volgende in-
terval voorspeld worden, zodat de extra verbindingen op de juiste plaats
gelegd kunnen worden. Dit moet op zeer korte tijd gebeuren, en gebeurt
daarom met behulp van een snelle heuristiek. We vonden echter dat, zelfs
indien dit verkeer perfect voorspeld zou kunnen worden, slechts een pres-
tatieverbetering met enkele procenten mogelijk is. Dit bewijst de kwaliteit
van de gebruikte heuristieken.

Uiteindelijk vonden we dat, binnen de veronderstellingen en architectu-
rale parameterwaarden die in dit werk gebruik werden, de netwerklatentie
significant verbeterd kon worden. Afhankelijk van het netwerkverkeer van
de specifieke applicatie, en van de eigenschappen van de beschikbare her-
configureerbare componenten, kon de latentie verlaagd worden met 10 à
20% bij kleine, 16 processors tellende netwerken, voor grotere netwerken tot
64 processors liep dit op tot een reductie met 20 tot 40%. En wanneer hercon-
figuratie reeds aanwezig is in het systeem, bijvoorbeeld voor het verhogen
van de betrouwbaarheid, kan deze prestatiewinst bekomen worden aan een
zeer lage toegevoegde kost.

Summary

Parallel processing is gaining importance. While its applications used to
be limited to supercomputing or large web and database servers, the era
of the multicore processor is now bringing parallel computing to desktop
PCs, laptops and game consoles. To put all these processors to good use
on solving a single problem, requires them to communicate. To this end,
the processors are connected to each other, and to the outside world, with
an interconnection network. This network should support communication at
high bandwidths and low latencies, to allow the processors to concentrate on
doing useful work, rather than having to wait for data to sip in. However,
current interconnect technologies, using electronic signaling over copper
wires, are quickly reaching the end of their capabilities.

Optical interconnections are a possible solution, one that is at the mo-
ment being investigated by academic and industrial labs around the world,
including big players such as IBM and Intel. It is expected that optically
communicating multiprocessor systems will be on the market in just a few
years. Multicore processor chips, with on-chip optical networks, may follow
in the next five to ten years.

Reconfigurable networks solve another problem of current interconnec-
tion networks. The traffic on these networks is usually very non-uniform,
causing some of the network links to be highly saturated while others remain
mostly unused. The exact patterns depend on the application, and can even
change during the runtime of a single program. This makes it hard to define
an efficient architecture, i.e., one that provides high performance but is not
scaled for the worst-case traffic patterns – which would result in most of the
capacity being unused for a large fraction of time.

x Summary

Fortunately, optical interconnections, which will most likely be intro-
duced in the near future anyway, provide the possibility of creating runtime
reconfigurable networks, in a data-transparent way. This can be realized
using novel components such as tunable lasers, liquid crystal switches, etc.

This thesis focuses on the application of reconfigurable, optical intercon-
nection networks in the context of shared-memory multiprocessors. In this
kind of parallel machine, communication is implicit, i.e., it happens without
explicit involvement by the programmer or compiler. This makes shared-
memory machines easy to program, since the programmer should not have
intimate knowledge of the target machine. It does make a shared-memory
machine very sensitive to network latency, since several clever tricks that
try to overlap communication with useful computation, which are possible
when using a message-passing paradigm, cannot be used since one does not
always know exactly when communication will occur. Therefore, this type of
machine would benefit the most from reconfigurable network architectures,
which are designed precisely to provide lower latency.

One miss-match in an otherwise fitting puzzle is the speed of recon-
figuration. Ideally, one would like to reconfigure the network such that the
minimal latency can be provided for each request. The available optical com-
ponents do not allow this, however. We therefore looked for locality in the
communication, and found that network traffic often remains very similar
for longer periods of time. This fact can be exploited by reconfiguration: by
changing the distribution of available bandwidth in the network, such that
the most voluminous traffic streams can use the fastest connections, latency
can be brought down significantly. All this can be done in an automatic,
application-invisible way, staying true to the idea of the shared-memory ab-
straction in which the programmer need not be aware of the implementation
details of the underlying machine.

Traffic patterns. Since reconfiguration happens, by necessity, at a time scale
slower than individual memory accesses, the slow dynamics of network
traffic patterns are very important to this work. It is known that memory
references exhibit locality in space and time, in a fractal or self-similar way.
This locality is exploited by caches, which keep recently accessed data in a
small, fast memory – because the probability of the same data being accessed
again is high. Due to the self-similar nature of locality, this effect is present
at all time scales, from the very fast nanosecond scales exploited by first-
level caches, down to micro- and millisecond scales which are visible on
the interconnection network. We modeled this behavior as traffic bursts:
periods of high-intensity communication between specific processor pairs.

Summary xi

These bursts were observed to be active for up to several milliseconds, on a
background of more uniform traffic with a much lower intensity.

A reconfigurable network architecture. This behavior prompted us to de-
sign the following reconfigurable network architecture: a base network with
fixed topology, augmented with reconfigurable extra links (elinks). The base
network has a regular topology such as a mesh, torus or hypercube, and
connects all processors. The reconfigurable elinks are placed such that they
provide a direct, high-bandwidth connection between those processor pairs
that communicate with the highest intensity. The locations of these elinks are
changed after every reconfiguration interval, which usually has a length in
the order of milliseconds. This way, most of the high-volume burst traffic is
carried by the elinks, while the base network is still available for background
traffic, or during reconfiguration of the elinks.

We also propose an implementation of this architecture, using tunable
lasers and a selective broadcast method that allows for efficient scaling of the
architecture to a large number of processors. This implementation was de-
veloped in cooperation with the Vrije Universiteit Brussel, who are currently
building a prototype of the selective broadcast system.

Speeding up design-space explorations. A large number of free param-
eters exist in the design of each interconnection network. Reconfiguration
adds even more parameters, such as the reconfiguration interval and the
number of elinks. Moreover, performance is now much more dependent
on the specific characteristics of the network traffic, including its temporal
behavior. When an interconnection network is designed, a trade-off has to
be made that optimizes all these parameters towards a goal that combines
good performance, low power consumption and limited cost. This requires
the evaluation of a huge amount of design alternatives.

Because dependence on temporal traffic behavior is present only to a
limited extent in existing, non-reconfigurable networks, methods that aim
to speed up the initial evaluation of network candidates did not account
for this temporal behavior. We therefore had to extend these methods,
and proposed new methods that do allow a quick but sufficiently accurate
evaluation of reconfigurable network architectures. Our methods are also
usable on non-reconfiguring designs, were they can improve on the accuracy
of older methods – precisely because temporal behavior is now taken into
account.

Performance evaluation. Finally, we explored the performance of our pro-
posed reconfigurable network architecture, under a wide range of work-

xii Summary

loads – using real benchmark applications – and architectural parameters.
We combined large-scale explorations, using our faster methods described
before, with detailed studies using highly accurate – but much more time
consuming – execution-driven simulations.

Also, since elements of the architecture required heuristics to allow their
evaluation in a limited time, upper bounds were found on the performance
assuming these heuristics could be improved. For instance, the placement
of the elinks is based on a prediction of network traffic for the next recon-
figuration interval. We showed that even perfect traffic prediction could not
increase the overall performance by more that a few percent, showing the
quality of the heuristics that were developed.

Overall, we found that reconfigurable networks could, with the assump-
tions and architectural parameters that were used in our study, improve
network performance significantly. Depending on the traffic pattern of the
application, and on characteristics of the reconfigurable components avail-
able, latency could be lowered by 10 to 20% on small, 16-processor networks,
for larger 64-processor networks this increased to a 20 to 40% reduction. And
when reconfiguration is already present in the system, for instance for relia-
bility reasons, this performance improvement can be obtained at a very low
added cost.

Contents

Acknowledgements . i
Examination commission . iii
Dutch summary . v
English summary . ix
Contents . xiii
List of Figures . xvii
List of Tables . xix
List of Acronyms . xxi

1 Introduction 1

1.1 Parallel processing . 2
1.1.1 Why do we need parallel processing? 2
1.1.2 Limits to parallelism . 4
1.1.3 Communication . 6

1.2 Optical communication . 16
1.2.1 Data communication using light 16
1.2.2 Short range optical interconnects 20
1.2.3 State of optics in computing 22
1.2.4 Reconfigurable optical interconnects 22

1.3 Reconfigurable processor networks 24
1.4 Contributions . 25

1.4.1 Communication requirements 25
1.4.2 Reconfigurable architecture 26
1.4.3 Tools for design-space exploration 27
1.4.4 Performance evaluation 27

1.5 Structure of this thesis . 28

xiv Contents

2 Related work 29
2.1 Optical interconnects . 29

2.1.1 System level . 30
2.1.2 Optical interconnect demonstrators 30
2.1.3 Reconfigurable network architectures 31

2.2 Photonics projects at ELIS . 32
2.2.1 IAP PHOTON and photonics@be 32
2.2.2 Optical demonstrators 33
2.2.3 On-chip . 33

2.3 Reconfigurable components . 34
2.3.1 Tunable VCSELs . 34
2.3.2 Liquid crystal switches 36
2.3.3 MEMS mirrors . 37
2.3.4 The SOB system . 38

2.4 Thread and data migration . 39

3 Traffic patterns 41
3.1 Time scales . 42

3.1.1 Packets: nanoseconds 42
3.1.2 Memory accesses: microseconds 44
3.1.3 Communication bursts: milliseconds 46
3.1.4 Context switching: tens of milliseconds 47
3.1.5 Applications: hours . 49
3.1.6 Hardware failures: days 52

3.2 Communication bursts . 53
3.2.1 Traffic burst length distribution 54
3.2.2 Traffic size fraction . 56
3.2.3 Application speedup . 56

3.3 Thread and data migration . 60
3.4 A case for reconfigurable networks 60

4 A reconfigurable network architecture 63
4.1 Proposed reconfigurable network architecture 64
4.2 Hardware implementation . 70
4.3 Extra link selection . 72
4.4 Simulation framework . 76
4.5 Benchmarks . 79

5 Speeding up design-space explorations 81
5.1 Predicting network performance 83

5.1.1 Prediction model . 83

Contents xv

5.1.2 Prediction accuracy . 89
5.1.3 Improving accuracy . 92
5.1.4 Reduction in simulation time 92

5.2 Congestion modeling . 94
5.2.1 Contention model . 94
5.2.2 Results . 99
5.2.3 Discussion . 100
5.2.4 Improving accuracy . 102
5.2.5 Reduction in simulation time 103

5.3 Synthetic network traffic . 103
5.3.1 Synthetic traffic generation 105
5.3.2 Generating synthetic traffic patterns 109
5.3.3 Simulating the synthetic traffic flow 109
5.3.4 Results . 110
5.3.5 Required trace length 113

5.4 Comparison . 115

6 Performance evaluation 119
6.1 Variability of performance metrics 120
6.2 Small networks: execution-driven simulation 125

6.2.1 Selective broadcast implementation 125
6.2.2 Latency versus throughput 129

6.3 Large networks: synthetic traffic 130
6.3.1 Scaling the reconfigurable architecture 130
6.3.2 Non-reconfigurable networks 134

6.4 Effect of reconfiguration heuristics 137
6.4.1 Optimal elinks placement 137
6.4.2 Perfect traffic prediction 137

7 Conclusions 143
7.1 Summary . 143
7.2 Future research . 146

7.2.1 Extensions to the current work 146
7.2.2 Towards a reconfigurable demonstrator 148
7.2.3 On-chip communication 148
7.2.4 Faster reconfiguration 150

7.3 Conclusion . 151

Publications 153

References 157

List of Figures

1.1 Limits to single-processor performance 3
1.2 Speedup according to Amdahl’s and Gustafson’s laws 6
1.3 Schematic overview of a multiprocessor machine 8
1.4 Example network topologies 10
1.5 Relative improvement of bandwidth and latency 13
1.6 Power dissipation of electrical vs. optical interconnects 18
1.7 The physical interconnect hierarchy 19
1.8 Artist’s impression of an opto-electronic integration approach 21

2.1 Fiber ribbon cable connected to the IO demonstrator 31
2.2 Schematic of a cantilever MEMS tunable VCSEL 35
2.3 SEM micrograph of a beam steering MEMS mirror 37
2.4 The SOB element distributes the signal from each input source

to nine destinations . 38

3.1 Time scales relevant in multiprocessor network traffic 43
3.2 Packet sequences in a directory-based coherence protocol . . . 45
3.3 Traffic to a node in relation to context switches 48
3.4 Burst length distribution for the fft application 54
3.5 Traffic size and latency fractions per burst length 57
3.6 Maximum achievable speedup per burst length 59

4.1 Conceptual reconfigurable network topology 65
4.2 Sequence of events controlling reconfiguration 66
4.3 Circuit switched equivalent of the elink concept 69
4.4 Schematic overview of a reconfigurable network architecture . 71
4.5 Optimized node placement on the SOB element 72

xviii List of Figures

4.6 Pseudo code for the elink selection algorithm 74
4.7 Illustration of the elinks placement through time 77
4.8 Switching architecture of a network node 78

5.1 Speed versus accuracy of network evaluation techniques . . . 82
5.2 Distance distributions of memory operations 87
5.3 Variation of average memory latency per distance 88
5.4 Predicted versus measured latency reduction 90
5.5 Latency improvement after adding elinks 91
5.6 Distribution of congestion over the links 93
5.7 Computation time required by our prediction method 93
5.8 Division into independent queueing systems 96
5.9 Packet waiting time for various numbers of elinks 100
5.10 Packet waiting time per reconfiguration interval 101
5.11 Average waiting time per packet, when dividing time into

intervals of different length . 102
5.12 Possible sequences of packets or packet groups 105
5.13 Distributions determining a traffic profile 107
5.14 Average packet hop distance and latency 112
5.15 Accuracy of shorter synthetic packet traces 114

6.1 OS scheduling decisions are affected by memory latency . . . 121
6.2 Variability of possible network performance metrics 123
6.3 Variability of performance and statistical significance 124
6.4 Simulation results of a reconfigurable network 126
6.5 Summary of memory access latency 128
6.6 Latency versus throughput for a variety of benchmarks 129
6.7 Performance scaling for increasing numbers of elinks 131
6.8 Performance scaling for increasing the fan-out 132
6.9 Performance trends for varying reconfiguration intervals . . . 133
6.10 Summary of packet latency for different networks 134
6.11 Comparison between reconfigurable and static networks . . . 136
6.12 Comparison with globally optimal elink placement 138
6.13 Comparison with perfect prediction of traffic 140
6.14 Cost of suboptimal traffic prediction 141

List of Tables

3.1 Breakdown of LANL failure data into categories 52
3.2 Applications and estimated speedups 58

4.1 SPLASH-2 benchmark applications and problem sizes 80

5.1 Variability and runtime for trace- and execution-driven simu-
lations . 115

5.2 Comparison of network evaluation techniques 116

List of Acronyms

ccNUMA Cache-Coherent NUMA

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

DBR Distributed Bragg Reflector

DPW Deep Proton Writing

DRAM Dynamic Random-Access Memory

DSM Distributed Shared-Memory

EMI Electro-Magnetic Interference

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GaAs Gallium Arsenide

Gbps Gigabit (109 bit) per second

GiB Gigabinary (gibi, 230) byte

HPC High-Performance Computing

IC Integrated Circuit

ILP Instruction Level Parallelism

InP Indium Phosphide

xxii List of Acronyms

IO Interconnect by Optics

KiB Kilobinary (kibi, 210) byte

LAN Local Area Network

LC Liquid Crystal

LVDS Low Voltage Differential Signaling

MEMS Micro-Electro-Mechanical Systems

MiB Megabinary (mebi, 220) byte

MPSoC Multi-Processor SoC

MTBF Mean Time Between Failures

NoC Network-on-Chip

NUMA Non-Uniform Memory Access

OBS Optical Burst Switching

OIIC Optically Interconnected Integrated Circuits

OPS Optical Packet Switching

OptiMMA Optimization of MPSoC Middleware for Event-driven Applica-
tions

OLTP On-Line Transaction Processing

OOO Out-of-Order

PCB Printed Circuit Board

PICMOS Photonic Interconnect Layer on CMOS by Waferscale Integration

RCPD Resonant Cavity Photodetector

ROI Reconfigurable Optical Interconnect

SAN Storage Area Network

SIMD Single Instruction, Multiple Data

SMP Symmetric Multi-Processor

SOB Selective Optical Broadcast

List of Acronyms xxiii

SoC System-on-Chip

SOI Silicon-on-Insulator

SRAM Static Random-Access Memory

TiB Terabinary (tebi, 240) byte

VC Virtual Channel

VCSEL Vertical-Cavity Surface-Emitting Laser

VLSI Very Large Scale Integration

WADIMOS Wavelength Division Multiplexed Photonic Layer on CMOS

WAN Wide Area Network

WDM Wavelength Division Multiplexing

1
Introduction

A journey of a thousand miles
begins with a single step.
— Chinese Proverb

Parallel processing is gaining importance. While its applications used to
be limited to supercomputing or large web and database servers, the era
of the multicore processor is now bringing parallel computing to desktop
PCs, laptops and game consoles. A major bottleneck in building an effi-
cient multiprocessor architecture is the interconnection network. Since the
degree of parallelism, or the number of processors, are only expected to
grow, the gap between processor speeds and interconnect performance will
widen further. Optical communication is expected to provide the solution
here. This work looks out even further, and studies reconfigurable optical
interconnects. They allow networks to better fit the communication needs of
the processors, and the application running on them, at each point in time.
In this way, the performance gap can be bridged, leading the way towards
efficient multiprocessing solutions.

2 1 Introduction

1.1 Parallel processing

Software is slowing faster than
hardware is accelerating.
— Martin Reiser

1.1.1 Why do we need parallel processing?
One constant in the history of computing is that today’s machines are always
too slow. Users of computation power continuously want increasingly more
capable machines, to allow them to make more accurate weather forecasts,
support more simultaneous visitors to their web sites, play ever more realistic
3-D games, etc. To be able to provide this power, the beating heart of the
computer – the processor – has undergone a dramatic evolution over the
past several decades, increasing its calculation speed by several orders of
magnitude.

At each point in time, there were users who wanted – and could afford –
machines with multiple processors. Having them all work at the same time,
in parallel, on the same problem, allowed them to do more calculations today,
rather than having to wait for tomorrow’s processor. This idea has been in
use since the 1960s and ‘70s in early supercomputers and mainframes. With
the advent of the microprocessor in the 1980s the idea became very attrac-
tive, since high numbers of cheap, mass produced processor chips could be
combined into relatively inexpensive but very powerful supercomputers.

Today parallel computing is again very much alive – and this time in a
much wider range of the market, not just for top-end machines – because
of the problems that are currently plaguing microprocessor design. Moore’s
law [Moore, 1965], which states that the most cost-effective number of transis-
tors to put on a chip doubles every two years, still holds, so transistor budgets
keep increasing exponentially. However, it is proving ever more difficult to
put all these transistors to good use on a single instruction stream. Most
of the Instruction Level Parallelism (ILP) inherent to today’s applications is
already being exploited, and cache sizes have long ago entered the region
of diminishing returns. Also, the bandwidth and latency of on-chip wires
are not scaling fast enough. This limits designers to having smaller, more
independent structures with local communication rather than a single entity
spanning the entire chip (for high-speed designs, it is today not possible to

1.1 Parallel processing 3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 1985 1990 1995 2000 2005 2010

P
er

fo
rm

an
ce

 p
er

 M
H

z
(S

P
E

C
in

t2
00

0/
M

H
z)

Year of introduction

Performance

 0.01

 0.1

 1

 1985 1990 1995 2000 2005 2010P
ow

er
 d

en
si

ty
 (

W
/m

m
2)

Year of introduction

Power density

Figure 1.1: Limits to single-processor performance: SPECint perfor-
mance per MHz (left), and power density (right) for Intel’s 80386 to
the Pentium 4 [Horowitz, 2007]

communicate across the chip in a single clock cycle). Finally, physical limi-
tations such as the speed of light and extreme power dissipation prevent the
clock speed from rising much further. Figure 1.1 illustrates this point, plot-
ting the saturating per-clock-cycle performance and the exponentially rising
power density throughout the years for Intel’s desktop microprocessors from
the 80386 to the Pentium 4. Designing single processors that provide the ex-
ponential increase in performance that we have come to expect is therefore
no longer feasible. Instead, the available number of transistors is now used
to provide multiple processor cores on a single chip. All large microproces-
sor manufacturers have fully embraced the multicore paradigm [Geer, 2005;
Held et al., 2006] and are selling multicore chips for the desktop and laptop
market (Intel Core2 Duo, AMD Athlon X2). This trend is expected to con-
tinue towards more cores, as is evident from Intel’s 80-core demonstration
chip [Vangal et al., 2008]. The downside is that this evolution now places
the burden upon the software writer: while previously each new generation
of microprocessor provided a free increase in single-threaded performance,
programs now have to be parallelized in order to benefit from the increased
capacity of new chips [Sutter, 2005].

Evidently, multiprocessing has, throughout the years, made its way from
the top end of the market – High-Performance Computing (HPC) or super-
computing and high-end Symmetric Multi-Processor (SMP) servers since the
1980s – down to the desktop today. Even PDAs and embedded applications
already have multiple (specialized) processors [Goddard, 2003].

4 1 Introduction

1.1.2 Limits to parallelism

If you were plowing a field, which would
you rather use: two strong oxen or
1,024 chickens?
— Seymour R. Cray

As the quote above by Seymour Cray, a pioneer in and highly successful ar-
chitect of parallel computer systems, suggests, there must be a drawback to
using multiple smaller processors over a (hypothetical) single, more power-
ful one. Apart from the technical hurdles of designing and building efficient
multiprocessor machines, some problems remain. First of all, the parallelism
in the program must be expressed explicitly, which is an added task for the
programmer.1 Current programmers are trained to convert algorithms into
a sequential program flow, and must be re-educated to think in parallel. Next,
dependencies between blocks of communication limit the amount of work
that can be done concurrently. Finally, communication and synchronization
between computing elements can become a bottleneck.

A parallel program is usually specified as a number of independent
pieces or threads that can execute at the same time, each on its own processor.
Creating such a specification is a complex task, since care must be taken that
dependencies, pieces of data computed by one thread and used by another
thread, are respected. This requires synchronization: before a thread can
use a data structure, it must wait until the thread computing these values
signals that it has reached a given point in its execution, and that the result is
available. Not implementing synchronization correctly introduces a whole
new range of bugs that did not exist in sequential code.

Due to these dependencies, some parts of the program cannot run con-
currently. One can compute the speedup S, this is the reduction in runtime
of a program when moving from a sequential (i.e., on one processor) to a
parallel execution (using N processors). Linear speedup, which means that the
program speed increases linearly with the number of threads or processors,
denoted by S = N, cannot be achieved in most cases. Indeed, most realistic
programs have parts that are inherently sequential. Consider for instance
a parallel program in which the sequential part accounts for a fraction s of
the total runtime. When the parallel part (with a runtime fraction p in a

1Several technologies exist for automatic parallelization [Tseng, 1989; Rogers and Pingali, 1994].
And while research in this field is still very much active, none of these techniques have seen
much wide-spread use, due to problems in performance, usability, market adoption, etc.

1.1 Parallel processing 5

sequential execution) is divided over N processors running in parallel, the
total runtime of the application drops from s + p = 1 in the sequential ex-
ecution to s + p/N when using all N processors. The speedup achieved by
parallelization is therefore:

S =
1

s + (1 − s)/N
(1.1)

From this we can see that linear speedup, S = N, requires s = 0 or that there
is no sequential part. Realistic programs with s > 0 will, even if we have
an unlimited number of processors available (N → ∞), have a maximum
speedup that is limited by their sequential fraction:

S→
1
s

Therefore, for most practical programs, performance cannot rise indefinitely
when adding more processors because of the program’s inherently sequen-
tial part. This observation is known as Amdahl’s law [Amdahl, 1967].

This does not mean, however, that parallelization has little practical use,
or that future machines with a larger number of processors are unnecessary.
For most applications, with some clever re-ordering of computations, the
sequential part can be made very small. Moreover, Amdahl’s law assumes
that the problem size remains constant. When evaluating future machines
though, we should also consider future problem sizes, which are expected
to scale too. This has led Gustafson [1988] to propose an alternative law
that assumes a scaling of the problem size, in such a way that the program
runtime remains constant. A real-life example is the 5-day weather fore-
cast, computed every afternoon based on measurements collected during
the morning. Its execution should finish in at most 8 hours, in time for the
evening TV weather talk. If meteorologists are given a more powerful com-
puter that can do the task in less time, they will simply scale up the problem
(increase the number of grid points, which improves accuracy) to bring the
runtime back up to their maximum accepted duration of 8 hours. The same
holds for 3-D games. They have a constant per-frame runtime (to achieve a
frame rate of 50 frames per second, the time available is 20 ms), but, with
every new generation of games and machines, more graphical detail, more
intelligent enemies, etc., are squeezed into those 20 ms.

When the problem is scaled in this way, the speedup obtained from
parallelization becomes (see [Gustafson, 1988] for its derivation):

S = N − s · (N − 1)

6 1 Introduction

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Amdahl’s law

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Gustafson’s law

Actual speedup Linear speedup

Figure 1.2: Speedup according to Amdahl’s and Gustafson’s laws
compared with linear speedup, for a program with a serial fraction
of 10%. When the program size is constant (Amdahl), the speedup
saturates. If the program is scaled to maintain a constant runtime
(Gustafson), the speedup – and thus problem size – grow linearly.

Here, the speedup does not saturate for N → ∞. Large parallel machines
are therefore useful, assuming there are problems large enough to keep them
busy. This has, in practice, never proved to be much of a problem.

Figure 1.2 compares both observations, for a program with a serial
fraction of 10%, and compares the actual speedup with the ideal, linear
speedup. When the program size is constant (Amdahl), the speedup satu-
rates to 1/s = 10. When scaling the program to maintain a constant runtime
(Gustafson), the speedup grows linearly, with a slope of 1−s = 0.9. Note that
for this to happen, the problem size also has to grow linearly. So, in contrast to
the graph for Amdahl’s law, a different program (size) is considered at each
point. Also, the relation between the actual size of the input data and the
(sequential) runtime is not considered here. This relation is usually not lin-
ear: if n is some scaling factor of the data set (number of grid points, matrix
size, etc.), then the computational complexity (the number of instructions
that need to be executed, which is roughly proportional to the runtime of a
sequential execution) will often scale with for instance n log n,

√
n, n, n2, n!,

etc.

1.1.3 Communication

When lots of processors work together on the same problem, they must
communicate: input data and program code must be distributed from one
processor to the others, partial results must be exchanged so that other

1.1 Parallel processing 7

processors can continue working on them, and synchronization must take
place so that all processors know when to continue processing and when to
wait for other processors to complete work on certain pieces of data.

Just like Amdahl’s law, communication makes parallelization only fea-
sible up to a certain number of parallel threads, depending on the exact
algorithm, the problem size, and the performance of the machine on which
the program will be run. Beyond that, the threads would have too many de-
pendencies and require much communication among them – this degrades
performance because processors will often have to wait for data rather than
doing useful computations. Note that here, technical properties of the mul-
tiprocessor machine, aside from just the number of processors, become rel-
evant. A different parallelization strategy is therefore necessary for differ-
ent (classes of) machines. The most important property here is the cost of
communication, which is in its turn determined by the properties of the com-
munication network. This network connects the processors with each other
and allows them to exchange information at very high speeds. It is on this
component that this thesis will focus.

The shared-memory abstraction

Communication between two processors can be initiated in two ways. It can
be specified explicitly by the programmer, through a programming library
such as MPI [Snir et al., 1995]. In this case a processor executes a certain
sequence of instructions that sends a specific piece of data to another pro-
cessor. Communication can also be implicit: here neither the exact points
in the program where communication happens, nor the data words to be
transmitted, are specified directly. Instead, the concept of shared memory is
used. A range of memory addresses is shared by multiple processors. When
processor A writes to a shared-memory address, a subsequent read by pro-
cessor B from that same address will return the data previously written by A
– this way communication has occurred between processors A and B. This
can be implemented in a number of ways. For instance, the data can re-
side close to processor A until it is read by B, at which time it is sent over
the network. If B should never need this data, no communication band-
width will be wasted. Alternatively, the data can be sent directly to B at
the time of the write by A, so that B has immediate access to it, rather than
having to first request the data over the (relatively) slow communication
network. The main advantage of machines providing this abstraction is that
the programmer does not need intimate knowledge of these implementation
details. Moreover, if a program has been written once, the same program
can run on different machines with varying implementations, as long as they

8 1 Introduction

Figure 1.3: Schematic overview of a multiprocessor machine. Net-
work traffic is generated by the network interfaces (NI) in response
to non-local memory accesses by a processor.

all provide the abstraction of shared memory. The fact that communication
is implicit further helps to ease programming. This makes shared-memory
machines very popular in diverse areas, from scientific supercomputers over
commercial servers and mainframes down to desktop computing.

This work will focus on Distributed Shared-Memory (DSM) machines
with hardware-based coherence. In such machines, main memory is phys-
ically distributed over nodes. These are building blocks of the system that
each contain a processor with its cache subsystem, a part of main memory,
and a network interface linking the nodes to the communication network
and thus to each other.2 A schematic overview of this architecture is shown
in Figure 1.3. All memory is accessible by all processors, but accesses to
remote memory locations (i.e., those in some part of main memory that is
not on the same node as the processor making the request) are intercepted
by the network interface. This architecture is called a Non-Uniform Mem-
ory Access (NUMA) architecture, because the access characteristics of main
memory are not the same for each address – remote addresses are much
slower to read and write than addresses located on the same network node.
Shared-memory locations can still be cached by the local cache of each proces-
sor. However, since multiple copies of the same memory location may now
exist on different nodes, they must be kept coherent (i.e., contain the same
information) – hence the designation Cache-Coherent NUMA (ccNUMA).
The task of the network interfaces is thus to support reading and writing of
shared-memory locations, and to enforce coherence among all caches and
main memory.

2Often, machines are created in which several processors share a network interface, this is
usually the case when multicore processor chips are used. In this work however, for the sake of
clarity we will always assume that each node contains one processor, this does not significantly
affect network traffic.

1.1 Parallel processing 9

Communication networks

At a conceptual level, we want every processor to be able to communicate
with every other processor. This is usually not possible to realize physically.
The number of pins that can be placed on a processor chip is limited, which
places an upper bound on the available bandwidth. Splitting up this band-
width into separate connections to potentially hundreds of other processors
is not feasible: communication is often sparse so most of the pins would be
unused for a large fraction of time. This does not constitute an economical
use of resources. Rather, several pins are combined into a small number of
links (one link is a connection between two processors, possibly allowing
transmission of multiple bits simultaneously), usually no more than four.3

This means that each processor can be directly connected to just four others.
Real-world communication networks need to connect tens, if not hun-

dreds of processors or network nodes. Not all nodes can thus be connected
directly. All nodes are connected, in a usually regular topology, to just a small
set of other nodes (its neighbors). Each node can have at most as many neigh-
bors as the number of links it supports (this number is called the fan-out or
radix). Messages sent between nodes without a direct connection go through
a set of intermediate nodes which forward the message. The number of
links a message needs to traverse is called the inter-node distance. Directly
connected nodes are at a distance of one. Shorter inter-node distances are
preferable, because messages that need few intermediate hops can reach
their destination more quickly, and use the resources of a smaller part of the
network. Figure 1.4 shows some common topologies. An important trade-
off when comparing topologies is that between maximum fan-out (usually
limited by the technology available) and the maximum inter-node distance
(the network’s diameter).

Aside from network topology, placement of processes and data is of equal
importance. Threads, each of which runs on one processor, communicate
with each other, and make accesses to data words in memory. The average
distance messages have to travel over the network can be minimized by
doing a good placement: threads that communicate often are placed close
together (ideally they are on neighboring nodes), data should be placed close
to (ideally on the same node as) the processor running the thread that needs
access to it the most.

An alternative to this scheme is the bus, here all communication partners
are connected to the same (set of) wire(s). If one of them transmits a message,

3For instance, AMD’s Socket 940 for the Opteron processor uses 228 of its 940 pins for three
HyperTransport links that connect to other processors, in addition to 226 pins for the DDR
memory interface and 424 pins for supplying power to the chip [AMD, 2004].

10 1 Introduction

tree

cube bus

mesh

Figure 1.4: Some example network topologies

all other processors are able to receive it. There is no need for forwarding by
intermediate nodes, so the topology and placement problems are avoided.
However, at each point in time just one processor can use the bus. In
contrast to other topologies such as trees or meshes, adding network nodes
does not increase the available bandwidth on the bus. This makes scaling
this solution to a large number of processors difficult. Also, the electrical bus
has severe physical limitations: the bus should be viewed as a transmission
line, the added capacitive load of all network nodes connected to the bus
reduces the signal propagation speed so that the bus should be either very
short or have a very low bandwidth. For this reason, over the past decade,
buses have been phased out as means of inter-chip communication in favor
of point-to-point connections. For example, the 1997 Sun Enterprise E6000
was the last of Sun’s large bus-based servers. The 64-processor E10000
model used an intermediate approach, where addresses were broadcasted
on four address buses, and data was transferred over point-to-point links
[Charlesworth et al., 1997]. Their successor, the 2001 Sun Fire line, has
an interconnection structure with point-to-point links only [Charlesworth,
2001]. SMPs with up to eight processors, for small servers and desktops,
can now use AMD’s HyperTransport [Keltcher et al., 2003], while Intel has
only recently announced to abandon its bus-based approach, in use since the
1995 Pentium Pro, in favor of its new QuickPath point-to-point interconnect
[Kanter, 2007].

1.1 Parallel processing 11

Bandwidth versus latency

There is an old network saying: Bandwidth problems
can be cured with money. Latency problems are harder
because the speed of light is fixed – you can’t bribe God.
— David Clark, MIT

When looking at the performance of a communication network, there are
two important metrics to consider:

Bandwidth or throughput is the amount of data (measured in bytes) that
can be sent from one communication partner to another in a given
time.

Latency is the time between the sending of a message by the source and the
destination receiving it.

The latency a message experiences when sent over the network is the time
between the moment when the sender starts transmission and the moment
the receiver has completely received the message. This time can be split up
into two parts. The first part is the time that the sender needs to transmit the
message. For the second part we follow the last bit of the message through
the network until it arrives at the receiver, at which point it has received
the complete message. The first component, the transmission time, is only
dependent on the bandwidth: a message of size S sent through a network
of bandwidth B needs a time S/B. The second component is influenced by
a number of factors. First of all, the speed of light and the physical distance
between sender and receiver determine the time of flight, this is the time it
takes for a signal (a change in the electrical potential of a copper wire, a pulse
of light, etc.) to travel from sender to receiver. Next, the network itself often
needs some time to determine how messages should be routed through it,
during which time messages also experience delay (routing time). Finally,
network links are shared among several processors. This means there often
is a conflict between multiple processors trying to use the same network
resource, in which case some of the messages need to be delayed (waiting
time). The total latency is the sum of transmission time, time of flight, routing
time and waiting time.

Bandwidth can be improved by using higher bit rates (shortening the
time per bit) or by increasing parallelism (sending more bits at the same
time). Improving latency is often less straightforward. Parallelism is again
helpful here: if a message is transmitted completely in parallel, the last

12 1 Introduction

bit arrives at the destination at the same time as the first bit. In contrast,
when sending the message serially, the last bit arrives much later. Therefore,
when multiple parallel channels are available, it is, at least from a latency
standpoint, advantageous to transmit a single message over all channels
simultaneously, rather than serializing messages over one channel and using
the different channels for different messages. Skew (differential latency
among the different channels) complicates this situation, since it may require
resynchronization circuits to align all bits at the receiver.

Time of flight is usually not under the control of a network designer. The
speed of light is fixed, only the physical distance between communicating
partners can be reduced. This is in practice usually not an option: the physi-
cal size of the processors, memory chips and supporting hardware prevents
an infinitely close packing of the components. Also, thermal considerations
need to be made: each processor radiates in the order of 100 W of heat,
cooling them is a challenge in itself and again requires sufficient area.

Routing time is influenced by the router architecture. A simple routing
protocol helps in this respect. Also, since each intermediate node incurs
extra routing overhead, total routing time can be reduced by minimizing the
inter-node distance by means of a properly chosen network topology.

Finally, waiting time is influenced by most of the other factors that were
already mentioned. Messages have to wait when the next link the message
needs to traverse is unavailable. The (average) duration of this time therefore
increases when the load of the links – this is the fraction of time the link is
sending messages, in contrast to being idle – increases. When the volume
of traffic is constant, link load can be decreased by making links faster,
spreading out traffic such that hot-spots – links with loads much higher than
the average – are avoided, or reducing the average number of intermediate
nodes a message needs as this reduces the number of links occupied per
message, and therefore the total link load.

When we look at the historical improvements made in both bandwidth
and latency, one can see that bandwidth has always increased more rapidly
than latency. This is evident from Figure 1.5, which plots the relative im-
provements of bandwidth and latency through several technological mile-
stones between 1982 and 2003, for microprocessors, memory chips, networks
and hard disk drives. The trend is clear: while latency improved roughly
tenfold during the last 20 years for all four of these key components, their
bandwidths improved by 100× to 1000×. Patterson [2004] gives a number
of physical and psychological motivations for this: increasing bandwidth
is usually easier to achieve (adding parallel processing units can linearly
increase throughput, but it does not change latency) while latency is often
caused by distance (a 300-m Ethernet connection can never reach a latency

1.1 Parallel processing 13

 1

 10

 100

 1000

 10000

 1 10 100

R
el

at
iv

e
ba

nd
w

id
th

 im
pr

ov
em

en
t

Relative latency improvement

Latency improvement =
bandwidth improvement

Microprocessor
Memory
Network

Disk

Figure 1.5: Log-log plot of bandwidth and latency milestones between
1982 and 2003. Note that latency improved only about 10× while
bandwidth improved about 100× to 1000× [Patterson, 2004].

lower than 1 µs, due to the time of flight), and bandwidth often sells more
than latency (most people are more accustomed to dealing with bandwidth,
the benefits of a 10-Gbps network are likely easier to explain than a 10-µs
latency). He concludes that, therefore, this disparity will continue in the
future. Systems architects should thus try to cope with high latency, rather
than hoping for technological advances that reduce it.

Yet, in a shared-memory communication network, latency has much
more influence on performance than bandwidth. When a processor wants
to read from a remote data word, a read request is sent over the network to the
node where this word is located, and the reply with the data contents is sent
back. During this time, the processor cannot continue. And while higher
bandwidth can reduce the transmission time, the other latency components
are not, or sometimes even negatively, affected by bandwidth. So in the end,
it is the message latency that determines the remote memory access time, and
therefore, the performance of a shared-memory multiprocessor machine.

Hiding latency

Although it is usually most effective to solve problems at the root, in this case,
to reduce latency, there are several techniques that are often able to effectively
hide latency. A well-known technique is a cache which tries to hide the

14 1 Introduction

latency of a DRAM access by keeping often-accessed data in a small, much
faster SRAM memory. Caches can be used effectively in shared-memory
machines also, provided coherence is maintained properly (if the system
allows multiple caches to have a copy of the same address, these copies
need to be kept synchronized). This way, in a typical configuration less
than 1% of all memory accesses to remote memory cannot be satisfied by a
processor’s local cache and require network communication. However, due
to the extreme difference in latency between a cache hit (a few nanoseconds
for a level-1 cache) and a remote memory access (up to several microseconds),
this 1% is enough to significantly restrict the performance of large parallel
machines.

A technique to cope with high latency memory accesses is Out-of-Order
(OOO) execution. A processor supporting OOO execution of instructions
allows the execution of non-dependent instructions to be re-ordered. For in-
stance, while waiting for a long-latency memory load operation, instructions
that do not need the data that is being fetched, can be executed. This way,
the long load is overlapped with useful computation, the processor stays
busy and no time is wasted so the latency is effectively hidden. However,
the number of instructions that do not depend on the load is usually limited
to a few dozen. Also, the hardware needed to re-order instructions grows
quickly when allowing it to look further down the instruction stream for find-
ing non-dependent operations. In current microprocessors this instruction
window is never more than a few hundred instructions large. This translates
to an ability to overlap 10-100 ns of latency, insufficient to completely hide a
single remote memory access.

In situations where communication is explicit (message-passing architec-
tures), another method is possible: when the latency of a message is known
at compile-time, the scheduling of communication and computation can be
made such that messages are sent sufficiently in advance so that they are
received by the target processor before they are needed. This mimics OOO
execution in that communication and computation are overlapped, but can
be done at much longer time-scales because the programmer (or compiler)
has a much larger view of the program than the processor has (up to the
complete program versus a few hundred instructions).

A shared-memory equivalent of scheduling communication is to insert
prefetch instructions. These instructions start the load of a certain data
word, so that it is already in the cache by the time the word is needed. It
is however not always possible to predict in advance which data will be
used later, or how much in advance the prefetch instructions need to be
placed since both can be data-dependent, and vary when the same code is
executed on machines with different implementations. Moreover, it requires

1.1 Parallel processing 15

significant intervention by the programmer, who would again need an inti-
mate knowledge of the target architecture. This is against the philosophy of
the shared-memory paradigm, which states that communication should be
implicit and invisible to the programmer, and that code should be portable
across machines with different implementation details. The practical use
of prefetch instructions to hide long-latency remote memory operations is
therefore limited.

Communication network requirements

We have established that a good communication network provides low la-
tency, so that remote memory accesses can be completed quickly and most
time can be spent on computation, rather than communication. Part of this
latency is limited by the technology available, another part can be influenced
by choosing a good network topology and making other architectural de-
cisions. The main goal should be to reduce congestion, as this is the main
source of network delays that the network designer can affect. Congestion
can be avoided if network traffic were to be spread out evenly through time
(no sudden bursts of traffic) and space (no hot-spots in the communication
pattern). Unfortunately, reality does not exactly cooperate.

As we will further explore in Chapter 3, the network traffic that can
be measured on the communication network of a realistic shared-memory
machine, running a real application, is far from uniform. Most nodes com-
municate mainly with just a few other nodes, causing hot-spots on some
network links while others are barely used. Also, communication tends to
occur in bursts. These are short periods of intense communication between
two nodes, followed by long periods during which relatively little commu-
nication occurs. This makes the network traffic highly non-uniform in both
space and time. Network links are thus loaded irregularly, periods of high
load and high congestion are followed by periods of low load. Dimensioning
all links for their peak loads would not be economical, since this peak load is
attained only for short periods. Also, when viewing the network at one point
in time, the different links of a network exhibit different loads. A network
topology could be designed that would optimally accommodate this spa-
tial traffic distribution, in combination with a process and data distribution
that minimizes distances for most of the traffic. Unfortunately, the optimal
topology and placement usually change quite radically through time.

16 1 Introduction

Towards reconfigurable networks

An ideal solution for this problem would be a reconfigurable interconnection
network: one that is able to change its topology through time, so that at
each point in time the topology is optimal for the current traffic pattern.
Solutions to this problem are being developed in the electrical domain. But
in the near future, rising bandwidth density requirements will call for a
replacement technology such as optical interconnects. It is the aim of this
work to explore the possibilities of reconfigurable optical interconnects, and
to describe and analyze a possible implementation of such a network using
novel reconfigurable optical components, applied to the context of shared-
memory multiprocessor machines.

1.2 Optical communication

I speak Spanish to God, Italian to women,
French to men, and German to my horse.
— Charles V

Electrical interconnects are running into several limitations. Differential
latency (skew) limits the parallelism that can be used on connections of over
a few centimeter, the serialization that is therefore required increases latency.
Power requirements and cross-sectional area are steadily increasing. Even
for short connections, such as those between a processor and its memory over
a Printed Circuit Board (PCB), frequency-dependent losses are becoming a
problem requiring the use of complicated techniques such as pre-emphasis.
Cross-talk is a big issue, even when using Low Voltage Differential Signaling
(LVDS). Since processing power, and therefore bandwidth requirements, are
expected to keep increasing exponentially, a solution will have to be found
quickly.

1.2.1 Data communication using light

An alternative to using electrical signals to carry information, is to use light.
A laser provides a coherent light source, which is modulated – either by
turning the laser on and off, or by using a separate modulator component
– by the data stream that is to be transmitted. This light is sent through

1.2 Optical communication 17

a waveguide, such as an optical fiber, which guides the light to the receiver
where a photodetector converts it back to an electrical signal.

Power usage, volume and cost of an optical connection depend on the
required bandwidth and the distance the connection needs to span. Since
those properties often scale slower for higher bandwidth or longer distances
than for electrical connections, in many cases optics is the best choice, espe-
cially for high bandwidth, long distance connections. Other advantages of
optical communication include the insensitivity to interference, both from
adjacent connections – light cannot leave one optical fiber and enter an adja-
cent one4 – and from external Electro-Magnetic Interference (EMI) caused by
for instance the proximity of strong magnetic fields. Also, the information
stream of several Gbps is modulated onto a carrier of a much higher fre-
quency (usually infrared light with a wavelength of 850 or 1550 nm, which
corresponds to a frequency of 350 or 192 THz, respectively). To the wave-
guide, the data itself only seems like a very small variation in frequency.
It is therefore much easier to increase the bandwidth of the connection,
by increasing the modulation frequency or by using Wavelength Division
Multiplexing (WDM), without significant impacts on the required quality of
the optical fiber. In contrast, electrical communication uses much more of
the theoretically available bandwidth of, for instance, a coaxial cable or PCB
track.

Fundamental bandwidth density limitations

The maximal bandwidth achievable over an electrical interconnection is lim-
ited by conductor and dielectric material imperfections. Miller and Ozaktas
[1997] derived a theoretical limit on the information bandwidth attainable
over a non-repeatered connection of a given length and available cross-
sectional area, even when the physical parallelism realized within this area
is optimized. The limit is of the form B ∼ B0A/l2, where B is the bandwidth,
A the cross-sectional area, l the interconnection length and B0 a factor in the
range 106–109 Gbps (dependent on the feasibility of certain materials, topolo-
gies and features at different scales). This (presently still large) theoretical
limit is reduced by dissipation and extra spacing required to limit crosstalk
between adjacent interconnections. In practice, the bandwidth of electrical
interconnections is therefore limited by the trade-off among interconnection
length, available cross-sectional area and power dissipation.

For optical communication, this trade-off is different. Attenuation of
light can be made to be as low as a few dB/km, and is almost indepen-

4This assumes the fibers are more than one wavelength (a few micrometers) apart. On a
PCB, this is normally the case; on-chip, this requires more careful design.

18 1 Introduction

Figure 1.6: Power dissipation of electrical versus optical interconnects
as a function of data rate [Feldman et al., 1988]

dent of the information bandwidth. The attainable bandwidth and required
power of optical links therefore change much slower as a function of the
interconnect distance. This means that, for a given bandwidth and available
cross-sectional area, above a given distance optical communication will be
at the advantage. Feldman et al. [1988] make such a comparison, shown
in Figure 1.6. The optical power output by the laser does not vary (much)
for changing distances or data rates, the electrical power of the electrical-
to-optical conversion circuits changes only with data rate. In contrast, the
power required by an electrical link grows (approximately) linear for higher
data rates and quadratic with longer distances. This means that, for a given
data rate, optical links will require less power than electrical links from a cer-
tain distance onward. Conversely, since the required bandwidth increases
throughout the years to keep up with higher processing speeds and densities,
the distance at which optics beats electronics is ever shorter.

This theoretical derivation is followed in practice: optics is being used for
ever shorter ranged communication, as is shown in Figure 1.7. Intercontinen-
tal communication cables have been using optical technology since the 1980s.
Currently optical Local Area Networks (LANs) are finding mainstream us-
age. Optical communication at the PCB level has been demonstrated in lab
settings [Brunfaut et al., 2001; Mohammed et al., 2004; Bockstaele et al., 2004;
Schares et al., 2006] and is currently making its way into commercial appli-
cations. Even for on-chip communication, optics may soon become reality
[Haurylau et al., 2006; O’Connor et al., 2007; Van Campenhout, 2007].

Application large networks long cables short cables

Range multi-km 10–300 m 1–10 m
Use of optics Since the Since the Present time,

1980s 1990s or very soon

inter-PCB intra-PCB intra-package intra-chip

0.1–1 m 0.1–0.3 m 5–100 mm 0–20 mm
2005–2010 2010–2015 Probably Later
with effort after 2015

Figure 1.7: The physical interconnect hierarchy: digital interconnec-
tions can span widely different distances. Optical interconnections
are being used over ever shorter distances [Benner et al., 2005].

20 1 Introduction

1.2.2 Short range optical interconnects

When comparing the interconnect technologies used on different distance
scales, one important shift in attitude becomes apparent. Information can
never travel faster than the speed of light (c = 300.000 km/s, or about 3 ns
per meter). At long distances (multiple kilometers) this introduces a delay
of several microseconds or even milliseconds. This time dwarfs most other
delays associated with the communication, such as the time required for
serializing/deserializing, resynchronization, protocol overhead, etc. There-
fore, a long optical link is optimized only for high bandwidth, not for low
latency.

At short distances, this situation reverses. Here the communication link
is designed on a much lower architectural level: the link is no longer a
connection between different systems, but is an integral part of the system
itself, connecting its components. To distinguish this from a communication
link, which is designed as being external to the system, the term interconnect is
often used in this context. In practice, this means that much more emphasis
is placed on latency, rather than bandwidth (at this level of the system
hierarchy, where components are closely connected, it is far more difficult
to tolerate latency). And since the speed of light is no longer the main
bottleneck (the time-of-flight for links of under one meter is less than 5 ns),
reducing latency of the link components will constitute an important design
effort [O’Connor, 2004].

To this end, short distance interconnects are often parallel, not just to ob-
tain higher bandwidths but also because this avoids the delay of serialization
and deserialization. From a physical point of view, the loss in the transmis-
sion medium has much less influence here: multi-km optical fibers typically
have a loss of under 1 dB per kilometer, while short-range interconnects can
tolerate several dB per meter. This allows for the use of much cheaper glass
or even plastic optical fiber. It also allows more components (connectors,
beam-splitters, . . .) to be placed in the light path. Finally, component cost
has a much higher influence. Multi-km links have only a few transmitters
and receivers, these can be bulky (several cubic centimeters) and expensive
(€1000+ per component). Inter-chip optical interconnect, on the contrary,
requires hundreds of single-bit links between two chips placed only cen-
timeters apart, so each component needs to be very small (often integrated
into 2-D arrays, with each component occupying less than 1 mm2) and cheap
(at most a few euro per link).

A possible integration approach of such a chip-to-chip, optical intercon-
nection is shown in Figure 1.8. 2-D arrays of Vertical-Cavity Surface-Emitting
Laser (VCSEL) transmitters and photodetectors, each on a piece of III-V ma-

1.2 Optical communication 21

fiber bundle

pac age
k

CMOS s bstrate (op s e visible)
u t id

i e sem tt r d e ret cto s

PCB

c
n

to
on ec r

solder balls

Figure 1.8: Artist’s impression of a possible opto-electronic integra-
tion approach [De Wilde, 2007]

terial such as Indium Phosphide (InP) or Gallium Arsenide (GaAs), are flip-
chip bonded onto a Complementary Metal-Oxide-Semiconductor (CMOS)
chip which contains the computing elements, as well as the amplification and
synchronization circuits completing the optical link [De Wilde, 2007]. This
provides for a very tight integration between processors and their optical in-
terconnections. From a manufacturability standpoint it would be beneficial
to more tightly integrate the VCSELs into the CMOS chip. It is not feasible to
make the VCSELs directly from silicon, since the indirect bandgap makes it
inefficient to generate light with it. Therefore the hybrid approach using III-
V compound semiconductors is required. At first those were wafer-bonded
onto the CMOS die, later, heterogeneous integration allowed InP to be de-
posited directly onto a Silicon-on-Insulator (SOI) substrate so that VCSELs,
photodetectors and SOI optical waveguides can be created entirely using
CMOS compatible processing [Roelkens et al., 2007; Van Campenhout et al.,
2008]. Still, all-silicon photonics, the holy grail of opto-electronic integration,
is not impossible. The light-generation problem of silicon can be avoided by
generating light using an external source, and modulating this light using
silicon modulator components. This approach is being followed by Intel’s
labs [Mohammed et al., 2004], among many others.

Using this collection of technologies, a much closer pitch can be used
(100 µm or less) than is attainable using electric pins, yielding potentially
10,000 links per chip allowing highly parallel connections to be made.
Putting this many electrical data pins on a single chip is challenging at
best, routing them on a PCB is next to impossible.

22 1 Introduction

1.2.3 State of optics in computing
Optical interconnections are being used already in very large multiprocessor
machines. Ethernet, the most popular technology for LANs, has optical
varieties from the 1 Gbps standard onwards. From there, other technologies
evolved that focus more on low latency, making them more suitable for
tightly interconnecting processors into one large server or supercomputer
(as opposed to networking multiple computers, which assumes a much
looser coupling, both through higher hardware latency and on a software
level). Notable examples include FDDI [1987] and Myrinet [Boden et al.,
1995]. Optical Storage Area Networks (SANs) such as Inifiniband [2000],
normally used to connect servers and their storage media, are also being
used in for instance NASA’s Columbia supercomputer [Biswas et al., 2005].
In most of these cases, optics is used for connecting racks of equipment
into one very large supercomputer, or at the inter-board (backplane) level.
The optical links are viewed as drop-in replacements for electrical cables,
providing higher bandwidth and lower power requirements.

For shorter connections, between chips on the same PCB, only very few
commercial examples can be found to this date. Yet the advantages are clear:
higher parallelism lowers packet latency, larger bandwidth reduces conges-
tion which again has a positive influence on latency. More connections per
chip allow the construction of networks with higher fan-out, lowering the
average inter-node distance. Also, since distance has much less influence
on the design of a link, it is possible to use similar technologies both for
short distances (processors on the same PCB) and for longer connections
(between processors on opposite sides of the machine, up to several me-
ters). It is therefore our expectation that optical interconnections are an ideal
match for the problems currently arising in multiprocessor networks, and
that more commercial applications of short-range (under one meter) optical
interconnects will follow very soon [Collet et al., 2000; Benner et al., 2005].

1.2.4 Reconfigurable optical interconnects
Several components used for optical interconnect have properties that allow
for runtime reconfiguration of the network. For instance, tunable VCSELs
have the ability to change the wavelength at which they emit light. This
is ‘invisible’ to the data stream with which the light is modulated. When
this light of variable wavelength is sent through a prism or grating, differ-
ent output destinations can be selected, effectively reconfiguring the com-
munication network. An equivalent architecture can be implemented by
broadcasting the light to several destinations, and equipping the receiving

1.2 Optical communication 23

end with photodetectors sensitive to just a small wavelength band. Other
components such as Micro-Electro-Mechanical Systems (MEMS) switchable
mirrors or liquid crystal components can be placed in the light path to
deviate the light beam and again select different destination nodes in a data-
transparent way.

Similar architectures could be constructed using only electronic compo-
nents, such as FETs influencing a data path or even a full-blown multiplexer.
However, these electrical solutions have a significant impact on the band-
width and latency of the link being switched. The FET or multiplexer effec-
tively works as a low-pass filter on the (base band) communication stream,
placing an upper limit on the data rate.5 In contrast, optical reconfiguration
technologies have a very different way of affecting the signal. Since the data
stream (several Gbps) is modulated on a carrier of much higher frequency
(for instance 350 THz), the material response here is much more uniform.
Dispersion does cause the upper and lower frequency components of the
carrier frequency plus data signal to behave differently (difference in delay,
loss). Shifting the carrier frequency using a tunable laser enlarges this effect.
In practice, however, dispersion affects the maximum bandwidth much less
than would be the case in an electronic reconfigurable system.

Another reason to choose optical reconfiguration over electrical becomes
obvious when the communication links are optical anyway, to support the
high data rates of the future. Conversion from the optical to the electrical do-
main and back is costly (conversion adds latency, power, component costs).
If reconfiguration can also be done in the optical domain, this conversion
step is avoided. In telecommunication, much research is done in Optical
Packet Switching (OPS), the aim being to convert a signal to the optical do-
main once at the sender, do all routing through the network using optics,
and only at the final destination convert the signal back to the electronic do-
main. An important research domain here is Optical Burst Switching (OBS)
[Neilson, 2006; Shacham et al., 2005]. With this technique a large number
of data packets with matching destinations are aggregated. This is needed
to limit the overhead of for instance optical labels, which are used for rout-
ing the packet through the network. Of course, aggregating packets (i.e.,
intentionally delaying them) is not very useful when low latency is such an
important design objective. This makes that techniques and results from the
OBS research field will need to be adapted to be useful in an interconnect
setting. Also, because it is applied to long-distance communication, OPS of-

5For instance, the clock speed attainable using a Field Programmable Gate Array (FPGA) is
usually an order of magnitude slower than that of a hard-wired circuit – precisely because of
the FPGA’s reconfigurability, which introduces extra logic in the signal paths.

24 1 Introduction

ten uses expensive components that are too bulky and power hungry. They
are therefore not suited for on-board or on-chip integration.

Cheap, small and low-power components, acceptable for use in intercon-
nects, have different characteristics. The tuning speed of a tunable laser for
instance ranges from a few nanoseconds for telecom lasers [Akulova et al.,
2002] to several hundred microseconds for VCSELs suitable for intercon-
nect [Chang-Hasnain, 2000]. This means that, in short-range applications,
packet switching using tunable lasers is probably not feasible, because in
this situation the laser would need to be re-tuned for every packet (the total
time a packet spends in the network is usually no more than a few hundred
nanoseconds). Other components mostly have the same limitations. Liquid
crystals suitable for use in reconfigurable optical interconnects, for instance,
have a switching speed of several milliseconds [d’Alessandro and Asquini,
2003]. Finally, several telecom-related switching techniques require strongly
coherent light sources. Cheap VCSELs and multimode, or even plastic, op-
tical fibers used for interconnect cannot provide this. Therefore, alternative
schemes to optical packet switching will have to be used, such as circuit
switching, which keep the network configuration constant for longer peri-
ods of time.

1.3 Reconfigurable processor networks

In Section 1.1.3, we established that shared-memory multiprocessor ma-
chines have difficulties tolerating high latencies in their interconnection net-
work. Communication times are often significant compared to computa-
tion times. Moreover, the very nature of the shared-memory programming
paradigm, which insulates a programmer from the implementation details
of the machine, makes it difficult to schedule communication effectively in
order to hide latency. Further, the traffic pattern that is exhibited on the
communication network is far from uniform. This makes a static, uniform
network a bad match for the requirements imposed by the network traffic,
but suggests that reconfigurable networks should be used instead. Finally,
since processing power and densities will continue to rise, electrical inter-
connects are expected to reach their limits very soon, a problem that will
likely be solved by using optical interconnection networks.

Therefore, we feel that using reconfigurable optical interconnection net-
works inside shared-memory multiprocessor machines is a viable solution.
It is this idea that is explored, at an architectural level, in this thesis. Our goal
is to present a reconfigurable network architecture, that can be implemented

1.4 Contributions 25

using existing and future components that are suitable for use in a low cost,
reliable interconnection network. We will characterize the performance of
this proposed architecture under several workloads. To do this characteri-
zation effectively, we also propose a number of techniques that can speed up
the evaluation of these networks. Since our techniques can present a more
realistic workload to the interconnection network under test, compared to
existing methods of network evaluation, they should also prove useful in the
design of other, non-reconfigurable or non-optical on- and off-chip networks.

If a reconfigurable architecture is to be suitable for use in a short-range
interconnection setting, then all components, including those used to imple-
ment the reconfiguration, must be small, cheap, low power, etc. The main
challenge here will be that this implies a limited reconfiguration speed. This
means that reconfiguration will have to take place at time scales significantly
longer than the life of a single network packet (hundreds of nanoseconds)
or even a remote memory access operation (up to a few microseconds). Still,
as will be evident from our characterization of network traffic in Chapter 3,
there is enough locality to be found at longer time scales, making slow
reconfiguration a viable method for improving network performance.

1.4 Contributions

The scientist is not a person who gives the right
answers, he’s one who asks the right questions.
— Claude Lévi-Strauss

This section gives a short overview of the research work performed for this
thesis. Through the IAP program, a close collaboration was maintained
with the TONA department of the Vrije Universiteit Brussel (VUB), headed
by prof. dr. ir. Hugo Thienpont. For joint efforts, their contributions are
acknowledged. References are provided for the main publications where
this work first appeared. A more detailed discussion is given from Chapter 3
onwards.

1.4.1 Communication requirements
Existing works by for instance Duato et al. [2003] or Dally and Towles [2004]
acknowledge that the destinations of network traffic on multiprocessor

26 1 Introduction

interconnection networks are not uniformly distributed. Characterization
of a network architecture is therefore often done using a mix of uniform
and hot-spot traffic. How this mix varies through time, or how the hot-spot
destination nodes change, is usually not very influential on static networks
and is therefore not considered. For reconfigurable networks, however, this
is a very important property: the network must be able to reconfigure itself
fast enough to cope with the dynamics of the network traffic.

Therefore, first of all we have characterized the dynamic behavior of
network traffic, during the execution of a range of benchmark application
programs running on the multiprocessor machine. We found that this com-
munication tends to happen in bursts of elevated communication between
node pairs, on a background of more uniform traffic of lower intensity. Each
burst can last up to several milliseconds, multiple bursts can be active on
the network at the same time. These bursts occur both inside applications
[Heirman et al., 2005], and after context switches if multiple applications are
executed on a single system [Artundo et al., 2006b].

Acknowledgements The work regarding traffic behavior during context
switches was performed as a Masters thesis by ir. Daniel Manjarrés at the
VUB, under guidance of ir. Iñigo Artundo and dr. ir. Christof Debaes. Analy-
sis of communication within programs was a personal effort.

1.4.2 Reconfigurable architecture
Next, a reconfigurable network architecture was created. The choice was
made to have two basic parts in the architecture: a fixed, non-reconfigurable
base network of regular topology, and a reconfigurable part that would make
extra links or elinks between those node pairs involved in a communication
burst. This way, a lot of freedom was given to the reconfiguration algorithm.
Since the base network is always available, no care needs to be taken to
keep all nodes connected or to always provide a reasonable communication
bandwidth among all nodes – the algorithm can completely concentrate on
the speedup of communication bursts. How many elinks a given architecture
can provide, and the limitations on which elinks can be active concurrently,
are left as parameters that will be determined by an actual implementation.
One such implementation has been proposed in [Artundo et al., 2006a] using
a Selective Optical Broadcast (SOB) device.

Acknowledgements The general architecture was conceived jointly with
my advisor dr. ir. Joni Dambre, for the selective broadcast implementation
I had input from ir. Iñigo Artundo. The SOB device was developed at the

1.4 Contributions 27

VUB, initially by dr. ir. Lieven Desmet and is now being completed by ir.
Iñigo Artundo.

1.4.3 Tools for design-space exploration
Since the temporal behavior of the network traffic is decisive for perfor-
mance, any experiment that aims to characterize network performance
should keep this temporal behavior intact. In practice, this usually means
that the benchmark application that generates the network traffic must be
run entirely. Existing techniques such as sampling change the burstiness
of the communication pattern and are therefore not suitable, leaving net-
work designers with full simulations as their only choice once a certain
level of accuracy is required. Therefore, there was room for a set of new
techniques to speed up the evaluation of reconfigurable networks. Three
such techniques are explored as part of this dissertation. Two of them are
performance prediction tools. The first one is a memory access latency pre-
diction tool, published in [Heirman et al., 2008a], with an earlier version
appearing in [Heirman et al., 2007b]. A second prediction model accounting
for congestion is described in [Heirman et al., 2006]. The last technique is a
method of statistically generating network traffic with the required temporal
behavior, which allows one to use a shorter trace than a complete execution
of the benchmark program [Heirman et al., 2007c]. Together, they form a
range of techniques to evaluate reconfigurable network performance, each
of them with a different trade-off between simulation speed and accuracy.
They can help a network designer through the different stages of a design-
space exploration, and were also helpful during this PhD thesis to explore
the performance of reconfigurable networks.

Acknowledgements ir. Wouter Rogiest and ir. Koen De Turck from the
Stochastic Modeling and Analysis of Communication Systems (SMACS)
group, Ghent University, refreshed my knowledge on the queueing the-
ory used in the congestion model. The formulation and evaluation of the
exploration tools are personal efforts.

1.4.4 Performance evaluation
Armed with a simulation environment for doing detailed, accurate simula-
tions, and a set of techniques for fast design-space explorations, we were able
to evaluate different designs of reconfigurable networks being subjected to
the traffic of a range of benchmark applications. A number of design trade-
offs were investigated, including the limitations imposed by both the SOB

28 1 Introduction

design [Artundo et al., 2006a] and by the heuristic reconfiguration algo-
rithms that were used in the implementation [Heirman et al., 2008a]. How
this idea scales to larger networks was explored in [Heirman et al., 2007a].

Acknowledgements The reconfigurable network implementation using
the SOB device was modeled, simulated and characterized in cooperation
with ir. Iñigo Artundo from VUB. The simulation infrastructure was a per-
sonal effort, and built upon Virtutech’s Simics simulator [Magnusson et al.,
2002].

1.5 Structure of this thesis

We begin, in Chapter 2, with an overview of related work, including a brief
survey of the components that can be used in implementing reconfigurable
interconnection networks. Since the behavior of network traffic at differ-
ent time scales is very influential, we devoted Chapter 3 to its analysis. In
Chapter 4, details are given about the reconfigurable network architecture
we envisage, the implementation of an optical reconfigurable network using
the SOB device from the VUB, and the simulation framework that was the
basis of most of the experimental results throughout this thesis. Chapter 5 de-
scribes our techniques to speed up design-space exploration. Chapter 6 uses
these techniques, in addition to classical full-system simulations, to evaluate
the performance gain possible when using reconfigurable networks. Finally,
in Chapter 7 conclusions are made and some links to current and future
work related to reconfigurable interconnection networks are provided.

2
Related work

Mathematitians stand on each other’s shoulders,
while computer scientists stand on each other’s toes.
— R. Hamming

In this chapter, an overview is given of existing work related to this thesis.
First we visit the background of optical interconnect research, and provide
references to system level overview papers, demonstrators, and reconfig-
urable architectures. Next, the optics-related research done at the PARIS
group, where this PhD work was performed, is summarized. Finally, Sec-
tion 2.3 provides some details on reconfigurable components that can be
used in the implementation of a reconfigurable optical network.

2.1 Optical interconnects

The work in this thesis combines several aspects: the view, at a system level,
of reconfigurable optical interconnections applied to large, shared-memory
parallel computer systems, focusing mainly on the interactions between
traffic patterns and the interconnection network. This combination has not
been explored in detail before. Prior art does exist in each of these sub
domains.

30 2 Related work

2.1.1 System level

At the system level, Collet et al. [2000]; Trezza et al. [2003]; Huang et al.
[2003] and Benner et al. [2005] each explore the potential of optical intercon-
nections in several types of computing systems. All agree that optics can be
used effectively in the class of tightly coupled, medium to large scale SMP
systems, in the next five years. On-chip, a similar trend is visible: long,
chip-spanning connections are already slower and more power-hungry than
designers would like, optical replacements are therefore predicted in the
near future by O’Connor [2004]; Kirman et al. [2007] and many others.

Optical interconnects are also being heavily investigated in core network
routers. There, bandwidth requirements are very high, and especially at the
backplane level optics can solve the interconnect density problem that de-
signers currently face. Since long-distance communication is already optical
and most connections to and from this type of router are fibers, continuing
the use of optics further inside the machine is only a logical path. This idea
is explored by for instance Neilson [2006].

2.1.2 Optical interconnect demonstrators

Short-range optical communication, between chips on adjacent PCBs, or
even on the same board, requires the interconnect to be closely integrated
with the Very Large Scale Integration (VLSI) chip. This is so on an architec-
tural level (the interconnect is an internal part of the system, rather than a
connection to the outside world), but also on a physical level. Indeed, go-
ing off-chip through electrical pins to a separate optical transceiver module
adds latency, design effort and again limits the available bandwidth to that
of the pins. A solution providing much tighter integration, which allows
for higher bandwidth and smaller physical dimensions, is to integrate the
optical components on the VLSI chip.

This approach has been explored in the European projects “Optically
Interconnected Integrated Circuits” (OIIC) and its successor “Interconnect
by Optics” (IO), using a setup much like the one depicted in Figure 1.8.
The PARIS research group, where this PhD research was done, took part in
both these projects. The OIIC project (1996-2000) proved the feasibility of
providing on-chip optical access by connecting two FPGA chips in 0.35 µm
CMOS technology through a 2-D-array of 8×8 optical channels, providing
an aggregate bandwidth of 19 Gbps spanning a distance of 12 cm, with
only 10 ns latency for the complete link, including transmitter and receiver
circuits [Brunfaut et al., 2001].

2.1 Optical interconnects 31

Figure 2.1: Fiber ribbon cable connected to the IO demonstrator chip
[De Wilde, 2007]

In the IO project (2001-2005) emphasis was laid on the manufactura-
bility of such a setup, solving practical problems like connectors and fiber
alignment (see Figure 2.1) so that commercial application of this technology
would be possible [Rits et al., 2006].

Several other projects of similar nature are or have been ongoing, both
in academic settings and in industrial labs. For instance, Schares et al.
[2006] describe the Terabus project performed at IBM Research, in which a
set of Terabit/second-class optical backplane interconnect technologies was
developed. Mohammed et al. [2004] report on the current state of Intel’s
research in optical interconnections.

2.1.3 Reconfigurable network architectures
On the reconfigurability side, early work done by Snyder [1982] introduces
the reconfigurable computer. He notes that an adaptive network can make
a parallel computer achieve good performance for a range of applications,
each possessing different communication patterns. Garcia and Duato [1993]
explore routing and reconfiguration algorithms for reconfigurable transputer
networks. Pinkston and Goodman [1994] describe the GLORI system, a
possible implementation of an architecture similar to Snyder’s, using optical
reconfiguration technology.

Recent attempts to implement optical reconfiguration of interconnection
networks include the chip-to-chip (N-to-N) reconfigurable optical intercon-

32 2 Related work

nect reported by Aljada et al. [2006]. Here, the reconfiguration is done by
two arrays of Liquid Crystal (LC) cells driven by a VLSI circuit placed on the
side of a prism-like structure. They generate digital holographic diffraction
gratings to steer and multicast optical beams, this way the paths of 2.5 Gbps
optical links are switched.

Another, 1.25 Gbps free space 1-to-N reconfigurable optical interconnect
is described by Henderson et al. [2006], employing VCSEL-PIN links, and
binary phase gratings on a ferro-electric LC Spatial Light Modulator (SLM).
Beams are steered free-space over a surface of 6.4 mm2 with a resolution of
50 µm.

The “Self-organized micro-opto-electronic system” (SELMOS) is an-
other board-level reconfigurable optical interconnect over film–waveguide
3-D structures [Yoshimura et al., 2003]. It is composed of an embedded
3-D 1024×1024 micro-optical switching system based on waveguide-prism-
deflector switches, and a self-organized optical network, that couples light
paths between two waveguides automatically.

Other architectures, some of which have been developed into demonstra-
tors, include the simultaneous optical multiprocessor exchange bus (SOME-
bus) from Drexel University [Katsinis, 2001], the optical centralized shared
bus from the University of Texas at Austin [Han and Chen, 2004], and
Columbia University’s data vortex optical packet switching interconnection
network [Hawkins et al., 2007].

2.2 Photonics projects at ELIS

This PhD work was performed at the PARIS research group of the ELIS
department at Ghent University, Belgium. This group has been involved in
a number of projects on optical interconnects. A short overview of those
projects is now given, each of which in some way influenced this work.

2.2.1 IAP PHOTON and photonics@be
The “Inter-university Attraction Poles” program, funded by the Belgian Fed-
eral Science Policy Office, aims at giving a temporary impetus to the forma-
tion of inter-university networks of excellence in basic research. Phase V ran
from 2002 to 2006, in the 18th PHOTON network seven Belgian, Dutch and
French universities were combined under the title “Photons and Photonics:
From basic physics to system concepts.” Work package 4 of this project,
“Reconfigurable Optical Interconnects,” combined research into both the

2.2 Photonics projects at ELIS 33

components needed to perform optical reconfiguration, and this work on
the architectural exploration of reconfigurable networks for multiprocessor
systems. In 2007, this research was continued through the next phase of
the IAP program as IAP VI-10 “Photonics@be: Micro-, nano- and quantum-
photonics.”

Frequent contact with research groups doing the actual physics, and
designing optical components and optical interconnection links, proved very
valuable to provide me with background information and kept me in touch
with developments on those fronts.

2.2.2 Optical demonstrators

Two optical chip-to-chip interconnect demonstration projects in which the
PARIS research group took part, OIIC and IO, have been mentioned in Sec-
tion 2.1.2. Both projects were co-operations between industry and academia
throughout Europe. Much of the VLSI design, and the final integration and
characterization of the prototypes for both projects was done at the PARIS
group. Also, the link uniformity among the IO demonstrator’s 64 channels
was studied extensively. This property will dictate, for instance, to what
extent clock synchronization circuitry can be shared between parallel chan-
nels. This would result in large area and power savings, and turns out to be
within reach in carefully designed systems [De Wilde et al., 2008].

These projects, tightly integrating VLSI chips with optical interconnec-
tions, are closely related to how an actual implementation of this work
might look. The values of several technological parameters that were re-
quired in this work have therefore been chosen based on the properties of
these demonstration projects.

2.2.3 On-chip

Following the expected trend for ever shorter ranged optical intercon-
nects, the OIIC and IO projects were followed by the on-chip optical in-
terconnect project “Photonic Interconnect Layer on CMOS by Waferscale
Integration” (PICMOS) (2004-2007). Here a photonic communication layer
was integrated onto a CMOS chip, for communication over distances of at
most a few centimeters. Since the end of OIIC and IO, the technology allow-
ing heterogeneous integration of InP on SOI substrate had advanced enough
so the VCSELs and photodetectors could now be placed anywhere on the
chip, without the need for separate, flip-chip bonded III-V wafers. On-chip,
optical point-to-point communication thus became a reality.

34 2 Related work

The PARIS research group was responsible for setting up a design
methodology for the optical interconnects [O’Connor et al., 2007]. This way,
optical connections can be designed, analyzed and simulated, in a manner
not too different from electrical interconnections. This drastically lowers the
design efforts, paving the way for broad adoption by chip designers.

PICMOS is being succeeded by the “Wavelength Division Multiplexed
Photonic Layer on CMOS” (WADIMOS) project (2008-2010) which aims to
create an optical Network-on-Chip (NoC), integrating an 8×8 optical router
and all necessary optical and electronic components onto a highly integrated
System-on-Chip (SoC), such as the chip powering a set-top box. When ap-
plied to a Multi-Processor SoC (MPSoC) and equipped with tunable VCSELs,
this setup would enable an on-chip reconfigurable optical multiprocessor
network, effectively realizing a single-chip version of the architecture pro-
posed in this work.

2.3 Reconfigurable components

This section gives a non-exhaustive overview of the optical components that
can be used to implement a reconfigurable network. Since this work is fo-
cused more towards computer architecture, rather than micro-optics, our
description will mainly focus on the properties that affect the network’s ar-
chitecture, of which reconfiguration time is the most important. References
are provided in which a detailed explanation of the components’ operation
and design trade-offs can be found. Also, the fabrication costs, reliability,
etc., can vary wildly, and are in constant flux due to ongoing developments.
Therefore, we will not try to come up with the optimal reconfigurable net-
work architecture using one specific component (although, as an example
we do analyze one possible implementation in more detail, see Section 4.2),
but rather give a general overview of some components and architectures.
A more thorough evaluation is left as future work, and will have to be done
with more specific consideration of the cost, reliability, performance and
other requirements imposed by the envisioned application.

2.3.1 Tunable VCSELs
Vertical-Cavity Surface-Emitting Lasers (VCSELs) consist of two Distributed
Bragg Reflector (DBR) mirrors parallel to the wafer surface with an active
region for the laser light generation in between. The DBR mirrors consist
of layers with alternating high and low refractive indices. Each layer has

2.3 Reconfigurable components 35

Figure 2.2: Schematic of a cantilever MEMS tunable VCSEL [Nabiev
and Yuen, 2003]

a thickness of a quarter of the laser wavelength, resulting in a very high
reflectivity. The main advantage of VCSELs is that they emit light vertically
(i.e., perpendicular to the plane of the substrate). Therefore, they can be
tested in an early stage of fabrication (edge-emitting lasers have to be cut out
first) which reduces their cost, and allows a tight integration into 2-D arrays
with a pitch of less than 100 µm. This makes them ideal for low-cost, high
bandwidth-density applications such as short-range optical interconnect.

By changing the distance between the DBR-mirrors, the wavelength of
the VCSEL can be tuned. One way to do this is to suspend the top mir-
ror freely above the laser cavity, supported via a cantilever structure (see
Figure 2.2). By applying a voltage difference, the cantilever can be moved
electrostatically, changing the cavity length and thus the VCSEL’s output
wavelength. The tuning speed is determined mostly by the dimensions of
the cantilever structure (usually between 25–100 µm), and is typically in the
range 100 µs–10 ms. Depending on the distance over which the mirror can
be moved, a tuning range of 10–50 nm can be achieved [Chang-Hasnain,
2000; Nabiev and Yuen, 2003; Filios et al., 2003; Koyama, 2006].

Faster tuning

Instead of the cantilever DBR-mirror, other approaches are also possible.
Huang et al. [2008] describe a tunable VCSEL in which the top mirror is
replaced by a high-contrast sub-wavelength grating (HCG), which is much
smaller (a factor of ten in all three dimensions). The size, weight and thus
the tuning times are therefore a thousandfold smaller than that of a classic
DBR-mirror based VCSEL.

36 2 Related work

Another method is to divide the DBR-mirror into multiple sections, each
of which can be activated independently which changes the laser’s wave-
length in discrete steps [Akulova et al., 2002]. Since no moving components
are involved, tuning can be as fast as a few nanoseconds. However, very
complicated processing technology makes their manufacturing difficult [Na-
biev and Yuen, 2003], the application of these types of fast tuning lasers is
therefore limited to telecommunication applications.

Finally, one can place multiple VCSELs with different wavelengths in
such an arrangement that they emit their light into a single fiber [Hu et al.,
1998]. If all these lasers are activated at the same time, this enables an in-
tegrated WDM approach which can be used if even higher bandwidths are
required. By using one laser at a time, a tunable laser is created in which the
wavelenght switching happens electronically, i.e., almost instantaneously.
However, this approach only supports a small number of discrete wave-
lengths, rather than the continuous range of wavelengths obtainable from a
regular tunable VCSEL.

2.3.2 Liquid crystal switches
Liquid Crystals (LCs) are most known for their application in displays. They
consist of a thin layer of molecules, sandwiched between two glass plates.
When a voltage is applied over the plates, the molecules align themselves
with the electric field. When the field is removed, the molecules slowly
(in a matter of milliseconds) return to their initial state. Depending on the
orientation of the molecules, a polarized light beam undergoes a change in
polarization. In combination with fixed polarizers, an element is thus created
that can be made transparent or opaque in response to an electric field,
making up the basic element or pixel of a display. Using this on-off capability
of a LC, an optical switch is made which may form the basic building block
of a reconfigurable network [d’Alessandro and Asquini, 2003].

Another property of liquid crystals becomes apparent when they are used
in-plane, i.e., light is transmitted parallel to the glass plates: the refractive
index changes in response to the applied voltage [Beeckman et al., 2006]. This
effect can be used to steer an optical data beam towards one of a number of
output channels, providing an alternative reconfigurable network building
block.

The main problem, when used in our context, is the slow switching speed
of liquid crystals. Especially the relaxation phase can be slow, since, after
removing the electric field, one essentially has to wait until the molecules
have reverted to their initial orientation, which can take up to 10 ms. A pos-
sible solution can be found in ferro-electric liquid crystals. In contrast to the

2.3 Reconfigurable components 37

Figure 2.3: SEM micrograph of a 500-µm diameter, 45° rotating beam
steering MEMS mirror [Lucent Technologies]

more traditional, nematic LCs, the ferro-electric variety is bistable: they can
be alternated between two states with different polarization, both of which
require a different and opposite electrical field. Because both orientations are
now forced by the field, faster switching times (around 10–100 µs), are pos-
sible [Clark and Handshy, 1990; Gros and Dupont, 2001]. Optical switches
using this technology have been demonstrated [Crossland et al., 2000; Aljada
et al., 2006; Henderson et al., 2006].

2.3.3 MEMS mirrors

With Micro-Electro-Mechanical Systems (MEMS) technology, small (500-µm
diameter and less) movable mirrors can be created that rotate in response
to an electric field, with a 400 µs switching time [Lee et al., 1999]. This
way, either an on-off or a 1×2 switch can be made. Pardo et al. [2003]
use this basic building block to build a completely non-blocking, single-
stage optical cross-connect with up to 1100 in- and output ports. They
claim complete data transparency (bit rate and data format independence),
compactness, moderate switching speed and high reliability. As with most
of these components, which are targeted towards the telecommunications
market, their cost may be an issue though for applications in an interconnect

38 2 Related work

Figure 2.4: The Selective Optical Broadcast element distributes the
signal from each input source to nine destinations [Artundo et al.,
2006a].

setting. Devices with a 2-D array of these mirrors are used as digital cinema
projectors (e.g., Texas Instruments’ Digital Mirror Device [Dudley et al.,
2003]). Evolutions of this technology, enabling wide-spread use in home
cinema projectors, could at the same time make this technology available for
short-range interconnects.

2.3.4 The SOB system
A technique aiming for low-cost applications and specifically targeted to op-
tical interconnect, Deep Proton Writing (DPW), is in use at the Vrije Univer-
siteit Brussel (VUB). This technique uses a focused ion beam, with energies
of a few mega-electron volt (MeV), to write into a piece of PMMA plastic
[Van Kan et al., 1999]. This way, features smaller than 100 nm can be created,
which is suitable for the definition of micro-optical components. Since the
ion beam has to be scanned over the component, the process is rather time-
consuming (several hours of access time on a proton accelerator is required).
It is therefore in itself not a cheap technique, although it does allow one to
rapidly create prototypes, which can later be the master component for mass
fabrication using cheap replication techniques [Debaes et al., 2006].

One set of components fabricated using DPW is the Selective Optical
Broadcast (SOB) system [Artundo et al., 2006a, 2008b]. It is composed of
a right angle prism, an input array of diffractive microlenses with a 3×3
splitting grating and an output array of refractive microlenses. This way

2.4 Thread and data migration 39

it implements a selective broadcast, in which light from the input sources is
broadcast each to its own (overlapping) subset of destination nodes (see
Figure 2.4). Since the number of broadcast destinations is fixed rather than
growing with the total number of outputs, this device allows for scalable
designs. This is to be put into contrast with for instance a star-coupler which
does all-to-all broadcasting. In this case the required transmitted power, and
the number of required wavelengths if this is to be combined with a WDM
approach, grow linearly with the number of destinations.

2.4 Thread and data migration

An existing technique to cope with changing network requirements is the
relocation, at runtime, of threads across processors and blocks of data across
memories [Chandra et al., 1994]. This way, the same goal as with reconfigu-
ration can be reached: communication over long distances is minimized.

Moving threads is usually done at context switch granularity (tens of
milliseconds). If a thread is observed to communicate heavily with a network
node that is far away, the operating system can consider to move the thread
to this same node, or to a node closer to the node the thread is communicating
with. Data migration is done by changing the virtual-to-physical address
mapping – this way it can be done transparently to the application – which
occurs with page size granularity (8 KiB in our study). Simultaneously the
data is copied to the main memory of another node.

Some studies of data migration on existing machines can be found in
[Chandra et al., 1994; Verghese et al., 1996; Jiang and Singh, 1999; Noorder-
graaf and van der Pas, 1999]. Specifically, Verghese et al. [1996] describe the
implementation of page migration and replication on the Stanford FLASH
[Kuskin et al., 1994] machine. The algorithm’s prevalent time is the reset
interval, which is set to 100 ms. During this time, a memory page needs
to be accessed a minimum number of times in order to be considered for
migration. Clearly, this method will not be of benefit when communication
behavior changes at a time scale faster than those 100 ms.

The obvious advantage of thread and data relocation is that only software
is needed instead of expensive additional hardware. The drawback of a
software based approach is that one is still limited to the topology of the
network. Also, the moving of tasks and data occurs at a time scale of seconds
to minutes. This is quite slow compared to the typical reconfiguration speeds
of the optical components described above. Thread and data migration is
therefore less suitable to respond to rapid changes in application behavior.

3
Traffic patterns

We are drowning in information
but starved for knowledge.
— John Naisbitt

In a typical multiprocessor, millions of packets transit the network every
second. In order to gain insight into how this network traffic interacts with
the network resources, we have to look for patterns in the traffic. This chap-
ter is devoted to analyzing network traffic. How traffic patterns change at
different time scales is studied in Section 3.1. Section 3.2 will in more detail
examine traffic bursts, which is the main mechanism causing locality that
will be exploited by reconfiguration in this work. Next, Section 3.3 compares
thread and data migration, which is the most important existing technology
used to accommodate changing traffic patterns, to reconfigurable networks,
and shows its complementarity to our own approach. In Section 3.4 we
will make the case for our reconfigurable networks, and provide the back-
ground for the architectural decisions we made. The architecture itself of
our reconfigurable networks will be detailed in Chapter 4.

42 3 Traffic patterns

3.1 Time scales

Time discovers truth.
— Seneca

Network traffic can be viewed at at different time scales. At each of these
scales, a different mechanism is at play providing structure to the network
traffic, and, if understood by a network designer, providing insight into how
traffic and network interact. This in turn can lead to opportunities for im-
proving network performance. Figure 3.1 summarizes several mechanisms
and the time scales at which they occur, and provides a comparison with
the switching times of several optical components that can be used in an
implementation of a reconfigurable network.

In Sections 3.1.1 and 3.1.2 we briefly survey how network packets are
routed, and how several packets take part in the execution of one remote
memory access operation. We limit ourselves here to how this was imple-
mented in our simulator, detailed information and other design options can
be found in text books such as [Culler and Singh, 1999] for multiprocessors
in general, or [Dally and Towles, 2004; Duato et al., 2003] which deal with
interconnection networks specifically. Section 3.1.3 introduces communi-
cation bursts: these are periods of elevated communication between node
pairs, caused by regularity in the application running on the multiprocessor
machine. Next, Section 3.1.4 looks at the operating system level and finds
that bursts can also be the result of context switches [Artundo et al., 2006b].
Finally, Section 3.1.5 looks at the applications themselves and how regularity
in the algorithms they implement again gives rise to communication bursts.
For each time scale, we consider what reconfiguration opportunities exist.

3.1.1 Packets: nanoseconds
In Section 1.1.3 we saw that not all nodes can be connected directly. There-
fore, when two nodes without a direct connection want to communicate, one
or more intermediate nodes have to forward the information. To this end, all
information is sent in packets. Each packet has a header which identifies the
source and destination nodes. A routing protocol defines what path packets
should follow between given source and destination nodes. Routing can
be deterministic or adaptive: with deterministic routing the path between a
given node pair is fixed and determined at design time. Adaptive routing

3.1 Time scales 43

Figure 3.1: Time scales relevant in multiprocessor network traffic.
Top: mechanisms of locality in network traffic. Bottom: reconfigura-
tion time of some optical components that can be used to implement
a reconfigurable network. Thread and data migration is an existing
software technique and is included for comparison.

allows the network to change the path, for instance to avoid congested links
or to route around failures within the network. Minimal routing means that
all packets follow the shortest possible path (there may be multiple shortest
paths, adaptive routing will choose one of them). With non-minimal routing
packets can follow longer routes, which on a congested network can still be
the fastest path.

In contrast to telecommunication networks, for interconnection networks
low latency is preferred so routing decisions should be made very quickly.
Also, the routing protocol is implemented in hardware. Therefore, the solu-
tion that is used is usually rather simple. In this work, deterministic, minimal
routing is used, so packets between any given node pair always follow the
same path, which is also (one of) the shortest.

Reconfiguration opportunities Since the link usually has (much) less par-
allel connections than the size of the packet, each packet takes multiple clock
cycles to transmit. This introduces a form of locality: once the header of a
packet traverses a certain link, we know the remainder of the packet will
follow. A reconfiguration opportunity here would be to read the packet
destination, and reconfigure the network such that this packet arrives at its
destination faster. Optical Packet Switching (OPS) can be considered a form
of this: the destination is read optically, components downstream then route
the packet to the right destination without the need for conversion of the
packet to the electronic domain.

Yet, the time one packet spends inside the network is in the order of a few
tens to hundreds of clock cycles, which, at current several GHz clock rates,

44 3 Traffic patterns

corresponds to only a few hundred nanoseconds. This limits OPS, or any
other reconfiguration method at the packet level, to the telecommunication
domain where expensive components with fast reconfiguration times are
available.

3.1.2 Memory accesses: microseconds
Cache coherence throughout the machine is maintained by a directory based
coherence protocol. This protocol is executed by a hardware entity on each
node that is connected to the local caches and memory on one side, and
interfaces to the communication network on the other side. By sending and
receiving network messages, care is taken that multiple copies of the same
data word in the caches on different nodes always have the same value.

Main memory, which is globally accessible and logically uniform, is phys-
ically distributed over all nodes of the machine. Each block of memory, on a
cache line granularity (64 bytes for the UltraSPARC processor, which is used
throughout this work), has a home node, this is the network node where this
data block resides in main memory. Other nodes are allowed to keep copies
of this block in their caches for efficient access, but have to tell this to the
home node, which keeps a directory of where all its blocks are cached. When
a node wants to write to a data block, it can request exclusive access: all copies
of this block in other nodes are invalidated (i.e., removed from their caches),
the directory contains the information that the contents in main memory for
this data block is no longer up to date but that the actual value resides in the
cache of the owner node. When some other node again wants to access this
data, the owner node has to relinquish its exclusive access and send the new
contents of the data block back to the home node, which updates the data
in main memory and also forwards the data to the node requesting access.
Each data block can thus be in three different states: uncached (no node has
the block in its cache), shared (one or more nodes have the block cached with
read-only access permission), or modified/exclusive (exactly one node has the
block cached with read/write permission, the contents of this block in main
memory are outdated).

When we translate these activities from the coherence protocol to network
packets, we get the following packet sequences (also shown in Figure 3.2):

• A request REQ is sent from the node initiating the remote memory
access, to the home node, requesting the data from, or exclusive access
to, a data block. The home node’s response is a REPLY packet which
is sent back to the initiating node, providing the data and/or granting
exclusive access, Figure 3.2(a).

3.1 Time scales 45

Figure 3.2: Possible sequences of packets in a directory-based coher-
ence protocol. (a) no third-party nodes involved, (b) data is in state
modified/exclusive at another node and must first be written back,
(c) data is in shared state at other nodes and must be invalidated.

• When another node (further referred to as third-party node) has the
data block in modified state, the home node sends it a write back request
WBreq, demanding the owner node to give up exclusive access and
write the modified data back to the home node in a WBreplymessage.
This happens between the REQ and REPLY phases, Figure 3.2(b).

• When one or more third-party nodes have the data block in shared
(read-only) state and the initiating node wants to write to it, which
requires exclusive access, the home node sends an invalidation request
INVreq to each of the sharing nodes asking them to remove the data
from their cache. Each node acknowledges this with an INVreply,
Figure 3.2(c).

Note that some nodes can perform a dual role, for instance when a processor
performs a memory access to a data word that has its home on the same
node. Or the home node can at the same time be the owner or a sharing
node, if the processor located on the home node has the data word that is
being requested in its cache. In these situations, some packets will not be
visible on the interconnection network, although the same information is
sent internally in the node (albeit in a more appropriate form for on-board
or on-chip communication, such as over a processor local bus or a set of
dedicated wires rather than in a packetized way).

In a real-world implementation, more situations than those depicted in
Figure 3.2 can arise. When the home node is busy communicating with a
third-party node (i.e., it has sent WBreq or INVreq packets and is waiting for
the WBreply/INVreply messages), and a request from another node arrives
for the same data word, processing of this new request must wait until the

46 3 Traffic patterns

first one is finished. This second request is not buffered at the home node,
since this can cause very unfavorable worst-case memory usage if several
requests are in this situation – remember that the protocol is executed by
special hardware, so resources are limited. Instead, a NAK packet (negative
acknowledgement) is sent back to the second requesting node, causing it to
retry the operation at a later time. Another situation happens when a cache
has a block in modified/exclusive state, but decides to evict it in response to
a capacity or conflict miss. The cache will now, on its own initiative, send the
data back to its home node (this situation is called a cache-initiated write-back).
All these situations are modeled in our simulator, and influence the traffic
on the communication network.

Reconfiguration opportunities The coherence protocol has a request-
response nature. This means that once a request goes through the network,
some time later a reply will come back. Often, this reply contains a data block
and is thus much larger than the request. A complete memory transaction
usually takes less than 1 µs, or a few thousands of clock cycles. Reply pack-
ets, which typically carry about 70% of the data size of all network traffic, can
therefore be predicted at most 1 µs in advance. Similar as for packet-scale
reconfiguration, telecom-grade reconfigurable components could be used to
exploit this reconfiguration opportunity. In an interconnect setting, we will
have to look at even longer time scales.

3.1.3 Communication bursts: milliseconds
McNutt [2000] notes that data references exhibit fractal or self-similar behavior,
this means that similar behavior, in this case locality in space and time, can
be observed at different hierarchical levels. Caches exploit this locality: they
use a small, fast memory to store the value of recently requested data words
(locality in time), and prefetch data that immediately succeeds them (locality
in space). Subsequent accesses to these data words, which are more likely
than random accesses due to the locality effect, can be satisfied from the
cache instead of requiring a much slower access to main memory. More on
the fractal behavior of communication in parallel applications can be found
in [Greenfield and Moore, 2008].

Because of the self-similar behavior, the same locality is present in the
stream of memory requests that miss in the level 2 cache. In practice, this
is caused by the working set of the application being larger than the largest
cache, or because the memory requests concern addresses written to by other
processors. Therefore, network traffic streams should exhibit the same type
of locality.

3.1 Time scales 47

We have analyzed this behavior by measuring communication bursts.
These are periods of elevated communication between node pairs. Their
duration has been measured to be up to several milliseconds. Multiple
bursts are usually active on the network at the same time, on a background
of lower intensity traffic between most other node pairs. Measurements
of burst lengths, the amount of traffic contained in them, and estimates on
how much reconfiguration based on these bursts can help performance, are
shown in detail in Section 3.2.

Reconfiguration opportunities Once it is know that a burst of communi-
cation is occurring between a node pair, the network can be reconfigured
to provide a high-bandwidth, low-latency connection between these two
nodes. If the burst is significantly longer than the network reconfiguration
time, most of the traffic in the burst will benefit from the fast connection,
and the performance of the system improves. Since bursts can be millions
of clock cycles, or several milliseconds long, components such as tunable
VCSELs and (ferro-magnetic) liquid crystals can provide the required recon-
figuration speed.

The difficulty is in predicting when a burst will take place, between which
node pair, and how long it will last for. A possible heuristic is to constantly
measure communication and look for bursts. Once a burst is detected that
has been present for a certain length of time, it can be assumed this burst will
continue and the network is reconfigured. A simplification of this approach
is used in this work: traffic is monitored during time intervals of fixed length,
at the end of each interval the network is reconfigured to optimally match
the traffic pattern that was just measured. When traffic changes slowly in
consecutive intervals, which means that bursts should span several intervals,
this method can give good results, as will be evident from our experiments
later in this work.

3.1.4 Context switching: tens of milliseconds
Most parallel computers run several applications at the same time, with the
operating system time-multiplexing threads among processors. For super-
computers, which mostly run just a single application at a time, this mecha-
nism is usually not very visible. On servers and mainframes, however, it is
all the more so: threads waiting for I/O-activity are often switched out, or a
high number of threads serving different requests time-share a much smaller
number of processors. Every time a processor switches to a different thread,
this new thread needs to load its data set into the cache which causes a large
burst of cache misses. Sometimes all of the thread’s data is in the local mem-

48 3 Traffic patterns

 0

 20

 40

 60

 80

 100

 120

 140

 160

 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5

T
ra

ffi
c

flo
w

 (
M

B
/s

)

Time (s)

Figure 3.3: Traffic observed in and out of a single node through time,
while running four 16-thread cholesky applications on a single 16-
node machine. Solid arrows are shown when a context switch occurs
on this node, dashed lines denote context switches on other nodes
[Artundo et al., 2006b].

ory of the processor’s node, but often remote memory accesses are required.
In this case, the thread switch causes a communication burst. One such
example is the case where a thread just woke up because its I/O-request was
completed, the thread will now read or write new data on another node’s
memory or I/O-interface.

A study of these context switch induced bursts was done in [Artundo
et al., 2006b]. One experiment time-shared multiple SPLASH-2 benchmarks
on the same machine, another used the Apache web server loaded with the
SURGE request generator [Barford and Crovella, 1998] to study a highly I/O-
intensive workload. A clear correlation between context switches and bursts
was found. This is illustrated in Figure 3.3, which shows the traffic gener-
ated by a single node through time and the points where context switches
occurred. Here, four instances of the cholesky benchmark, with 16 threads
each, were run on a single 16-node machine. Solid lines denote a context
switch on this node, at this point a burst of outgoing memory requests is
generated to fill the local cache with the new thread’s working set. Dashed
lines show context switches on other nodes. For some of these, the other
node generates a burst of accesses to memory on this node, again resulting in
a communication burst to the node shown. Other bursts are due to structure

3.1 Time scales 49

in the application as described in Section 3.1.3. Burst duration was again
several milliseconds.

Reconfiguration opportunities Traffic bursts caused by context switches
typically involve intense communication, and can be several milliseconds
long. The opportunities for reconfiguration are therefore similar to those for
traffic bursts inherent to the application, as described before. One added ad-
vantage of context switches is that they are more predictable: the operating
system’s scheduler often knows in advance when a context switch will occur
(at the end of the current thread’s time quantum), at that moment a com-
munication burst will most likely start at the node where the context switch
occurs.1 Also, if the new thread is known, the destination of the traffic burst
can be predicted. The burst is mostly caused by the thread’s working set
being moved into the level 2 cache. Mostly this working set is the same as, or
only slightly different from, the previous time the thread was running. The
destination of the bursts will therefore be the same as the last time the same
thread was scheduled. This information can be used by the reconfiguration
controller, to reconfigure the network pro-actively, rather than reacting to
measured network traffic. In this work, we will not further expand upon
this reconfiguration method, more on this subject can be found in [Artundo
et al., 2006b].

3.1.5 Applications: hours
The application running on the multiprocessor machine, executes a certain
algorithm, which is split up among several processors. Each of the proces-
sors usually works on a subset of the data. One example is the simulation
of oceanic currents, where each processor is responsible for part of the sim-
ulated ocean. Neighboring parts of the ocean influence each other because
water flows from one part to the other. In the same way, information (current
velocities and direction, water temperature) flows between the processors
responsible for these parts. Clearly, if the processors themselves are neigh-
bors on the communication network (i.e., connected directly), this makes
for very efficient communication because a large fraction of network traffic
does not need intermediate nodes. There is a similar communication pattern
in several other physical simulations, where data is distributed by dividing
space in 1-D, 2-D or 3-D grids and communication mainly happens between
neighboring grid points. Other physical mechanisms, such as gravity, work

1Often, the operating system tries to avoid context switches at the same time on all nodes as
this would initiate communication bursts on all nodes simultaneously, this can easily saturate
the whole network.

50 3 Traffic patterns

over long distances. Cosmic simulations therefore require communication
among all processors (although the traffic intensity is not uniform).

An important property here is how many communication partners each
processor has. In some cases, the number of communication partners is
higher than the network fan-out, or the topology, created by connecting
all communication partners, cannot be mapped to the network topology
using single-hop connections only. Then, some packets will then have to be
forwarded by intermediate nodes, making communication less efficient. For
instance, when communication is structured as a tree, which is the case for
several sorting algorithms, it is not obvious how threads and data should be
placed on a ring network. In a client-server architecture, where one thread
is the server which answers questions from all other threads, the fan-out
of the server thread is extremely high. The node that runs this thread will
never have an equally high physical fan-out. In those cases, a large fraction
of network traffic will require forwarding.

Moreover, for some applications each node’s communication partners
change through time. This happens for instance in algorithms where the
work on each data set is not equal, and redistribution of work or data takes
place to balance the workload of all processors. Another situation is in
scatter-gather algorithms, in which data is distributed to or collected from a
large number of nodes by a single thread – which will thus communicate in
turn with different nodes. And sometimes the data set of one processor just
does not fit in its local memory, and has to be distributed over several nodes.
In this case, for part of the data, external memory accesses are required.

In [Heirman et al., 2008b], a different approach is used to characterize ap-
plications. A hierarchical partitioning of network nodes is made, based on
the network bandwidth they consume, such that the bandwidth that leaves
each cluster is minimal. This is similar to how electronic circuits can be
partitioned, where the number of pins (or terminals) leaving the partition
is minimized. According to Rent’s rule [Landman and Russo, 1971], most
realistic circuits are characterized by the existence of a power law relation
between the number of pins external to, and the number of components
inside the circuit partition. The exponent in this power law, the Rent expo-
nent, denotes the amount of locality: a low exponent means that relatively
few connections are needed between clusters at higher hierarchical levels,
signifying that communication is more localized inside smaller clusters. A
bandwidth version of this rule also exists in parallel applications, here the
bandwidth external to a cluster of threads or processors grows as a function
of the cluster’s size, again with a power law relation [Greenfield et al., 2007].
By comparing partitionings based on traffic from different time intervals, the
dynamics of network traffic can also be investigated.

3.1 Time scales 51

Reconfiguration opportunities Regularity in the application is again vis-
ible on the network as communication bursts. Highly regular applications
like the ocean simulation will have bursts, between the nodes simulating
neighboring parts of the ocean, that span the entire length of the program.
For other applications, communication is less regular, but even there, bursts
of significant lengths (several milliseconds) can be detected. They are also
visible in the measurements of Section 3.2, and can be exploited by the same
techniques that exploit bursts caused by other mechanisms explored here.

Another method of exploiting regular communication patterns in the
application is to have the program specify these patterns, and reconfigure the
network accordingly. Since this can be done at a high abstraction level (source
code or algorithmic level), by someone with a view of the complete program
and algorithm (programmer or compiler), it can be expected that this method
allows for very accurate prediction of the communication pattern, and would
therefore result in the largest gains. It does, however, require a large effort to
analyze the application in this way. Moreover, due to dependencies on the
input data, it is not always possible to predict, at compile time, a fraction of
total communication that is large enough to be of benefit.

This last approach was therefore not followed in this work, which instead
focuses on reconfiguration that is completely transparent to the programmer
and to the application. Other work explores this application-driven recon-
figuration in more detail. For instance, the Interconnection Cached Network
(ICN) combines many small, fast crossbars with a large, slow switching cross-
bar [Gupta and Schenfeld, 1994]. By choosing the right configuration of the
large crossbar, a large class of communication patterns can be supported
efficiently: meshed, tori, trees, etc., can be embedded in the architecture.
The large crossbar thus acts (under control of the application) as a cache –
hence the name ICN – for the most commonly used connections. This ap-
proach is also used, to some extent, in the Earth Simulator [Habata et al.,
2004]. Its architecture centers around a 640×640 crossbar, on which commu-
nication between 640 processing nodes occurs through application-defined
circuits. Inside each processing node, eight vector processors are connected
through a smaller but higher data-rate crossbar. Barker et al. [2005] build
on the ICN concept, and describe a dual network approach. Long-lived
burst transfers use a fast Optical Circuit Switching (OCS) network, which is
reconfigured using MEMS mirrors (with a switching time of a few millisec-
onds) under control of the application. The other, irregular traffic – which is
usually of a much lower volume – uses a secondary network, the Electronic
Packet Switching (EPS) network, which is implemented as a classic electrical
network with lower bandwidth but higher fan-outs, to obtain low routing
latencies on uniform traffic patterns.

52 3 Traffic patterns

Failure category Fraction
Hardware 60 %

of which CPU 25 %
Interconnect / network 13 %
Memory 12 %

Software 23 %
Environment (power failures, etc.) 1.5%
Human error 0.6%
Undetermined 11 %

Table 3.1: Breakdown of LANL failure data into categories

3.1.6 Hardware failures: days

A recent study performed on failure data of the supercomputers and clus-
ters in use by the Los Alamos National Laboratory (LANL) estimates the
Mean Time Between Failures (MTBF) for a next-generation peta-scale HPC
system [Schroeder and Gibson, 2007]. This is a machine with an aggregate
computational power of one petaflop, or 1015 floating point operations per
second.2 Extrapolating from current HPC system performance, scale, and
failure data, this study estimates the actual time spent for useful computation
between full system recovery and the next failure. On a petaflop machine
with over 10,000 processors, this time is suggested to fall to just a mere 1.25
hours.3 The state-of-the-art fault tolerance strategy for such a system, check-
point/restart, saves checkpoints of the machine state at regular intervals so
that the program can be restarted from an intermediate state after a machine
failure. Periodically writing a dump of all system memory, which can be
up to 1 TiB, takes time though, as does loading the checkpoint after each
failure. Because of this overhead, the study estimates that over 60% of the
cycles (and investment) on next-generation peta-scale HPC systems may be
lost due to dealing with reliability issues.

Reconfiguration opportunities Reconfigurable networks are often touted
as the panacea for routing around failing hardware. Everything depends

2The first such machine is LANL’s own Roadrunner, built and installed by IBM just recently
in May 2008. It consists of 6,480 dual-core AMD Opteron processors and 12,960 Cell processor
chips, for a total of 129,600 computing cores, interconnected using optical Infiniband links.

3By comparison, the first electronic computer was the ENIAC, installed in 1946. It broke
down every two days on average, when one of its 18,000 vacuum tubes failed.

3.2 Communication bursts 53

of course on whether reconfiguration can solve, or at least hide, the failure.
When for instance a DRAM chip, part of main memory, fails, reconfiguring
the network will not bring its data contents back. Schroeder and Gibson
[2007] note that the failure rate of large HPC installations scales approxi-
mately with the number of sockets (processor chips) in the system, while
being largely independent of the number of processor cores per chip. Fur-
ther analysis of the LANL [2005] data set (see the breakdown by category in
Table 3.1) reveals that at least 25% of the 23,741 recorded machine interrup-
tions in the set were processor related. This does suggest that the electrical
connections between the processor and its surroundings are at least in some
part to blame. In this case, an optical access, directly to the processor chip
and including reconfiguration abilities, can be used to route around failing
parts of the interconnect. Network failures (which account for 13% in the
LANL data) can also effectively be hidden by a reconfigurable network.

The idea of using reconfigurable networks to cope with failing hardware
will not be further explored in the context of this work. Other work that
does investigate this idea includes [Shively et al., 1989], which describes
AT&T’s DSP-3 parallel processor. This machine includes an interconnection
network, connecting 128 processing nodes, with redundant paths to enable
topology reconfiguration in support of fault tolerance. US Patent 6,871,294
[Phelps et al., 2005] covers the dynamically reconfigurable interconnect of
the Sun Enterprise 10000, a commercial server with up to 64 processors. It
too provides redundancy and can continue running (in a degraded mode)
when part of the machine’s centerplane fails. Intel holds a similar patent (US
Patent 7,328,368), which describes the dynamic width reduction of intercon-
nection links in response to transmission errors [Mannava et al., 2008]. This
technology will be part of Intel’s upcoming QuickPath system interconnect
[Kanter, 2007].

Using optical reconfigurable technology, similar solutions would be pos-
sible, with the added advantage that optics allows for data-transparent re-
configuration without introducing additional latency.

3.2 Communication bursts

Early on in this PhD work, measurements were made of the communication
bursts occurring on multiprocessor networks. This was done using a simu-
lation setup and benchmark programs similar to those that will be described
in Chapter 4. These measurements allowed us to characterize the opportuni-
ties for reconfiguration and quantify the gain that could be expected from an

54 3 Traffic patterns

 1

 10

 100

 1000

 10000

 0.1 1 10 100

B

ur
st

s

Length (ms)

Figure 3.4: Burst length distribution for the fft application, for a
16-node network

actual implementation. This way, the reconfigurable network architecture
could be designed later, supported by the results obtained previously.

We simulated the execution of a set of benchmark programs from the
SPLASH-2 suite [Woo et al., 1995]. A trace was collected of all network traffic,
which was subsequently analyzed. In this trace we looked at the duration
of traffic bursts between node pairs. When we know heavy communication
is taking place for a period of time that is significantly longer than the
switching time of the reconfigurable component that would be used in a
network implementation, it becomes viable to reconfigure the network to
accommodate this burst. By looking at the number of bursts, and the amount
of traffic in them for given burst lengths, an estimate can be made of how
a network with a given reconfiguration time will perform, or conversely,
what reconfiguration time and therefore which components are needed to
implement a network with the required performance.

3.2.1 Traffic burst length distribution

We start by dividing time in intervals of length ∆t. For the interval starting
at time t, the traffic that flows between nodes i and j is accumulated into
Ti, j(t). Only traffic that has the processor at node i as source and the pro-
cessor at node j as destination or vice versa is considered, not traffic these

3.2 Communication bursts 55

nodes are forwarding en route to somewhere else. This makes the analysis
independent of the network topology. Furthermore we consider all links
to be bidirectional and symmetric, so we sum traffic in both directions and
always consider i to be smaller than j.

At the end of each interval, all node pairs are sorted according to the
traffic that has flown between them. The top n of those pairs are marked
for this time interval, where n is the fraction of node pairs that is expected
to benefit directly from reconfiguration. We’ll assume that this number of
node pairs n will scale with the number of processors, so for a 16-processor
network, with p denoting the number of processors, we choose n = p = 16.
Next, we count the number of consecutive intervals a certain node pair
was in this top n. Multiplied by ∆t this gives us the length of a burst of
communication that took place between that node pair. This burst will be
represented by the 4-tuple (i, j, t, l), indicating the nodes that were involved
(i and j), the starting time t and the length l. The distribution of the burst
lengths (over all node pairs at any starting time) for one of the benchmark
applications, the fft kernel, is shown in Figure 3.4. The interval length ∆t
is 100 µs, for 16 processors and n = 16. This distribution closely resembles a
power law, augmented with some very long bursts that span a length of up
to the duration of the entire program. This should not come as a surprise,
since fractal or self-similar behavior of memory access patterns – resulting in
power-law relations – has been shown before [McNutt, 2000]. The long bursts
are due to references to global data, configuration parameters, operating
system structures and synchronization variables that are needed throughout
the program.

Such fractal behavior is actually very common, not only in memory access
patterns, but in all kinds of system properties related to communication.
Indeed, even memory accesses can be viewed as communication between
points in time [Greenfield and Moore, 2008]. Connections in digital electronic
circuits, which are the result of a spatial mapping of a given algorithm
– whereas a sequential program would represent a temporal mapping –
also exhibit fractal behavior: the number of connections needed depends –
via a power law relationship – on the size of the circuit, this is commonly
known as Rent’s Rule. This relationship was first described empirically
by Landman and Russo [1971] and later theoretically derived by Christie
and Stroobandt [2000]. Wire length distributions on VLSI chips, the dual
of communication distances on interconnection networks – both resulting
from a spatial mapping of fractally communicating partitions of the circuit or
software algorithm – again follow a power law behavior, which is extensively
described by Stroobandt [2001].

56 3 Traffic patterns

3.2.2 Traffic size fraction

Now that we know there is temporal locality in the traffic, we would like
to quantitatively describe how much traffic is involved in these bursts. This
is important, since only traffic that is contained inside a burst of sufficient
length will be able to benefit from a reconfiguration of the network. Only if
this traffic represents a sizable percentage of all traffic, gain can be expected
from adding reconfiguration abilities.

We determine how much traffic is contained in bursts of a given minimal
length. First, we sum the total amount of traffic in each of the bursts (i, j, t, l):

T(i, j, t0, l) =

t0+l∑
t=t0

Ti, j(t)

This gives the number of bytes that participate in each of the bursts that were
detected. Next we calculate the total traffic size per burst length:

T(l) =
∑
i, j,t

T(i, j, t, l)

With Tt the total amount of traffic that was sent across the network during
the benchmark execution, the distribution of traffic by burst length will be
given by T(l)/Tt. Since we are interested in bursts that have a length of at
least l cycles, we compute the complementary cumulative distribution:

TC(l0) =

∞∑
l=l0

T(l)

We now know that a fraction TC(l)/Tt of all traffic is part of a burst of length
l or longer. This distribution is shown in Figure 3.5 for the fft application.
The graph shows us that around 60% of all traffic is contained in bursts of
1 ms or longer, bursts of at least 10 ms long still account for 30% of all traffic.

3.2.3 Application speedup

Next, we want to characterize the reduction in runtime, or the application
speedup, we can expect from a reconfigurable network. Without a full simu-
lation this is difficult to predict, since overlapping latencies, the appearance
or disappearance of congestion and the influence of latency on the control
flow of the program can make the relationship between network latency and
program duration somewhat irregular. However, running this full simula-

3.2 Communication bursts 57

0%

20%

40%

60%

80%

100%

 0.1 1 10 100

F
ra

ct
io

n

Minimum burst length (ms)

Traffic
Latency

Figure 3.5: Traffic size and latency fractions per minimum burst length
for fft, for a 16-node network

tion would require us to make several design decisions, such as the topology
of the reconfigurable network and the algorithms that determine when and
how reconfiguration takes place. To make an estimate that is independent
of all these implementation details, we have tried to find a reasonable ap-
proximation of the expected speedup based only on results from a single
simulation with a non-reconfigurable network. The metric we use for this
is the fraction of memory access latency that is the result of traffic contained
inside bursts.

For each memory access that requires network traffic, we store the starting
time of the access and the requesting and responding nodes. Next we see
whether, at that time, a communication burst was present between these two
nodes. If this is the case, the memory access is said to be related to this burst.

Now we repeat the computation from the previous section, but instead
of summing the number of bytes in the packets that make up the burst, we
sum the latency of all memory accesses related to the burst. This gives us a
total time L(i, j, t, l) for each burst. Next we again sum all bursts of the same
length yielding L(l). With Lt the total memory access latency for all memory
accesses made during the execution of the program, L(l)/Lt will give the
distribution of access latency related to bursts of a given length. Again we
compute the complementary cumulative distribution LC(l)/Lt, which is also
plotted in Figure 3.5.

58 3 Traffic patterns

Code Speedup
barnes 15%
cholesky 19%
fft 36%
fmm 30%
lu 72%
ocean 33%
radiosity 86%
radix 16%
raytrace 12%
volrend 8%
water.nsq 2%
water.sp 6%
Average 26%

Table 3.2: Applications and estimated speedups, all on 16 nodes

Now that we found the fraction of memory access latency that can be
influenced by a reconfigurable network, we will estimate the application
speedup. First we assume that access latency is evenly distributed over all
processors. The total access latency corresponding to bursts longer than l,
this is LC(l), is also considered to be distributed evenly. Therefore, with p the
number of processors and t the runtime of the program, reconfiguration will
be able to influence a fraction of the total program runtime equal to:

f =
LC(l)
p · t

We conservatively estimate that memory accesses benefiting from a re-
configured network have their latency reduced by a factor of four.4 Now
we can use Amdahl’s law (Equation 1.1) to compute the total speedup S if a
fraction f of the program is accelerated by a factor of four:

S =
1

(1 − f) + f/4

This calculation has been done for all SPLASH-2 programs, using a minimum
burst length of 1 ms. The resulting speedups are given in Table 3.2. The esti-

4We estimate this factor as follows: the average inter-node distance in a 4×4 torus network is
2.13, adding an elink (see Chapter 4) reduces the distance between the corresponding node pair
to just one. The added bandwidth lowers congestion, providing an extra latency reduction.

3.2 Communication bursts 59

0%

10%

20%

30%

40%

50%

 0.1 1 10 100

S
pe

ed
up

Burst length (ms)

Figure 3.6: Maximum achievable speedup for fft depending on min-
imal burst length, for a 16-node network

mated achievable speedup ranges from 2% (water.nsq) to 86% (radiosity),
depending on the application, with a geometric average of 26%. The main
cause for the variation in these numbers is the fraction of total execution
time that is spent waiting for memory accesses. Programs like water and
volrend have a good computation to communication ratio and therefore
cannot be accelerated much by improving the network. There is however
sufficient network traffic locality in these programs, as is evident from their
burst length distributions (not shown), so under harder network conditions
they also can be accelerated significantly using a reconfigurable network.

For slower technologies, Figure 3.6 shows the achievable speedup for the
fft kernel with minimal burst lengths other than 1 ms. Shorter reconfigura-
tion times could allow the performance gain to be up to 50%. Note however
that the network reconfiguration time needs to be significantly shorter than
the burst length. For instance, if detecting the burst takes 100 µs and re-
configuration takes the next 100 µs, we would be able to affect only 80% of
the traffic in a 1 ms burst, reducing the actual speedup. Mistakes in burst
prediction will cause some of the network resources to provide little gain,
again resulting in an actual speedup that is less than the projected upper
bound calculated above.

On the other hand, the redistribution of traffic over a reconfigured topol-
ogy often will not only speed up the traffic inside communication bursts.
When a large traffic stream, such as a burst, is moved elsewhere, the traffic

60 3 Traffic patterns

remaining on this part of the network now encounters less congestion and
will therefore also experience lower latency. This effect has not been taken
into account in the previous discussion, and might cause the actual speedup
to be higher than the reported estimates.

3.3 Thread and data migration

An existing software technique that can minimize network traffic, thread
and data migration, is described in Section 2.4. It requires no or very limited
hardware cooperation, and is therefore relatively cheap to implement. Its
simplicity of course results in some drawbacks that are not present with
reconfigurable networks. The moving of tasks and data occurs at a time scale
of seconds to minutes, which is several orders of magnitude slower than the
reconfigurable networks we study. Also, the algorithm performed by the
application may exhibit a communication pattern that cannot be mapped
efficiently, i.e., using single-hop connections only, on for instance a ring or
mesh network. A reconfigurable network, on the other hand, supports a
much richer topology than the basic ring or mesh.

Moreover, the act of moving a thread or a data page in itself causes a burst
of communication. Each time a thread is scheduled on a new processor, a
burst of cache misses loads the thread’s working set into the local cache, from
the cache of the node the thread ran on previously, or from main memory.
This results in a communication burst. In the case of data migration, the
copy operation, which implements the data movement, again results in a
burst of remote memory accesses by the processor executing the move. In
both cases, a network reconfiguration, adapting the network to optimally
support this communication burst, would be very useful! Therefore, in
our view, both techniques are complementary: software thread and data
migration can cheaply handle slow changes in the communication pattern,
while the reconfigurable network copes with faster changes, supports the
migration of threads and data efficiently, and provides a richer network
topology when a good placement of threads and data on the basic topology
is not possible.

3.4 A case for reconfigurable networks

We can summarize the results of this chapter as follows. Since we focus on a
short-range interconnection network, rather than a long-range telecommu-

3.4 A case for reconfigurable networks 61

nications network, the components available for reconfiguration have, by
necessity, a relatively long reconfiguration time. This means optical packet
switching, or reconfiguration at the time scale of single packets or even re-
mote memory requests, is not feasible. Yet, at longer time scales, there is also
locality, as is evident from our measurements in Section 3.2. It is this locality
we will exploit in our reconfigurable network architecture. Therefore, the
main design requirement for this architecture is:

To efficiently support communication bursts, in the knowledge that
multiple bursts are active at the same time and that bursts have a
lifespan of up to several milliseconds.

Since the reconfiguration time will be in the order of hundreds of microsec-
onds up to a few milliseconds, the algorithm that controls reconfiguration
– by measuring traffic and adapting the topology – must have a similar
runtime. This means there is not much time available to find the optimal
topology. Instead, fast heuristics will have to be used that can quickly find a
near-optimal solution. Predicting network traffic bursts – necessary because
the network needs to be in the right topology once (the bulk of) the burst ar-
rives – should also be done inside this time frame. Input from the application
on this is not desired: just like the shared-memory paradigm insulates the
application and its programmer from the implementation details of memory
(which node data is stored on, cache coherence), we want network reconfig-
uration to be transparent to the application. This is even impossible to do
otherwise: since communication is implicit, the programmer doesn’t know
about network traffic and can therefore hardly be expected to give hints
about reconfiguration! How our reconfigurable network architecture was
designed, based on these requirements, can be found in the next chapter.

4
A reconfigurable network

architecture

On two occasions I have been asked, “Pray,
Mr. Babbage, if you put into the machine wrong
figures, will the right answers come out?” I am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.
— Charles Babbage

This chapter outlines the reconfigurable network architecture we propose
for use in a distributed shared-memory multiprocessor machine. The net-
work architecture itself, consisting of a base network with fixed topology,
augmented with extra links supporting communication bursts, is presented
in Section 4.1. In Section 4.2 we propose a possible implementation of this
architecture, based on Wavelength Division Multiplexing (WDM) and Se-
lective Optical Broadcast (SOB) technologies, using a broadcast component
designed at the Vrije Universiteit Brussel. The algorithm controlling recon-
figuration, which determines the new topology based on the expected traffic
pattern, is given in Section 4.3. Also, we provide details on the simulation
methodology that was used throughout this thesis to evaluate the perfor-
mance of our proposed reconfigurable network implementations. Section 4.4
gives an overview of our simulation platform, while Section 4.5 describes the
SPLASH-2 benchmark suite that was used as the workload on our simulated
multiprocessor machine.

64 4 A reconfigurable network architecture

4.1 Proposed reconfigurable network
architecture

If you think good architecture is expensive,
try bad architecture.
— Brian Foote and Joseph Yodertein

Previous studies concerning reconfigurable networks, for instance [Pinkston
and Goodman, 1994] or [Sánchez et al., 1998], have mainly dealt with fixed
topologies (usually a mesh or a hypercube) that allowed swapping of node
pairs, incrementally evolving the network to a state in which processors that
often communicate are in neighboring positions. However, this incremen-
tal determination of optimum processor placement turned out to converge
slowly, or not at all when the characteristics of the network traffic change
rapidly. Determining a global placement in a single step is also not feasible,
because computing this placement would take too long (it is an NP hard
problem, and will not scale well when increasing the network size). Also,
a reconfiguration method that is this invasive to the network topology, re-
quires all network traffic to be halted during a node rearrangement. This
negatively impacts performance, and has a large influence on worst-case
response times which can make this type of network unsuitable for real-time
applications. Moreover, implementing such a network usually needs to be
done with large free-space optical structures which are not compatible with
the integrated, highly reliable nature of large parallel computers. Finally,
the communication pattern exhibited by the program running on the par-
allel computer may have a structure that cannot be mapped efficiently (i.e.,
using only single-hop connections) on the chosen base network topology,
suggesting that reconfiguration should be used to offer a richer topology
than that of the base network.

Therefore, we assume a different network architecture. We start with a
packet-switched base network with a fixed, regular (such as mesh or torus)
topology. In addition, we provide a second network that can realize a
limited number of connections between arbitrary node pairs – these will be
referred to as extra links or elinks – which will be placed between those node
pairs involved in a communication burst. A schematic overview is given
in Figure 4.1. An advantage of this setup, compared to other topologies
that allow for more general reconfiguration, is that the base network is

4.1 Proposed reconfigurable network architecture 65

Figure 4.1: Conceptual reconfigurable network topology. The net-
work consists of a base network, augmented with a limited number
of direct, reconfigurable links.

always available. This is most important when the elinks are undergoing
reconfiguration and may not be usable. Periods in which no communication
is possible, are therefore avoided, and worst-case communication latency is
now much more predictable which is very important in real-time settings.
Routing and reconfiguration decisions are also simplified: it is not possible to
completely disconnect a node from the others – a connection with reasonable
bandwidth will always be available through the base network – instead, the
algorithm can completely concentrate on the speedup of communication
bursts.

Performance increase now results from a number of effects. First, band-
width is added to the network, increasing its overall capacity. This could of
course be obtained without complicated reconfiguration so we should sub-
tract this component of the performance increase, this will be looked into in
the chapter on performance evaluation. Secondly, by providing single-hop
connections for a large fraction of traffic, this traffic does not suffer contention
at a large number of intermediate hops where it will potentially need to be
buffered. Also, the conversion from the optical to the electronic domain and
back at each intermediate node is avoided – saving time and power, since
most of the routing can now be done in the optical domain, rather than us-
ing packet switching at each hop. Lastly, by moving large volumes of traffic
away from the base network, congestion is lowered, resulting in a reduction
of waiting times for all network packets.

66 4 A reconfigurable network architecture

Figure 4.2: Sequence of events controlling reconfiguration. The
observer measures network traffic, and after each interval of length ∆t
makes a decision where to place the elinks. This calculation takes an
amount of time called the selection time (tSe). During the switching time
(tSw), reconfiguration will take place making the elinks temporarily
unusable.

Sequence of events

Reconfiguration takes place at specific intervals, the length of each interval
being a (fixed) parameter of the network architecture. Traffic is observed
by a reconfiguration entity during the course of an interval, and total traffic
between each node pair is computed. At the end of the interval, the new
positions of the elinks are determined, within the constraints of the network
architecture, such that node pairs that exchanged the most data in the pre-
vious interval will be ‘closer together’: the distance, defined as the number
of hops a packet sent between the pair must traverse in the new network
topology, is minimized. This way, a large percentage of the traffic has a short
path and a correspondingly low uncongested latency. Also, congestion is
lowered because heavy traffic is no longer spread out over a large number
of links. After selecting the new network configuration, the network is re-
configured and a new interval begins. This sequence of events is depicted
in Figure 4.2.

In most of our simulations, we assumed for simplicity that both the
computation to select the new elinks (the selection time) and the physical
reconfiguration (the switching time, done by switching mirrors, tuning lasers,
etc.) are performed instantly. This is not the case in reality: depending on
the technology, the switching time can take from tens of microseconds up to
several milliseconds. The selection time can also be significant, depending on
the complexity of the elink selection algorithm. Therefore, when interpreting
simulation results in this work in which a sweep over several reconfiguration
intervals is made, one should keep in mind that this reconfiguration interval
is not an entirely free parameter: it must be chosen large enough so that the

4.1 Proposed reconfigurable network architecture 67

selection and switching times are negligible. In Section 6.2.1, however, we
did include realistic selection and switching times in the simulation, and set
both to 10% of the reconfiguration interval.

Parametric network model

To avoid pinning our discussion down on the peculiarities of a specific
network architecture, we construct a hypothetical parametrized architecture
that can be adapted to represent several possible network implementations.

Our parametric network model provides the infrastructure to potentially
place an elink between any two given nodes. Two constraints are made on
the set of elinks that are active at the same time:

• a maximum of n elinks can be active concurrently,

• the fan-out of each node (not including connections to the base net-
work) is limited to f .

The time between reconfigurations, called the reconfiguration interval ∆t, is
the third parameter. The results in this work will be based on different sets
of values for these three parameters.

This simple network model provides us with a unified, parametrized
architecture that allows us to simulate several types of implementations, and
analyze the sensitivity of network performance to these basic parameters.
A realistic implementation, like the one described in the next section, can
impose additional limitations. For instance, the SOB device only allows a
subset of all node pairs to be directly connected with an elink. This will be
modeled by placing additional constraints on the set of concurrently active
elinks.

Physical implications of the parameters

Each of the parameters n, f and ∆t will have a physical origin once an
implementation is being made. Consider for instance an implementation in
which each node has a number of tunable lasers, the signal of all of them is
broadcast to all receiving nodes. Nodes also have a number of wavelength-
selective receivers, each sensitive to a unique wavelength. By tuning the
wavelength on each laser, a destination node can thus be selected.

The fan-out f determines how many elinks can originate at one node.
For every elink, the node needs one laser, which has its wavelength tuned
depending on the destination of the elink. f will in this case equal the number
of tunable lasers per node. The same happens for the fan-in, the number of

68 4 A reconfigurable network architecture

elinks terminating at one node, where each incoming elink needs its own
wavelength-selective photodetector. Throughout this work, we assume fan-
in and fan-out are both limited to the same number.

Assuming all f lasers and photodetectors on a node can be used at the
same time, the number of elinks n will equal f · p (with p the number of
processors or nodes). Since light from all lasers is combined in the broadcast
stage, they should all use a different frequency. The number of possible
frequencies1 can therefore limit n.

Finally, because the elinks are unusable while the lasers are being re-
tuned, for optimal performance this period needs to be a small fraction
of the total time. The reconfiguration interval ∆t should thus be chosen
significantly larger than the tuning time.

One might wonder why, if connections exist between all node pairs in the
system, only a few of them – the activated elinks – are used at the same time.
Why not simply use all available connections at all times, and have a fully
connected network instead? In this work, we assume this is not possible. A
practical reason for this is the fact that nodes do not support the bandwidth
to directly connect to such a high number of other nodes. Indeed, dividing
the scarce bandwidth into for instance six high-bandwidth channels to other
nodes (four neighbors on a mesh network, and two dynamic neighbors using
elinks), would be a much more economical use of resources than connecting
to all nodes with much slower channels, most of which would be unused for
a large fraction of time anyway.

Another reason is arbitration: if multiple nodes were allowed to transmit
on the same frequency, this can result in collisions in the optical domain
when multiple nodes target the same receiver. Some kind of arbitration
among the source nodes would then be needed, which increases complexity
and network latency. We want to avoid this, and view the elinks as point-
to-point connections. This greatly simplifies router design. All arbitration is
instead done at reconfiguration time by assigning only a single source node
per frequency.

Comparison with circuit switching

Circuit switching is an alternative to packet switching. Once a circuit has
been set up between two nodes, a dedicated link exists. Along its path, no ar-
bitration is needed, buffering delays are therefore avoided. Often bandwidth
and latency guarantees are also provided. The circuit’s path will usually go
through the same intermediate nodes the packet would have gone through

1This is a technological parameter of the tunable lasers, usually a trade-off needs to be made
between the number of frequencies and the tuning time.

4.1 Proposed reconfigurable network architecture 69

Figure 4.3: A possible circuit switched equivalent of the topology
using elinks from Figure 4.1

if packet switching was used, the only difference is that when using packet
switching the packet has to contend for its next link at every intermediate
node.

We can view the creation of circuits as being equivalent to placing elinks:
both provide dedicated, contention-free links between specific node pairs.
Figure 4.3 shows this: three circuits, implemented by having pre-set paths
through intermediate nodes, logically provide the same topology as the
elinks in Figure 4.1. It is entirely possible to implement the elink concept
in exactly this way: a mesh network where a percentage of bandwidth is
reserved by circuits for long-living, high volume traffic (the elinks) and the
remaining part of the mesh is used in a best-effort packet switching way
for other traffic (the base network), is a valid way of implementing our ar-
chitecture. The circuit switching analogy is somewhat limited, however,
in the sense that it seems to require that the intermediate nodes play some
role in forwarding packets. This is not necessary, and is not the case in for
instance the implementation proposed in the next section. We will there-
fore use the elink concept throughout this work, regardless of whether its
implementation looks like a circuit switched network or not.

Reconfiguration as a spatial cache

Our architecture consists of a base network that – with limited capacity –
connects all nodes, and on top of that provides faster, direct connections
between node pairs that communicate frequently. In this way it exploits
locality in communication, in much the same way as a small, fast cache
memory exploits locality in memory references by reducing the need to ac-

70 4 A reconfigurable network architecture

cess the slower main memory. In this sense, the Interconnection Cached
Network (ICN), described on page 51 could be more aptly named the Inter-
connection Scratchpad Memory, since there the direct links are in control of
the application – just as a scratchpad memory is managed by software. In
contrast, our architecture provides an automatic way of measuring, adapting
for and thus exploiting communication locality in an software-transparent
way, and in this way acts much more similarly to a cache.

4.2 Hardware implementation

Computer science isn’t about computers
any more than astronomy is about telescopes.
— Edsger W. Dijkstra

Using Wavelength Division Multiplexing (WDM) technology and a Selec-
tive Optical Broadcast (SOB) component designed and fabricated at the Vrije
Universiteit Brussel (VUB), we propose a hardware implementation of a
reconfigurable optical network. This architecture was developed in coop-
eration with ir. Iñigo Artundo from VUB. Here we will describe the basic
architecture, some design decisions and their implications on the reconfig-
urable topology. More details can be found in [Artundo et al., 2006a] and
[Artundo et al., 2008b].

The implementation we envisage consists of low-cost tunable laser
sources, a broadcast-and-select scheme for providing the extra optical links,
and wavelength-selective receivers on every node (Figure 4.4). For the trans-
mission side, VCSELs are preferred for their low power consumption, easy
array integration and coupling into optical fibers. Their tuning range (a few
tens of channels) and speed (between 100 µs and 10 ms) is adequate for
following the traffic patterns targeted in this work.

The broadcasting can be done through the use of a star coupler-like ele-
ment that reaches all nodes. By tuning the laser source, the right destination
is addressed. When scaling up to tens of nodes or more this is no longer fea-
sible: the number of available wavelengths is finite, also, such a wide broad-
cast would waste too much of the transmitted power. In this case, a SOB
component like the diffractive optical prism described in Section 2.3.4 can
be used, which broadcasts light from each node to its own subset of receiv-
ing nodes. On the receiving side, Resonant Cavity Photodetectors (RCPDs)

CPU 1

CPU 2

CPU 3

CPU n

SOB

FIBER LINKS

PROCESSOR
NODES

TUNABLE
VCSELS

CPU 1

CPU 2

CPU 3

CPU n

RCPDS

FIBER CONNECTORS

… …

Figure 4.4: Schematic overview of a reconfigurable interconnection
architecture using tunable lasers and selective optical broadcasting

72 4 A reconfigurable network architecture
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

SELECTIVE

BROADCAST
−−−−−−−−−→

7 8 9 5

11 12 13 10
15 16 14 3
1 2 4 6

Figure 4.5: Optimized node placement on the SOB element for 1-to-9
broadcast in a 16-node network

make each node susceptible to just one wavelength (the prism itself does not
distinguish signals by wavelength – each incoming beam is projected onto
nine spots, the difference in spot position throughout the wavelength range
used is negligible). Note that the routing to and from the SOB component
will be such that nodes have different neighbors on the broadcast element
than those on the base network. This way the elinks will span a distance
on the base network that is larger than one. The optimum placement on the
SOB component was determined by using simulated annealing to maximize
the possible distance reduction, and is shown in Figure 4.5 for a 16-node
network. For instance, node 6 can set up an elink with nodes in the subset
[7, 8, 9, 11, 12, 13, 15, 16, 14]. Due to its corner position, node 13 can reach only
the four nodes in the set [15, 16, 1, 2].

This topology can be modeled with our parametrized architecture by
using n = 16, f = 1, and an additional set of constraints on which destinations
(only 9 out of 16) can be reached from each source node. Note that this
architecture is also not symmetric (for instance, node 6 can connect to node
7, but not vice versa), so for this implementation we use unidirectional elinks.
Most of the simulations presented further in this work will include results for
this implementation. Specifically, Section 6.2.1 will compare the performance
of a network allowing full broadcast with the selective broadcast scheme
presented here.

4.3 Extra link selection

For every reconfiguration interval, a decision has to be made on which elinks
to activate, within the constraints imposed by the architecture, and based
on the expected traffic during that interval. In our current implementation,
it is expected that traffic in the next interval will be the same as the traffic
pattern measured during the previous interval. As explained in Section 4.1,
we want to minimize the number of hops for most of the traffic. We do this by

4.3 Extra link selection 73

minimizing a cost function that expresses the total number of network hops
traversed by all bytes being transferred. This cost function can be written as

C =
∑
i< j

d(i, j) · T(i, j)

with d(i, j) the distance (in number of hops) between nodes i and j, which is
a function of the elinks that are selected to be active, and T(i, j) the number
of bytes exchanged between the node pair in the time interval of interest. If
bidirectional elinks are used, T(i, j) is the sum of traffic in both directions.

The time available to perform the elink selection is of the same order
of magnitude as the switching time, because both need to be significantly
shorter than the reconfiguration interval. Since the switching time will
typically be at most a few milliseconds, we need a fast heuristic that can
quickly find a set of active elinks that satisfy the constraints imposed by the
architecture and has an associated cost close to the global optimum.

We have constructed a greedy algorithm that works as follows (Figure 4.6
shows the algorithm in pseudo code):

1. Construct a list of all node pairs (i, j), sorted by d(i, j) ·T(i, j) in descend-
ing order, with d(i, j) the distance between nodes i and j when using
only the base network connections.

2. Initialize the set of active elinks Ea to be empty, and the set of pos-
sibly active elinks Ep to contain all elinks that can be supported by
the architecture (but not necessarily at the same time). For our para-
metric architecture, Ep contains all p(p − 1) (unidirectional elinks) or
p(p − 1)/2 (bidirectional elinks) node pairs (with p the number of pro-
cessors or nodes). In the implementation with the SOB component
from Section 4.2, Ep contains a subset hereof (just 9 · p entries).

3. For the node pair at the top of the list, determine which new elink (one
that is not already in Ea but is still in Ep) is the most interesting, i.e., when
enabled, would give the greatest reduction in distance between these
two nodes. This elink is removed from Ep and added to Ea, also, the
current node pair is removed from the top of the list. If bidirectional
elinks are used, the reverse link is also enabled (i.e., moved from Ep to
Ea).
If an elink resulting in a direct connection between the node pair is still
available in Ep this one will of course be selected, since it reduces the
distance to one. If none of the elinks in Ep can provide a distance lower
than the one over the base network or over an elink already in Ea, no
new elink is activated.

nodepairs = [all (src, dst) pairs with src < dst]
nodepairs.sort_descending(
sortby = distance_using_basenetwork(src, dst)

* traffic(src, dst)
)

active = []
possible = [all elinks supported by the architecture]

for each (src, dst) in nodepairs:
elink = most_interesting_elink(src, dst)

if distance_using_elinks(src, dst, active + elink)
>= distance_using_elinks(src, dst, active):
no additional gain by turning on elink
continue

turn on elink!
possible.remove(elink)
active.add(elink)

make sure we obey all implementation constraints,
such as maximum fan-out
for elink in possible:
if conflicts(active, elink):
possible.remove(elink)

if possible.empty(): exit for

activate_elinks(active)

Figure 4.6: Pseudo code for the elink selection algorithm

4.3 Extra link selection 75

To quickly do this selection, a table that gives the distance between
each node pair as a function of the activated elinks is pre-computed.
If we assume at most one elink is used in each path, this table has a
maximum of {number of node-pairs} × {number of elinks} entries, and
usually much less since only a small number of elinks can decrease the
base distance for a specific node pair.

4. Once a link has been added to Ea, check the constraints imposed by
the network architecture. If activation of one of the links in Ep would
cause a node to exceed its fan-out limit f , this elink is removed from
Ep and is therefore no longer considered for activation in the following
iterations of the algorithm. When the maximum number of elinks n is
reached, all elinks should be removed from Ep.

5. As long as there are node pairs on the list, and the set of possible elinks
Ep is not empty, continue with step 3. Else, end the algorithm. Ea is
now the set of elinks that will be enabled during the next time interval.

Note that, after deciding to enable one of the elinks in step 3, one could
recompute the distances between node pairs, taking this new elink into
account. The list of remaining node pairs would then be updated based
on the new distance distribution, before starting a new iteration. This is
considered too time-consuming, however, and has not been implemented in
our algorithm.

Figure 4.7 illustrates the elink placement through consecutive intervals
of length ∆t. These pictures were created from a simulation of the radix
benchmark on a 4×4 mesh, with the reconfiguration abilities characterized
by n = 4, f = 2 and ∆t = 100 µs. In the top graphs, traffic intensities are
shown on each link. Additionally, the four highest communicating node
pairs are connected with a black line. These are the node pairs that will
most likely get an elink in the next interval. For instance, nodes 1 and
14 communicate heavily in the first interval shown, from the next interval
onwards an elink provides a direct connection between them. Nodes 4 and
15 already have an elink since they have been communicating heavily for a
longer time. They continue to do this until the second interval shown, during
the third interval the elink is still there but communication has slowed down.
This elink is therefore removed in the fourth interval.

The bottom set of graphs show the average waiting time per link. One can
see that, for instance, in the first interval there is a lot of congestion between
nodes 9 and 13, and between nodes 13 and 14. This is most likely caused
by the heavy communication between nodes 1 and 14. In the next intervals,

76 4 A reconfigurable network architecture

an elink supports this communication burst so part of the congestion on the
base network is alleviated.

In order for the selection to be done fast enough, two important simpli-
fications are made here. The first one is that the elinks are selected using
a greedy heuristic, rather than exploring all possible elink selections and
choosing the one yielding the global optimum of the cost function consid-
ered. The second simplification is that we do not predict the traffic for the
upcoming time interval, but rather assume this traffic distribution will be
equal to the one measured in the preceding interval. We analyzed the im-
pact of both these optimizations in Sections 6.4.1 and 6.4.2 respectively, and
found that they do allow for a network performance that is close to one using
optimal placement and perfect traffic prediction.

4.4 Simulation framework

We have based our simulation platform on the commercially available Simics
simulator [Magnusson et al., 2002]. It was configured to simulate a multi-
processor machine resembling the Sun Fire 6800 server [Sun Microsystems,
2003b], with up to 64 UltraSPARC III processors clocked at 1 GHz and run-
ning the Solaris 9 operating system. Stall times for caches and main memory
are set to the values found in Sun’s data sheet for the UltraSPARC III Cu
[Sun Microsystems, 2003a]: 2 cycles access time for L1 caches, 19 cycles for
L2 and 100 cycles for SDRAM.

Cache coherence is enforced by a directory-based protocol, similar to the
one pioneered in the Standford DASH multiprocessor machine described
by Lenoski et al. [1992]. The coherence controllers and the interconnec-
tion network are custom extensions to Simics. They model a full bit-vector
directory-based MSI-protocol and a packet-switched 4×4 torus network with
contention and cut-through routing. To model a reconfigurable network, a
number of extra point-to-point links can be added to the torus topology at
any point during the simulation. A model of the network router, which con-
nects each processor node to its four neighbors on the base network and to a
number of elinks, is shown in Figure 4.8. Contention in the central crossbar
is not modeled, therefore only output buffering is needed to hold packets
while the links are occupied.

The network links in the base network are 16 bits wide and are clocked at
100 MHz. In the reported experiments, the characteristics of an elink were
assumed to be equal to those in the base network, yielding a per-hop latency
that is the same for an elink as for a single base network link. Both coherence

Traffic intensity Average waiting time

Fi
gu

re
4.

7:
Il

lu
st

ra
ti

on
of

th
e

el
in

ks
pl

ac
em

en
t

th
ro

ug
h

ti
m

e.
To

p:
tr

affi
c

in
te

ns
it

y
on

ea
ch

lin
k,

an
d

th
e

fo
ur

hi
gh

es
t

co
m

m
un

ic
at

in
g

no
de

pa
ir

s
(b

la
ck

lin
es

).
Bo

tt
om

:
av

er
ag

e
w

ai
ti

ng
ti

m
e

pe
r

lin
k.

Bo
th

ar
e

fo
r

a
si

m
ul

at
io

n
of

th
e
r
a
d
i
x

be
nc

hm
ar

k
on

a
4×

4
m

es
h

an
d

re
co

nfi
gu

ra
ti

on
ch

ar
ac

te
ri

ze
d

by
n

=
4,

f
=

2
an

d
∆

t=
10

0
µs

.

78 4 A reconfigurable network architecture

Figure 4.8: Switching architecture of a network node. Packets from
the local processor, four base network neighbors (‘+’ and ‘–’ directions
in both X and Y dimensions) and, in this case, two incoming elinks
(Ea and Eb) enter the network router at the left. The data is routed
through the central crossbar to the correct output port, and buffered
until the outgoing link is available.

traffic (read requests, invalidation messages etc.) and data (the actual cache
lines) are sent over the network. The resulting remote memory access times
are representative for a Sun Fire server (around 1 µs on average).

To avoid deadlocks, dimension routing is used on the base network.
Each packet can go through one elink on its path, after that it switches to
another Virtual Channel (VC)2 to avoid deadlocks of packets across elinks.
For routing packets through the elinks we use a static routing table in each
node. For each destination, it tells the node to route packets either through
an elink starting at that node, to the start of an elink on another node, or
straight to its destination, the latter two using normal dimension routing. At
every network reconfiguration, all routing tables are updated.

Since the simulated caches are not infinitely large, the network traffic
will be the result of both coherence misses and cold, capacity and conflict
misses. To make sure that private data transfers do not become excessive, a
first-touch memory allocation was used that places data pages of 8 KiB on the
node of the processor that first references them. Each thread is pinned down
to one processor (using the Solaris processor_bind() system call), this way
the thread stays on the same node as its private data for the duration of the
program.

2Actually another set of VCs is used since we already employ separate request and reply
VCs to avoid fetch deadlock [Leiserson et al., 1996] at the protocol level.

4.5 Benchmarks 79

4.5 Benchmarks

The SPLASH-2 benchmark suite, described by Woo et al. [1995], was chosen
as our machine’s workload. It consists of a number of scientific and technical
applications using a multi-threaded, shared-memory programming model.
Thread creation and synchronization are done using the UPC PARMACS
macro’s [Artiaga et al., 1998], employing the solaris.threads threading model.
Because some of the default benchmark sizes are too big to simulate their ex-
ecution in a reasonable time, smaller problem sizes were used (see Table 4.1).
For some of the benchmarks, we added a *scale variant in which the size
of the data set is scaled linearly with the number of processors.3

Since our scaling down of the problem size influences the working set,
and thus the cache hit rate, the level 2 cache was resized from an actual 8 MiB
on a real UltraSPARC III to 512 KiB. Also, the associativity was increased
to 4-way (compared to 2-way for the US-III) after we experienced excessive
conflict misses in Solaris’ internal structures with the 2-way caches. Overall,
this resulted in realistic, 93–97% hit rates for the L2 caches. 50–60% of
L2 misses were cataloged as coherence misses (resulting in communication
among different processors), the remaining 40-50% were cold, conflict or
capacity misses.

3The fft benchmark requires its input set to change in multiples of four, which is why we
did not run fftscale on a 32-node network.

Code Problem size
barnes 8192 particles
cholesky tk15.O
cholesky29 tk29.O
fft 256K points
fft4M 4M points
fftscale 256K / - / 1M points
fmm 8192 particles
lu 512×512 matrix
luscale 5122 / 10242 / 20482 matrix
ocean.cont 258×258 ocean
ocean.contscale 2582 / 5142 / 10262 ocean
radiosity test
radix 1M integers, 1024 radix
radixscale 1M / 2M / 4M integers, 1024 radix
raytrace teapot
volrend head
water.nsq 512 molecules
water.sp 512 molecules

Table 4.1: SPLASH-2 benchmark applications and their problem sizes
that were used throughout this study. For the *scale variants, the
input sizes given are for 16-, 32- and 64-node networks respectively.

5
Speeding up design-space

explorations

See everything;
overlook a great deal;
correct a little.
— Pope John XXIII

When designing the interconnection network for a multiprocessor machine,
a multitude of design decisions needs to be made. This is the case for con-
ventional, static networks, but even more so for reconfigurable networks,
which have a number of additional parameters such as the number of sup-
ported elinks or the reconfiguration interval. Some of these will be fixed by
the choice of technology. In other cases, the technology that is to be used
is still under consideration, and comparisons need to be made among the
performance of different choices. Even within a given technology there are
often trade-offs to be made. With tunable VCSELs for instance, the number
of wavelength channels supported depends on the required tuning speed.

From all these possible choices, one network architecture needs to be
found that is optimal, in regard to a combination of design cost, fabrication
cost, power requirements, performance, etc. Without having specific knowl-
edge of the technologies that might be used in future implementations, we
will limit ourselves in this work to the performance aspect as a function of
basic technological parameters. To this end, we use the parametric network
model from Section 4.1 with a range of paramter values. Additionally, we
show simulation results for the selective broadcast implementation from
Section 4.2.

82 5 Speeding up design-space explorations

Figure 5.1: Speed versus accuracy of different reconfigurable network
evaluation techniques

Our simulation platform allows us to make measurements on the in-
terconnection network, while traffic is being fed to it by processors running
actual applications. This makes the traffic highly realistic, compared to other
approaches where the network traffic is synthetically generated using simple
models (uniform, hot-spot, etc.). Unfortunately, simulating the execution of
a complete application in this way takes at least several hours. This is accept-
able in the final stages of a design, where the performance of one proposed
implementation needs to be validated against a preset performance target,
or when the stability of the network under a wide range of inputs must be
verified. In this case, highly detailed simulations are required that model as
much aspects of the proposed network implementation as possible.

This slow, detailed simulation, however, does not allow a network de-
signer to explore the design space, i.e., to quickly compare design points and
gain insight into the relationships and trade-offs that exist among different
parameters. For this, a different method is needed that can quickly provide
a prediction of the performance of a given design. Note that at this stage,
mainly relative predictions are needed because the designer wants to compare
designs. Absolute predictions are usually not necessary, or can be obtained
by doing one detailed simulation with which the predicted results can be
calibrated. Most prediction techniques therefore focus on relative accuracy,
which is easier to obtain. The fact that they often have systematic errors and
thus only yield a low absolute accuracy is usually not a problem in practice.

In this chapter, we present three tools that allow for quick comparisons
among network design points. Section 5.1 describes a technique that takes
the traffic trace recorded in one detailed simulation, and uses this traffic
to predict the remote memory access latency of machines with other inter-

5.1 Predicting network performance 83

connection networks. In Section 5.2, another prediction model is described
that accounts for network congestion. The third technique, presented in
Section 5.3, is a method of statistically generating network traffic with the
required temporal behavior, but allows one to use a shorter trace than a
complete execution of the benchmark program. Together, they form a range
of techniques to evaluate reconfigurable network performance, each with a
different trade-off between simulation speed and accuracy (see Figure 5.1 for
a schematic representation). They can help a network designer throughout
the different stages of a design-space exploration, and will also be used in
Chapter 6 in our performance exploration of reconfigurable networks.

5.1 Predicting network performance

In this section, we present a fast prediction method for the performance of
reconfigurable networks. It is based on trace-based simulation, but goes
one step further: we start with a trace of the traffic from one full-system
simulation, but we do not actually simulate the flow of packets in our sub-
sequent evaluation of the different networks. Since the reconfiguration of
the network manifests itself only as a modification of the network topology,
it is possible to determine the distance a packet will have to travel in the
new network as compared to the old network. This allows us to rapidly
predict new packet latencies, and estimate, to a certain level of accuracy,
the resulting new average remote memory access latency. This will be our
performance metric for the network.

5.1.1 Prediction model

Our performance prediction method is based on only one full-system simu-
lation run per benchmark. The prediction is parametrized on the constraints
imposed by the network (n, f and ∆t, or the properties of the SOB system
from Section 4.2), and can therefore predict the performance of a range of
candidate networks, while still relying on only a small number of long run-
ning simulations. For each benchmark, this prediction is derived using the
following steps:

• A single full simulation is done of each benchmark, using a non-
reconfigurable network (referred to as the baseline simulation), yield-
ing a list of memory accesses and a list of network packets.

84 5 Speeding up design-space explorations

• Using the list of network packets, the traffic exchanged between each
node pair is calculated for each interval of duration ∆t.

• The placement of the elinks, given the traffic pattern just computed, is
determined for each interval using the elink selection algorithm.

• The latency of each memory access is reviewed, for accesses that would
benefit from an elink this latency is reduced.

• Using the new latency distribution over the different processors, an
average latency reduction is derived.

Now, each of the above stages is explained in more detail.

Full simulation

We start by doing one full-system simulation (per benchmark), using the
simulation platform described in Section 4.4. Only the base network is active,
so this simulation also serves as the baseline against which we calculate the
speedup to determine the performance of a reconfigurable network. Our
simulator creates a list of memory references that cannot be satisfied by
the local node, and a second list of all packets that were sent through the
network. Each memory reference is annotated with the time the request
started, the requesting node, the home node and the measured access latency.
For network packets, we store the sending time, the source and destination
nodes and the packet size. Note that there are only two sizes of messages
generated by the coherence protocol: 16-byte packets with only control
information (read request, invalidate, etc.) and 80-byte packets that contain
control information plus a complete cache line of 64 bytes.

Determining the elink placements

The packet trace is divided into intervals of duration ∆t. For each interval,
sums are made of the number of bytes that were exchanged between each
of the p(p − 1)/2 node pairs (with p the number of processors or nodes).
If bidirectional elinks are used, traffic in both directions is added together.
When we have the traffic profile for the interval, we use the normal elink
selection algorithm, described in Section 4.3, to determine elink placements
for the next interval.

Correlating memory accesses

The metric that makes network performance visible to the processors, is the
remote memory access latency. Therefore, we have chosen the relative mem-

5.1 Predicting network performance 85

ory access latency reduction (compared to the baseline memory latency) as
the metric with which to compare different networks. We will now estimate
the new memory access latency as a function of the selected elinks.

We enumerate the memory accesses of the execution and represent each
access by its sequence number i ∈ {1, 2, . . . ,m} = I. Every memory access
that requires network traffic is initiated by the processor on one node and
serviced by the directory on another node, the home node of the memory
word. We therefore connect this memory access to the node pair made up
by these two nodes. The distance between these nodes is measured, both
before and after adding the elinks, and the memory access i is tagged with
these two distances: its baseline distance db(i) and its elink distance de(i).

Memory access latencies (taking at most a few microseconds) are sig-
nificantly shorter than the considered reconfiguration intervals (100 µs and
upwards), so there should be no problem of accesses spanning several inter-
vals. There are memory accesses that require intervention by a third node,
in particular if the memory access is a write and some third node needs to
invalidate or write back the word. However, these transactions involving
three or more nodes are not very common (in our simulations, their fraction
in total memory access latency was always less than 10%). Besides, about
half the time of these accesses is still spent in communicating between the
two primary nodes. Therefore, in this model, we ignore speedups of the
traffic between nodes other than the two primary nodes.

Calculating new latencies

We shall use the notation
〈
x(y)

〉
range(y) to denote the average of the function

x(y) over the specified range of y. Let Lb(i) be the baseline latency of memory
access i. First, we calculate the average memory access latency, over the
course of the baseline simulation, for all memory accesses with the same
distance:

L(d) = 〈Lb(i)〉{i : db(i)=d}

The average baseline access latency can be computed as a weighted average
of these per distance latencies, with the number of accesses per baseline
distance Nb(d) as weights (N is the total number of remote memory accesses
in the simulation):

Lb = 〈Lb(i)〉I =
1
N

∑
d

Nb(d) · L(d)

L(d) gives the estimated memory access latency as a function of the distance
between its primary nodes. As indicated by the notation, we assume latency

86 5 Speeding up design-space explorations

is only a function of this distance, and does not change when adding recon-
figurable elinks to the network. Therefore, the predicted access latency of
memory access i after adding elinks, L̂e(i), would be the L(d) associated with
the elink distance de:

L̂e(i) = L [de(i)]

Note that we will use L̂ to denote the value of L as estimated by our model,
a measurement of L using simulation will be written as L. Our estimate for
the average memory access latency after adding the elinks, L̂e, can now be
computed. We again count the number of accesses per elink distance Ne(d)
to compute the new average as a weighted average of L(d) using Ne(d) as
weights:

L̂e =
〈
L̂e(i)

〉
I
=

1
N

∑
i

L (de(i)) =
1
N

∑
d

Ne(d) · L(d)

When written this way, it can be seen that our prediction will be accurate if
(1) the new distance distribution Ne(d) can be accurately predicted and (2)
the per distance latency L(d) does not change after adding elinks.

Figure 5.2 shows that we can accurately estimate the number of accesses
per elink distance, using the traffic pattern from a simulation with a non-
reconfigurable network. For each distance, the graph shows the number
of memory accesses in the baseline simulation Nb, the predicted number of
accesses Ne using the method described above, and the actual number of ac-
cesses, measured in a simulation where the reconfigurable network is added
to the machine. We can clearly see that adding a reconfigurable network
greatly reduces the average distance, also this new distance distribution can
be estimated accurately based on traffic patterns obtained from the baseline
simulation run.

The next question is whether memory latency is indeed only a function
of distance, and does not vary with other topological parameters. Figure 5.3
shows this memory latency L(d) for the baseline (bars) and a few different
networks (cross-hairs), as measured in simulations with the reconfigurable
network in place. For d = 4 the difference is obvious. However, d = 4 accesses
are almost eliminated after adding elinks (as can be seen in Figure 5.2, where
the gray and black bars for d = 4 are barely visible), making this measured
average (and the apparent rise in latency for most of the networks) unreliable.
Moreover, since the number of d = 4 accesses, and thus the weight of L(4) in
the computation of L̂e, is so small, the value of L(4) does not influence the
result much. Lower distances show far less variation, the difference being
due to the reduction of congestion after adding more links to the network.
This congestion is not modeled in this prediction method, its influence will
be further explored in Section 5.2.

0%

20%

40%

60%

80%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

fft, n = 16, f = 2, ∆t = 100 µs

0%

20%

40%

60%

1 2 3 4
R

el
at

iv
e

oc
cu

re
nc

e
Distance

ocean.cont, n = 16, f = 2, ∆t = 100 µs

0%

20%

40%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

fft, n = 4, f = 2, ∆t = 10 ms

0%

20%

40%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

ocean.cont, n = 4, f = 2, ∆t = 10 ms

0%

20%

40%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

fft, prism, ∆t = 1 ms

0%

20%

40%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

ocean.cont, prism, ∆t = 1 ms

Baseline Predicted Measured

Figure 5.2: Baseline, estimated and actual distance distribution of
memory operations for the fft and ocean.cont benchmarks on a
selection of 16-node networks. When adding reconfiguration abilities
to the network (moving from baseline to measured), the fraction of long-
distance memory accesses drops significantly. Moreover, the measured
and predicted distributions are in good agreement.

 0

 500

 1000

 1500

 2000

1 2 3 4

A
ve

ra
ge

 la
te

nc
y

Distance

fft

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4

A
ve

ra
ge

 la
te

nc
y

Distance

ocean.cont

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4

A
ve

ra
ge

 la
te

nc
y

Distance

radix

 0

 500

 1000

 1500

1 2 3 4

A
ve

ra
ge

 la
te

nc
y

Distance

cholesky

Baseline Measured

Figure 5.3: Variation of average memory latency per distance for
different network parameters on a 4×4 torus network

5.1 Predicting network performance 89

5.1.2 Prediction accuracy

Figure 5.4 shows the result of our prediction model, the memory access
latency improvement over the baseline after adding elinks, compared to the
values measured in an execution-driven simulation, for a number of different
reconfigurable 16-node networks. A linear regression of the form

P̂ = α + β ·M

is calculated (with P and M the predicted and measured latency reduction,
respectively). The correlation coefficient r is high, so a strong, linear correla-
tion exists between measurement and prediction. Our method can therefore
be used to very quickly compare different proposals for network parame-
ters. This makes it a very useful tool for design-space explorations, where
the optimal solution needs to be found from a large collection of candidate
networks.

In Figure 5.5 the predicted and measured latency improvements are shown
again. This is done for a number of elinks (n = 2, 4, 8 and for the implementa-
tion using the prism from Section 4.2) and different reconfiguration intervals
(∆t = 100 µs, 1 ms, 10 ms). For comparison, the fixed case is added: here,
the same number of elinks is added in random positions (favoring longer
links), but they are not reconfigured at runtime (the average result from five
different placements is reported).

From this graph, it is obvious there is a systematic underestimation
present. This is mostly due to the fact that we have not included congestion
in our method. However, the relative prediction accuracy among different
network parameters, which is the most important value when comparing
different suggested network implementations, is much better. By doing one
more execution-driven simulation per benchmark, with which our model
can be calibrated, better absolute accuracies can be obtained. The third bars
in Figure 5.5 show this corrected data. They are obtained by doing one ex-
tra simulation (per benchmark) with a reconfigurable network, defined by
n = 16, f = 2, ∆t = 100 µs, in place. The predicted and measured la-
tency improvements are then known for this network. All predictions are
subsequently scaled with a constant factor, dependent only on the bench-
mark application, such that the corrected prediction of the n = 16, f = 2,
∆t = 100 µs network matches its measured value. When a network with a
large latency improvement is chosen to determine the calibration factor, the
influence of the offset of our predictions (the α parameter in Figure 5.4) is
minimized.

 0

 5

 10

 15

 0 5 10 15 20 25 30

P
re

di
ct

ed

Measured

fft

α = -1.19
β = 0.55
r = 0.93

 0

 5

 10

 15

 0 5 10 15 20 25 30

P
re

di
ct

ed

Measured

ocean.cont

α = -0.18
β = 0.43
r = 0.87

 0

 5

 10

 15

 0 5 10 15 20 25 30

P
re

di
ct

ed

Measured

radix

α = 0.39
β = 0.38
r = 0.92

 0

 5

 10

 15

 0 5 10 15 20 25 30

P
re

di
ct

ed

Measured

cholesky

α = -2.74
β = 0.81
r = 0.95

 0

 5

 10

 15

 0 5 10 15 20 25 30

P
re

di
ct

ed

Measured

barnes

α = -0.13
β = 0.26
r = 0.90

 0

 5

 10

 15

 0 5 10 15 20 25 30

P
re

di
ct

ed

Measured

average

α = -0.96
β = 0.50
r = 0.94

Figure 5.4: Predicted versus measured latency reduction for a variety
of 16-node network implementations. α, β and r represent a linear
regression of the form P̂ = α + β ·M and its correlation coefficient.

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

fft

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed
La

te
nc

y
re

du
ct

io
n

Network (n = 2, 4, 8; prism)

ocean.cont

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

radix

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

cholesky

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

barnes

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

average

Predicted Measured Corrected

Figure 5.5: Latency improvement after adding elinks: estimated using
our predictor, measured in simulation, and the corrected prediction
using a constant factor per benchmark

92 5 Speeding up design-space explorations

5.1.3 Improving accuracy

Don’t look where you fall,
but where you slipped.
— African Proverb

A number of assumptions were made in the algorithm described in Sec-
tion 5.1.1. First of all, the traffic pattern from the baseline simulation is
used. When adding elinks, traffic streams could potentially appear or dis-
appear. Since the communication pattern is the result of an algorithm that
is implemented by the benchmark code, which is in most cases unaffected
by the platform on which it is running, this pattern should not change too
much. Selecting the elinks based on the traffic pattern is done using the
same method as that used at runtime, so here no additional error can be in-
troduced. Figure 5.2 showed that we can very accurately predict the distance
distribution of memory operations after adding a reconfigurable network.
Memory latency is, however, as Figure 5.3 clearly shows, not just a function
of hop distance, as was assumed in Section 5.1.1.

The component which causes the largest error in our prediction is the
reduction of congestion. Clearly, adding links to the network increases
bisection bandwidth and thus increases the total capacity of the network.
We even place the elinks such that large traffic flows are moved away from
the base network, speeding up not only the traffic that was moved but also
the traffic that remains on the base network. This can be clearly seen in
Figure 5.6 which shows the distribution of packet waiting times: for the
baseline this distribution drops off slower, which means that there are more
packets that experience high congestion. This shows there is room for a
more complicated, slower method in which congestion is modeled resulting
in greater accuracy. Such a method is presented in Section 5.2.

5.1.4 Reduction in simulation time
Figure 5.7 shows the computation times required for both the full-system
simulations and our prediction model, the former taking several hours while
the latter can be completed in just a few minutes. We did not include the
cost of the initial simulations in the computation time for our method, since
this should only be done once and can subsequently be reused for any num-
ber of network parameter sets. Our method therefore allows a reduction in
computation time by about two orders of magnitude. Note that we already

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50

R
el

at
iv

e
oc

cu
re

nc
e

Packet waiting time

Baseline Reconfigurable

Figure 5.6: Distribution of the waiting time per packet, for the baseline
simulation and a reconfigurable network simulation (with n = 4, f = 2
and ∆t = 100 µs) of the fft benchmark run on a 16-node network

 0.1

 1

 10

 100

 1000

fft radix cholesky barnes ocean.cont

C
om

pu
ta

tio
n

tim
e

(m
in

)

Benchmark

Simulation Prediction

Figure 5.7: Computation time (in minutes) required for a full simula-
tion and our prediction for four of the benchmarks considered. Note
that the Y-axis is in a logarithmic scale.

94 5 Speeding up design-space explorations

employed scaled-down benchmarks and an in-order processor model. If
one were to do these simulations with a highly detailed simulator, the com-
putation time can easily be an order of magnitude higher. In contrast, the
prediction model was implemented by a Python script, optimized for main-
tainability and extensibility. A speed-optimized implementation written in,
for instance, C would make the difference in computation time even larger.

5.2 Congestion modeling

The simplicity of the previous method resulted in very short runtimes al-
lowing quick design-space exploration. The fact that congestion was not
modeled is a source of error, however, which in some cases should not be
ignored. Clearly, congestion plays an important role in the performance of a
network where traffic can be directed away from hot-spots, as is attempted
by adding elinks. In this section, we model congestion on the communica-
tion network, yielding a different performance prediction method which has
higher accuracy in congested networks, at the cost of being more complex
and having a slightly longer runtime.

For each reconfiguration interval, the average waiting time for packets on
each link is computed using the Pollaczek-Khinchin (PK) mean formula by
regarding each network link and its preceding buffer as an M/G/1 queueing
system. At each network node, a set of buffer+link systems is connected.
The PK mean formula requires the packet inter-arrival time and service time
distributions, which are also derived. Adding waiting times over all links on
the path of a packet gives us the total waiting time. We finally compute the
average expected packet latency which is used as the performance indicator
for the network.

Note that the queueing theorems that are used, including the PK means
formula, are only valid when the system is operating in steady state. This is
not the case for a realistic network. Applying the PK means formula in this
settings is therefore not theoretically accurate. It does, however, provide a
reasonably good heuristic, as will become clear in the results section.

5.2.1 Contention model
We will now present our contention model for reconfigurable networks,
based on only one full-system simulation run per benchmark. This model is
again parametrized on the values of n, f and ∆t, and can therefore predict
the contention on a range of candidate networks, while still relying on only

5.2 Congestion modeling 95

a small number of slow, full-system simulations. For each benchmark, this
prediction is derived using the following steps:

• A single execution-driven simulation is done of the benchmark, using
a non-reconfigurable network (also referred to as the baseline simula-
tion), yielding a list of network packets.

• Using the list of network packets, the traffic exchanged between each
node pair is calculated for each interval of duration ∆t.

• The placement of the elinks, given the traffic patterns just computed,
is determined for each interval.

• By viewing each buffer/link-combination in the network as an M/G/1
queueing system, we derive the mean waiting time for a packet travers-
ing this link.

• Using the waiting times on each link, and the distribution of packets
over the links, a global average waiting time can be computed.

In the rest of this section, each of the above stages is explained in more detail.

Full simulation

The first step is the same as for our prediction model from Section 5.1.1,
i.e., we do one full-system simulation per benchmark and store the packet
trace. Memory accesses were not recorded in our experiments, since we
only estimated packet latency. Connecting packets to memory accesses, and
subsequently estimating the improvement in memory access latency, would
be a trivial extension to this model.

Determining the elink placements

Just as in the prediction model, we divide the trace into intervals of length
∆t and use the elink selection algorithm to determine elink placements.

Average waiting time per link

For each interval, we again have the topology of the network (defined by the
sum of base network links and selected elinks) during that interval, and the
number of packets sent between each node pair. Since the path each packet
follows is deterministic (determined by the static routing table for the elinks,
and by dimension routing for the base network, see Section 4.4), we also
know the load on each network link.

96 5 Speeding up design-space explorations

Figure 5.8: We divide the network into independent queueing sys-
tems, each consisting of one output buffer and its succeeding external
link which provides the service. Traffic can enter the system via the
crossbar switch through several incoming links.

We will view each network link and its preceding buffer as an M/G/1
queueing system (Figure 5.8). This is a system in which packet arrivals are
specified by a memory-less (Poisson) process yielding an independent and
exponentially distributed inter-arrival time, an arbitrary service time distri-
bution and one server (the service provided in this system is transmission of
a packet over a slow – compared to the internal speed of the router – exter-
nal network link). The buffer size is considered infinite. The mean waiting
time in this system is given by the Pollaczek-Khinchin (PK) mean formula
[Robertazzi, 2000]:

E[W] =
λE[S2]
2(1 − ρ)

(5.1)

with W the waiting time, S the service time, λ the intensity of the arrival
process, ρ the server load and E[X] denoting the stochastic expected value
of the quantity X. This will be done for all links in the system, both the
links in base network and the elinks. Note that in this discussion, links are
regarded as unidirectional. Indeed, even though we are using a request-
reply protocol, the replies are usually bigger than the requests (since most
of them contain an additional 64 bytes of data) so the load on links in one
direction may be much higher than the load in the other direction.

First we determine the arrival rate λ. Assuming packet arrival is regu-
lated by a Poisson process (it is not, but we will compensate for that later),
λ is the probability that a packet arrives in a given clock cycle. There are
∆t · C cycles in each reconfiguration interval (with C the frequency of the
system clock), and we have already computed the number of packets that
will traverse this link during the current interval (call this N). Therefore,

λ =
N

∆t · C

5.2 Congestion modeling 97

Next, we describe the service time. In our system this means the trans-
mission time of the packet. This time is used to compute how long a packet
following the present one will have to wait before it can use the link. The
fact that transmission of a packet is pipelined through several links has no
influence on the service time. Each link has a specified transfer rate (say B,
measured in bytes/second). A packet can either be small (16 bytes) or large
(80 bytes). We count how many packets of each length traverse each link
during each reconfiguration interval (N16 small packets and N80 large pack-
ets). The probability of a given packet being small is therefore p16 = N16/N,
the probability of it being large is p80 = 1 − p16 = N80/N. Small packets
require a service time of S16 = 16/B, for large packets this is S80 = 80/B. The
service time is therefore a Bernoulli distribution, its second moment E[S2],
which we need to compute the mean waiting time, is:

E[S2] = p16 · S16
2 + p80 · S80

2

The server load ρ translates to the link utilization factor. We transmit
16 ·N16 + 80 ·N80 bytes over the link, which has a total capacity to send B ·∆t
bytes during one interval, thus:

ρ =
16 ·N16 + 80 ·N80

B · ∆t

We can plug these values into the PK mean formula (Equation 5.1), which
will yield the mean waiting time, or the average time a packet spends in the
transmit buffer preceding the link under investigation.

There is one large deficiency in our reasoning thus far: the packet inter-
arrival process is considered memory-less (i.e., not dependent on the number
of arriving packets in previous cycles). In reality, this is clearly not the case.
Indeed, traffic entering a buffer+link system comes from a limited number of
other, incoming links, and each of these links also has a limited throughput.
Therefore, if all incoming links deposit a packet in the buffer during this
cycle, no other packets can enter the system for at least a time S16, the time
required for a small packet to traverse an incoming link. Only after this
time a new packet can arrive, which clearly violates the assumption of a
memory-less arrival process.

The derivation of the PK mean formula depends heavily on the arrival
process being memory-less. It is therefore not easily done, and probably not
even possible analytically, to repeat the PK derivation with a generalized
inter-arrival process. This is mostly because the derivation assumes the
number of packets in the queue is ergodic, which is referred to as the PASTA
property of a Poisson process: Poisson arrivals see time averages. In short, it

98 5 Speeding up design-space explorations

states that the number of packets in the queue at the instant a packet arrives
(a Poisson arrival), has the same distribution as the number of packets in
the queue at any given time (the time average). This implies a statistical
independence between the arrival times of packets already in the queue and
the arrival time of the newly arriving packet.

Furthermore, two packets arriving through the same incoming link into
this buffer+link system will never have to wait for each other in this system
(one may have waited for the other in the buffer preceding the incoming
link, but since we are now focusing on just one buffer+link system this is not
to be considered here). The second packet can only arrive a time S16 or S80

after the first one (the first packet has to clear the incoming link before the
second packet can arrive). In an uncontended system, the first packet can
clear the next link during this time so the second packet can continue without
waiting. In a system with contention, the first packet may be delayed in this
systems buffer due to packets from other incoming links. This will delay
the first packet, possibly also delaying the second packet, but all delay of
the second packet can be attributed to the packets from the other incoming
links. Therefore we conclude that packets, entering the system through the
same incoming link, have no influence on each others’ waiting time in this
system.

Combining these two observations, the wish for statistical independence
between an arriving packet and the packets already in the queue, and the
fact that packets entering the system through the same link do not influence
each other, we propose the following modification to our model: instead
of aggregating all packets flowing over this link into one big N16 and N80,
we separate them by incoming link into Ni

16 and Ni
80, for each i being the

identifier for one of the incoming links. The waiting time E[W]i, which is the
time spent in the buffer of this system, valid for packets entering the system
using incoming link i, is now computed with the same PK mean formula as
before but with

N16 = N¬i
16 =

∑
j,i

N j
16

and likewise for N80: the system is now viewed as being loaded with packets
from all links except link i, packets entering from link i will now experience
a delay that is caused only by packets from other links.

This way, we have achieved both goals stated before: packets coming in
through the same link do not influence each other (Ni

16 and Ni
80 are not used to

compute E[W]i); all packets that are used to compute E[W]i came in through
another link. The arrival times of packets in the queue are now statistically
independent of the arrival time of packets entering through link i, this makes

5.2 Congestion modeling 99

the PASTA property applicable. The statistical dependence between some
packets in N¬i

16 and N¬i
80 (because they entered through the same incoming

link j) has not been removed, we will later see how this influences the results.

Calculating the total packet latency

Since we know the path each packet will take, we can add the expected
waiting times in each of the buffers the packet will pass through to compute
the total expected waiting time for the packet. This can be done for all packets
and averaged across all reconfiguration intervals, yielding a prediction for
the global average packet waiting time. If total packet latency is the desired
metric, this can be computed by adding the uncontended packet latency,
which is the time required for a packet to go from source to destination if no
other packets are using the network, to the waiting time.

Computational complexity of the model

The computational complexity of a complete network simulation is of the
order of the total number of packets sent throughout the runtime of the
benchmark (for each packet, a number of computation steps are done per
simulated clock cycle). The complexity of our model is lower: the final two
steps work on quantities derived by aggregating all packets sent between one
node pair (in one direction) and in one reconfiguration interval. Therefore,
the computational complexity of our prediction model is lower than that of
a full network simulation by a factor of the order of Ni

16 + Ni
80, which, in

practice, amounts to a factor of ten at least, depending on the length of the
reconfiguration interval.

5.2.2 Results
Figure 5.9 summarizes the results for our model. For two benchmarks,
radix and barnes, we ran the model on the traffic patterns obtained from
the baseline simulation and predicted the average waiting time for a number
of different values of n. We also simulated the network with the elinks and
measured the waiting time for comparison. We can see that the relative
accuracy, for different values of n, is good, so we can use our prediction
model to evaluate the effect of adding more or less links to the network.

Since we have already done the baseline simulation, the measured value
of the waiting time on a non-reconfigurable network is essentially free. If we
compare a prediction of the waiting time for a network without elinks with
this measurement, we can calibrate the model (we used a linear calibration

100 5 Speeding up design-space explorations

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

base 4 8 12 16

A
ve

ra
ge

 w
ai

tin
g

tim
e

Number of extra links

radix

 0
 50

 100
 150
 200
 250
 300

base 4 8 12 16

A
ve

ra
ge

 w
ai

tin
g

tim
e

Number of extra links

barnes

Predicted Measured Corrected

Figure 5.9: Average waiting time per packet for radix and barnes:
estimated value, measured value and corrected estimate, for networks
with a different number of elinks (all with f = 2, ∆t = 1 ms and 16
processors)

factor for simplicity). The third bars in Figure 5.9 represent this corrected
prediction, with a calibration factor of 1.26 for radix and 0.47 for barnes.

In Figure 5.10, we tried to predict congestion when changing the reconfig-
uration interval. The measurements were done for the barnes benchmark,
with the number of elinks held constant at eight. Here, the predictions do
not follow the trend of the measurements. We will try to explain this fact in
the following section.

5.2.3 Discussion

The PK mean formula used in Section 5.2.1 states that waiting time is a
linear function of (1 − ρ)−1. This means that for ρ→ 1, the expected waiting
time rises to infinity. According to queueing theory, a value of ρ > 1 is not
even possible, since this would mean that a link has a utilization of more
than 100%. However, when calculating the different expected waiting times
in Section 5.2.1 we often see values of ρ that are as high as 1.2. This is
because our buffer+link systems are not operating in steady state, but rather
continuously stay in a transient state. Consider the situation in which,
during one interval, more packets enter a buffer+link system than the link
can process in that interval. Our model will compute a value of ρ > 1 and fail.
In reality, the excess packets will just stay in the buffer and are transmitted
during a later interval.

Even when link utilization approaches but does not exceed 100%, the
waiting time rises without bounds. However, in our measurements the

5.2 Congestion modeling 101

 0

 20

 40

 60

 80

 100

 120

100 µs 1 ms 10 ms

A
ve

ra
ge

 w
ai

tin
g

tim
e

Reconfiguration interval

Predicted
Measured

Figure 5.10: Average waiting time per packet for barnes: estimated
and measured value, for networks with a different reconfiguration
interval (all with n = 8, f = 2 and 16 processors)

waiting time never exceeds more than a few hundred clock cycles. Therefore,
it is obvious that the PK mean formula as it is used now is not able to
accurately model a real buffer+link system for highly utilized links. In our
implementation, we have tried to counter this by limiting ρ to 90%. This
way, predicted waiting times do not rise unlimited but are kept at reasonable
values.

As the length of the interval decreases, fewer packets are contained in
each of the Ni

16 and Ni
80’s (less than 10 for ∆t = 100 µs). We now experience

the classical problem one faces when trying to extract statistics from a very
limited sampling set. The packet inter-arrival time and service time distri-
butions can now no longer be estimated accurately. Also, network behavior
seems even more dynamic because we do not average out network traffic
over longer periods of time. This lowers our prediction accuracy. To isolate
this effect of the reconfiguration interval, we ran our prediction model three
times on a network without elinks, but still divided time into a number
of fixed length intervals (see Figure 5.11). Since the network for all three
predictions is the same, we should predict the same congestion. However,
we see that for short intervals congestion is highly overestimated, while the
accuracy improves when increasing the interval length. The same effect
plays in Figure 5.10, where congestion is overestimated more for shorter

102 5 Speeding up design-space explorations

 0

 50

 100

 150

 200

 250

 300

 350

 400

100 µs 1 ms 10 ms
0.0%

0.5%

1.0%

1.5%

2.0%

A
ve

ra
ge

 w
ai

tin
g

tim
e

H
ig

hl
y

ut
ili

ze
d

lin
ks

Interval length

Predicted
Measured

Highly utilized links

Figure 5.11: Average waiting time per packet for barnes: estimated
and measured value, for a non-reconfigurable 16-node network. The
predictions are made by dividing time in intervals of different length.

reconfiguration intervals. Figure 5.11 also shows the relative occurrence of
the model having to limit link utilization to 90%. Clearly, this fraction and
the prediction inaccuracy have a positive correlation.

This effect can also explain the difference in calibration factors needed
for Figure 5.9: barnes has more communication than radix, and thus more
highly utilized links. This results in the observed overestimation of waiting
times for barneswhich does not occur for the radix benchmark.

5.2.4 Improving accuracy

The handling of highly utilized links is probably the largest source of errors
in our current model. Related to this is the fact that, in an M/G/1 system,
the buffer size is considered infinite. In a real network this is not the case:
once a buffer fills up, packets upstream are delayed. One could say that the
upstream buffers now represent an extension of the full buffer making its
apparent size much larger. However, traffic that uses the upstream buffers
but not the one that first filled up is also affected. This effect is not included
in the current model.

We also did not model a delay when a packet enters the network. Packets
are created by one of the network interfaces, than they are stored in the buffer

5.3 Synthetic network traffic 103

of the first link they will go through. Remember that in our model, these
packets are described as entering the system through their own incoming
link. In this buffer+link system, they experience a waiting time that is
dependent on traffic from other incoming links, as is described by our model.
However, no waiting time is attributed to these packets interfering with each
other. If the network interface is only able to generate and send packets at a
slow rate – which is generally the case since request-reply protocols are used,
and the number of outstanding requests is limited – this may be accurate.
But if several packets are dropped into the buffer in short succession – which
happens in reality when a coherence controller sends out several invalidation
messages – they will have to wait there. This is the case even when no other
traffic enters the buffer+link system through other incoming links, therefore
our model would incorrectly state that E[W]i = 0.

5.2.5 Reduction in simulation time

A typical reconfiguration interval is 1 ms or one million clock cycles. Ni
16+Ni

80
now contains a few tens of packets. Since they can be processed in combi-
nation, rather than separately, this makes the computational complexity of
our model at least one order of magnitude less than that of a full network
simulation. Our implementation confirms this: full simulations take, for
16-node networks, about one hour, while the model usually runs in less than
five minutes.

5.3 Synthetic network traffic

For measurements requiring more accuracy than our prediction methods of
the previous sections can provide, simulation has to be used. Simulating the
processors, caches and coherence controllers can usually be avoided once
the packet trace of a benchmark’s execution has been recorded. This trace
can subsequently be played back on different networks.1 Since there is a lot
of similarity inside a typical packet trace, it is inefficient to play the complete
trace for each simulation.

Sampling could be used, where only part(s) of the trace are played and
the results for the complete program are extrapolated. However, selecting

1There can be interaction between network timing and application behavior, as is shown
in Section 6.1, causing the network traffic on execution-driven simulations to deviate between
different networks. Still, the most important properties of the traffic, such as burstiness and
locality, remain the same.

104 5 Speeding up design-space explorations

the correct parts is not trivial. Especially for reconfigurable networks, care
must be taken that the dynamic behavior of the traffic, which is exploited by
reconfiguration, remains intact. Bertels and Stroobandt [2006] use reservoir
sampling to sample accesses to a shared memory to measure communication.
They want to obtain a confidence level of 95% that communication streams
representing a fraction of total bandwidth of at least 0.1%, are represented
in the sample population with a relative error smaller than 5%. To this end,
over 1.5 million samples need to be made. Moreover, this only guarantees
that all communication streams have been sampled once. Information about
the instantaneous bandwidth and burstiness of the communication, which
significantly affect network behavior, require an even larger sampling set.

Another solution is to generate synthetic network traffic, with the same
properties as the traffic generated by the execution of a real application. In
practice, simple traffic patterns are used such as uniform, hot-spot, perfect
shuffle, etc., modeling traffic destinations, combined with exponential inter-
arrival times [Ridruejo et al., 2005]. Yet, these patterns lack the required
time-varying behavior, making them inappropriate to evaluate reconfig-
urable networks. Additionally, they generate single, independent packets.
While this may suffice for the evaluation of message-passing architectures,
traffic inside a shared-memory machine is characterized by the fact that mes-
sages are highly structured in – sometimes multi-level – request-response
structures. This makes for more correlation between individual messages,
which can invalidate assumptions based on the independence of packets
that are commonly made when working with existing generators.

Therefore, we developed a technique to generate synthetic network traf-
fic that includes the required spatial and temporal behavior. Our synthetic
traffic has the advantage that the relevant traffic properties of a real traffic
flow are preserved, but that the flow can be much shorter, equally reducing
simulation time. In addition, the processors and caches, of which detailed
models are needed in an execution-driven simulation, no longer need to be
considered when synthetic traffic is used. This greatly reduces the complex-
ity of the simulator and again decreases the simulation time significantly.
In contrast to our prediction models, which can only predict some aspects
of network performance like average packet or memory access latency, a
synthetic traffic flow can be fed to a detailed network simulation model,
allowing all network parameters and effects (including routing protocols,
required buffer sizes, possibility of deadlock, etc.) to be taken into account.
The correlation between packets is maintained by generating what we will
call packet groups. These are sets of packets that are generated as a unit, they
will stay connected throughout the simulation so that proper sequencing of
related packets is maintained.

5.3 Synthetic network traffic 105

Figure 5.12: Possible sequences of packets, synthesized as packet
groups. (a) no third-party nodes involved, (b) data is in state mod-
ified/exclusive at another node and must first be written back, and
(c) data is in shared state at other nodes and must be invalidated.

5.3.1 Synthetic traffic generation

The synthetic network traffic will be generated based on a profile of the traffic
we want it to represent. To this end, we define properties of the network traf-
fic and measure their values during an execution-driven simulation. Here,
the benchmark application is in control of the processors, and the traffic
on the network is the result of remote memory accesses performed by this
application. This results in a statistical profile of the traffic flow, which is
specific for each benchmark application. This profile will subsequently be
used to synthesize a new, similar traffic flow.

Packet groups

Network traffic is the result of memory accesses performed by the applica-
tion. Each memory access results in a variable number of packets sent over
the network, structured into request-response structures. When analyzing
traffic, and later when synthesizing a traffic flow, we would like to keep this
structure of memory access operations intact. Therefore we will analyze,
and generate, groups of packets, rather than individual packets. This keeps
the behavior of the synthetic traffic much closer to that of the real traffic.

The coherence protocol, described in Section 3.1.2, is in charge of sup-
plying remote data words to the processors while keeping cached copies of
the same words coherent. A remote memory access starts when the request-
ing node sends a request message to the home node. This home node will
return the requested data word, possibly after communicating with other
third-party nodes to enforce cache coherence. Figure 5.12 repeats the situ-

106 5 Speeding up design-space explorations

ations that can occur. (a) denotes a simple transaction in which only one
request-response pair (REQ and REPLY packets) is needed. Situations (b) and
(c) require involvement of one or more third-party nodes, here a number of
extra request-response pairs are exchanged. They are all started in parallel
upon receipt of the initial REQ packet, the final REPLY is sent once the last
WBreply or INVreply arrives at the home node. Each of these three situations
is generated by one packet group. The other aspects of the coherence protocol
such as NAK packets and cache-initiated write-backs, only account for a very
small fraction of total network traffic and are therefore not modeled here.

Number of involved nodes

As can be seen in Figure 5.12, the number of nodes involved in a remote mem-
ory operation, which will later be synthesized as one packet group, is either
2 (situation a), 3 (b) or n > 2 (c). By properly annotating memory accesses in
the log files of an execution-driven simulation, this node count is determined
for each memory access, and a distribution is made. Figure 5.13(a) shows
such a distribution, for the fft benchmark run on a 16-processor machine.
It can be seen that simple memory accesses, involving no third-party nodes,
are the most common. Accesses in which the owner or just one sharer needs
to be contacted account for 13%, situations where data on more than one
node must be invalidated are evenly distributed and together account for
about 1%.

Distribution of home nodes

In a shared-memory machine, each node contains a fraction of the total
system memory. All this memory is accessible transparently to the processors
in a single physical address space. Some bits of the physical address, in our
implementation the uppermost ones, determine which node the contents of
this address is located at.

Using memory management units and virtual addressing, available on
all current microprocessors, one can play with the virtual to physical address
mapping. This way the operating system can, at a page granularity (8 KiB),
decide which node data should be placed on. In our simulator this is done
using a first-touch algorithm: each page is placed on the node that first
writes to it. This way, data private to a thread is always on the same node,
requiring no network traffic.

The home node is thus determined by the address that is referenced.
Since address streams, even when measured between the L2 cache and main
memory, exhibit spatial and temporal locality, we would expect the ‘stream’

5.3 Synthetic network traffic 107

 0.0001

 0.001

 0.01

 0.1

 1

0 2 4 6 8 10 12 14

R
el

at
iv

e
oc

cu
rr

en
ce

Number of nodes

(a) Number of involved nodes

 0.0001

 0.001

 0.01

 0.1

 1

0 2 4 6 8 10 12 14

R
el

at
iv

e
oc

cu
rr

en
ce

Reuse distance

(b) Home node reuse distance

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

100 101 102 103 104 105 106

R
el

at
iv

e
oc

cu
rr

en
ce

Waiting time (clock cycles)

(c) Computation time

Figure 5.13: Distributions determining a traffic profile: (a) the num-
ber of involved nodes per memory operation, (b) the reuse distance of
home nodes per requesting node, (c) computation time (time between
requests from the same node), all for the fft benchmark executed on
16 processors

of home nodes also to exhibit a high degree of temporal locality. Spatial
locality in the address stream, when within the same 8 KiB page, translates
to the same home node being accessed again. Spatial locality in the home
nodes would require spatial locality in the address stream beyond page
boundaries, which is usually low and is therefore not modeled here.

We measured the temporal locality using the concept of reuse distance
[Beyls and D’Hollander, 2001], this is the number of distinct nodes that are
accessed between two subsequent accesses of the same node, by a given
requesting node. If the contacted nodes are put on a stack (when contacting
a node already on the stack it is moved to the top), the reuse distance is given
by the distance of this node to the top of the stack (at the time before the
new memory access is performed, so before moving the node to the top).
Figure 5.13(b) shows an example distribution of this reuse distance. We can
see that distance zero occurs very frequently, this means the same node is
contacted twice or more in succession. Beyond that, the reuse distance drops

108 5 Speeding up design-space explorations

off sharply, meaning that there is indeed a high degree of temporal locality
in the stream of home nodes that are being contacted. This is expected, a
longer period during which the same home node remains at the top of the
stack results in a communication burst between requesting and home nodes,
as was observed before.

Distribution of owner and sharing nodes

Most traffic is exchanged between the requesting node and the home node (in
REQ and REPLY packets). While memory accesses requiring invalidations can
potentially lead to much more packets, they are also relatively infrequent.
Therefore, in order to limit the complexity of our packet generator, we have
decided not to model the destination of these write-back and invalidate
packets. Only their number is modeled, the destinations will be generated
using a uniform distribution. This way, the global network load will still be
relatively accurate (the correct number of packets will be generated), only
the (source, destination) distribution will be distorted slightly.

Time between requests

During the execution of a real application, a large fraction of time will (hope-
fully) be spent by the processors doing calculations. At certain instants, these
calculations need data in external memory and a remote memory access is
performed. An important parameter in this respect is the communication-to-
computation ratio, which tells us whether the execution of a certain applica-
tion is dominated by useful computation, versus waiting for remote memory
accesses. If, in our synthetic traffic, we would only generate requests and not
model the computation time, much more requests would be generated per
unit of time, overloading the network and causing much more congestion
than there would be in reality. Therefore, we measure the time between sub-
sequent requests from the same node (actually, between the completion of
one request and the start of the next one). In the context of communication
networks, this time is also referred to as the think time, during which the
processor or user thinks about what request will be made next. The distri-
bution of this time, as measured during a simulation of the fft benchmark,
is shown in Figure 5.13(c). When generating requests, each node will insert
delays between subsequent requests to model this computation time. This
way a realistic network load can be generated.

5.3 Synthetic network traffic 109

5.3.2 Generating synthetic traffic patterns
The measurements from the previous section provide us with a statistical
profile about the memory accesses performed, containing the following in-
formation:

• the distribution of the number of involved nodes,

• the distribution of the reuse distance of home nodes from a certain
requesting node, and

• the distribution of delays between launching new requests.

Our synthetic traffic generator takes these distributions and generates scripts,
one for each node, which are executed by an entity that generates network
traffic in subsequent simulations. These scripts will contain the type of
packet group to be generated ((a), (b) or (c) in Figure 5.12), the identities of
the home node and possible third-party nodes, and the delay that should be
taken into account before launching the next request in the script.

The number of involved nodes and the delay are generated randomly,
using a random number generator that matches the distributions given in the
profile. For home node identifiers, a reuse distance is generated according
to the distribution provided. This reuse distance is used to look up the home
node on a stack that, for each requesting node, contains the last accessed
home nodes. After generating each access, this home node is moved to the
top of the stack. Identifiers for third-party nodes are generated uniformly.

To validate certain assumptions, we also included the possibility of writ-
ing a script that closely follows the memory accesses performed in the packet
trace recorded from an execution-driven simulation. To this end, a packet
group is generated for each memory operation, with the same home node,
the same number of involved nodes and followed by the same delay. The
locations of the third-party nodes are not maintained but are randomized us-
ing a uniform distribution. Also, retries and cache-initiated write-backs are
removed from the trace. This enables testing the effects of the simplifications
made.

5.3.3 Simulating the synthetic traffic flow
For simulations with synthetic packet traces, the same simulation platform
is used as for doing execution-driven simulations. This guarantees that the
network model used in both cases is identical, and reduces implementation
work. The processors, caches and directory controllers are now discon-
nected, and a special packet generator is connected to each of the network

110 5 Speeding up design-space explorations

nodes instead. This packet generator creates request packets and injects
them into the network, according to the scripts generated previously.

Each packet, injected into the network by the packet generators, contains
a reference to the description of the packet group it belongs to. When the
packet arrives at its destination, the packet generator at that node can there-
fore know what actions are required to continue generation of the complete
packet group. These actions can be to send a reply packet after a certain
amount of time (modeling the time required to look up a data word in main
memory), or to send further packets (WBreq or INVreq requests), await ar-
rival of their corresponding replies (WBreply or INVreply) and only then
send the REPLY packet back. WBreq and INVreq packets contain the same
reference so the third-party nodes know which home node to send their
WBreply or INVreply to, again after some delay modeling the invalidation
in or write-back from the third-party node’s cache.

The packet generators thus perform two actions simultaneously and in-
dependently: generate new requests according to the script provided, and
take part in the completion of requests of other nodes by receiving network
packets and sending back replies. Each packet generator also measures the
time that transpires between sending the REQ packet for a request and the ar-
rival of the corresponding REPLY. This way remote memory access latencies
can be measured.

The CPU time required for the generation and simulation of a synthetic
trace for the 16-processorfftbenchmark was less than 10 minutes, compared
to 92 minutes for an execution-driven simulation, both for a simulated time
of 90 million clock cycles. This is because, in an execution-driven simulation,
most of the computational work is in the instruction set simulation of the
processors and the simulation of memory accesses that hit in the level 1 and
level 2 caches. Only memory accesses missing in the level 2 cache cause
network traffic, so during a simulation based on traffic traces only those
will need to be taken into account. In Section 5.3.5, we will show that the
simulation time can be further reduced by using shorter synthetic traces, at
only a slight expense of accuracy. Note that for each benchmark a single
execution-driven simulation will still be necessary to compute the statistical
traffic profile, but its cost can again be amortized over a large number of
trace-based simulations.

5.3.4 Results
Figure 5.14 shows our simulation results for a number of networks when
running the fft benchmark on a 16-processor machine. Two network prop-
erties are measured: the average distance a packet needs to travel (weighted

5.3 Synthetic network traffic 111

by its size, top graph), and the average packet latency (bottom graph). From
left to right, five different networks are shown. In the first one only the base
network is active. The next three are instances of our parametric reconfig-
urable network model with f = 2 and varying n and ∆t. The final one, prism,
refers to the implementation using the SOB element described in Section 4.2.

When reading the bars corresponding to (a) through (d), four measure-
ments were done of both packet distance and latency for each network. The
first one, (a) execution-driven, is a normal execution-driven simulation. This
is the most accurate simulation we can do, but also the most time-consuming
one. It will be used to determine the accuracy of the other steps. Results
on the relative runtimes of different methods are provided in the following
section.

In the next situation, (b) trace from same network, the memory operations
from the first simulation are translated to packet groups, as described at the
end of Section 5.3.2. The difference between (a) and (b) is due to our ap-
proximations when generating the packet traces. Possible reasons are ignor-
ing NAKs and retries, ignoring packets related to cache eviction of modified
blocks, and the randomization of third-party nodes. Also, the generation of
requests by different nodes is no longer synchronized: each node executes
its script at a pace dependent on the time the individual requests take. If
initially there is a high correlation among the behavior of the different nodes,
but during the course of the simulation some nodes are sped up or slowed
down more than others, this correlation will slowly disappear.

Situation (c) trace from base network resembles (b), but here a trace is used
that was extracted from a baseline simulation (i.e., a simulation without
elinks). In this set of measurements, the change (or lack thereof) in network
traffic behavior can be seen when the same application is executed on differ-
ent networks. The difference is minor, which means we only need to do one
execution-driven simulation (the baseline), and can use its traffic profile to
evaluate a large number of other networks. Finally, in situation (d) synthetic
traffic our synthetic traffic is used.

When comparing results between the different networks, we can see
that, although the absolute value of the packet distance or latency cannot be
predicted very accurately, their relative change – while changing network
parameters – remains intact. Our synthetic traces can therefore be used to
compare several properties of different network implementations.

From the systematic deviations in the absolute predictions, we can derive
two conclusions about our traffic synthesis algorithm. The packet distance
is too high, but only in situation (d). This means that the distribution of
(source, destination)-pairs, which is mainly the result of the reuse distance
distribution, is not accurate. The fact that owner and sharing nodes are

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

base
network

n = 2
∆t = 1ms

n = 4
∆t = 100µs

n = 8
∆t = 10µs

prism
∆t = 100µs

A
ve

ra
ge

 p
ac

ke
t d

is
ta

nc
e

(h
op

s)

 210

 220

 230

 240

 250

 260

 270

 280

 290

 300

base
network

n = 2
∆t = 1ms

n = 4
∆t = 100µs

n = 8
∆t = 10µs

prism
∆t = 100µs

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cl
oc

k
cy

cl
es

)

Execution-driven (a)
Trace from same network (b)

Trace from base network (c)
Synthetic traffic (d)

Figure 5.14: Average packet hop distance (top) and packet latency
(bottom) for a number of reconfigurable 16-node networks and the
fft benchmark, from execution driven simulation (a), up to synthetic
traffic (d)

5.3 Synthetic network traffic 113

modeled as uniformly distributed is not the cause of this error, since this
uniform distribution was also applied in situation (b), where the average
packet distance does not yet show this error. Our stack-based algorithm
should therefore be the first component to be upgraded if better modelation
of the temporal traffic locality is required.

The second observation we can make is that the average packet latency
is also estimated too high, but here the main error occurs between situations
(a) and (b). As described above, a number of packet types, such as NAKs
and retries, were omitted from the trace in situation (b), reducing the total
network load somewhat. The average latency went up, however, suggesting
that there is more congestion even though there are less packets. This means
that the removal of these uncommon packet types did not cause the error.
A different effect turned out to be the cause here: when generating packet
groups, we always assumed that all REPLY packets contain a cache line. This
is not the case in reality: up to 20% of the time, the REQ packet was an
upgrade, meaning that the requesting node already had the cache line in its
cache in a shared state, and requested an upgrade of this state, from shared
to exclusive access, because it now wanted to write to the line. The node
already had the data though, in this case the REPLY packet only needs to
contain an acknowledgement. In situation (b), therefore, the average size
of the REPLY packets is too large, causing a higher network load, resulting
in too much congestion and an artificially high average packet latency. A
solution would be to measure the fraction of upgrades, and model the size
distribution of the REPLY packets accordingly.

5.3.5 Required trace length

True wisdom is to know what to leave out.
— David Patterson

The main reason to use synthetic traffic traces was the promise that they
could be shorter than a complete execution trace, but still retain all relevant
information. The question now is, how much shorter can they be, while still
providing sufficient accuracy? This question is addressed in Figure 5.15.

For this figure, a large number of short traces is generated using the profile
of the fft benchmark, and executed on a reconfigurable 16-node network
with parameters n = 4, f = 2 and ∆t = 100 µs. In each trace the average
packet latency is computed. These measurements are then aggregated for all
traces of the same length. Figure 5.15 shows average (center line), standard

114 5 Speeding up design-space explorations

 245

 250

 255

 260

 265

 270

 0.1 1 10 100

-4%

-2%

0%

2%

4%

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy

R
el

at
iv

e
E

rr
or

Trace length (millions of clock cycles)

Figure 5.15: Accuracy of shorter synthetic packet traces. The aver-
age packet latency is measured in multiple traces, and grouped by
trace length. Average, standard deviation, minimum and maximum
(dashed lines) of the per trace averages are plotted. fft benchmark
on a reconfigurable 16-node network.

deviation (error bars), minimum and maximum (dashed lines) statistics of
the per trace averages, for each of the trace lengths considered.

One can now read from the graph the expected accuracy that shorter syn-
thetic traces would be able to attain: the measurement of a single short trace
executing in for instance 1.2M clock cycles could be anywhere between 249
and 268 (minimum and maximum values), and will be 258 on average with
a standard deviation of 3.3 cycles. For longer runs this deviation diminishes,
at the expense of an increase in execution time.

Table 5.1 compares these results with the required simulation time. From
left to right, the table shows the length of the trace (in simulated clock cycles),
the standard deviation of different measurements with the same trace length
(in cycles), the difference between minimum and maximum measurements
(cycles), and the CPU time required for one simulation of a trace of this length
(seconds). The last column shows the total CPU time required, including the
initial execution-driven simulation to measure the traffic profile, assuming
this profile is re-used 100 times.

By comparison, the complete execution of the fft benchmark takes 89M
cycles, and results in an average packet latency of 241 cycles. Since the errors
in our trace-driven simulation are systematic – as evident from Figure 5.14(a)

5.4 Comparison 115

Trace length σ |diff| wall time +profiling
160 k 6.80 50 2.5 64
640 k 4.37 29 9.8 71

3 M 2.44 14 39.2 100
10 M 1.40 6 157.7 218
41 M 0.73 2 627.2 688

execution-
driven (89M) 2.48 7 7514.1

Table 5.1: Comparison of variability and runtime between trace- and
execution-driven simulations of the fft benchmark

and (d) – this difference in average packet latency (241 versus 258±3.3 for
synthetic 1.2M-cycle trace) does not mean one should expect a high variabil-
ity from the synthetic trace-based results. Comparison should instead be
made with a trace-driven simulation using the complete trace (situation (c)
in Figure 5.14), which also yielded a measurement of 258 cycles. This falls
within the expected accuracy range for synthetic trace-based results.

Moreover, execution-driven simulation induces its own variability. The
last line of Table 5.1 shows this: its stability (σ = 2.48 cycles) is only as good
as that of a synthetic trace that is a factor of 30 shorter (3M clock cycles, with
σ = 2.44 cycles). The required simulation time, however, is more than 100
times longer (over 2 hours versus less than 1 minute). More experiments on
the variability of execution-driven simulations can be found in Section 6.1.

5.4 Comparison

A comparison of the different evaluation techniques presented is made in
Table 5.2. This table shows the prediction technique based solely on home
node distances from Section 5.1, the method accounting for congestion from
Section 5.2, the synthetic traffic introduced in Section 5.3 and finally the most
realistic method, execution-driven simulation.

The measure column shows which properties can be measured using the
technique. Both prediction methods only allow packet or memory access
latency to be measured. With synthetic traffic all properties related to the
network – throughput and latency, possibility of deadlocks, buffer require-
ments – can be explored. Execution-driven simulation allows all system

116 5 Speeding up design-space explorations

Method Measure Congestion Stable Runtime
Distance latency no yes 50s
Congestion latency yes no 3m
Synthetic all network yes no 10m
Exec-driven all yes yes 2h

Table 5.2: Comparison of the different reconfigurable network evalu-
ation techniques

properties to be measured. The next column shows whether congestion is
considered, this is the case in all methods except the first one.

Column stable denotes whether the method yields a stable result when
something is predicted that is already known, for instance the latency of a
baseline network. The first method uses the distribution of home node dis-
tances, and the average latency per distance value, of a baseline simulation.
When using this method to predict the average latency of the baseline, the
method computes a weighted average of the per-distance latencies. This
will, by definition, result in the correct average latency of the baseline. The
congestion method, in contrast, is not able to accurately predict this baseline
latency (as was evident from Figure 5.11), due to the insufficiency of the
queueing model for highly loaded links. The non-stability of a prediction
technique does not have to pose a serious problem, however, because it
only pertains to absolute accuracy. Indeed, when comparing different net-
work implementations, relative accuracy is much more important. The third
technique, synthetic network traffic, also exhibits non-stability: the traffic
profile, derived from an exact traffic trace, makes some simplifications – for
instance, retries are ignored, third-party nodes are randomized – making the
generated traffic stream differ from the original one.

Finally, the last column shows a typical runtime of all simulation meth-
ods, taken from a simulation of the fft benchmark on a 16-node SOB net-
work. Note that for the first three techniques, one execution-driven simula-
tion is needed to obtain the traffic profile, its execution time is not included
here. This time can be amortized though over the evaluation of multiple
network candidates. Clearly, simulation accuracy has to be traded for time.
The correct solution is therefore not a single network evaluation technique,
but rather a range of techniques with different trade-offs between speed and
accuracy. For early design-space explorations, the first techniques can study
the sensitivity of performance to the various parameters, and quickly select
(ranges of) interesting design options. Later on, synthetic traffic can be used

5.4 Comparison 117

to fine-tune the parameters. Execution-driven simulation can, in the last
stage, characterize and verify the final design solution. All these techniques
will be used in the next chapter.

6
Performance evaluation

The best performance improvement is
the transition from the nonworking
state to the working state.
— J. Osterhout

In this chapter, we will explore the performance improvement that can
be obtained by adding a reconfigurable network to a Distributed Shared-
Memory (DSM) machine. The main metric that is used here is the reduction
in remote memory access latency, compared to a base network only imple-
mentation. First, we discuss the variability of this metric and compare it to
other possible choices. Next, we characterize memory access time reductions
for a number of different networks, both using our parametrized network
model and the proposed implementation using the SOB device. Also, the
sensitivity to the various parameters will be explored. For small networks
(16 processors) we can do this using full-system simulation, using our sim-
ulation platform detailed in Section 4.4. The evaluation of larger networks
(32 and 64 processors) is done with the synthetic network traffic introduced
in Section 5.3. Finally, the impact of two simplifications made in our recon-
figuration algorithm is investigated: the heuristic elink placement algorithm
is compared to the optimal placement, and the impact of basing the elink
placement on traffic from the previous interval, rather than the current one,
is investigated.

120 6 Performance evaluation

6.1 Variability of performance metrics

Statistics are like a bikini. What they
reveal is suggestive, but what they
conceal is vital.
— Aaron Levenstein

Statistics: The only science that enables
different experts using the same figures
to draw different conclusions.
— Evan Esar

When designing a reconfigurable network, a useful trade-off has to be found
among several parameters, such as power dissipation, system performance,
design and fabrication costs, etc. Most of these are very dependent on the
technology that is being used, so in the context of this work we cannot predict
the extra cost or power dissipation when, for instance, increasing the fan-out
of the network. What we can do is look at system performance. Indeed,
our simulation platform allows us to answer questions such as “how much
performance is gained by implementing a larger fan-out”. To judge whether
the added cost and power are justified by the increase in performance, will
be up to the network designer.

Several metrics can be used to study system performance. High-level
metrics look at application performance. If the machine is used as a web
server, one can distinguish between throughput (number of requests han-
dled per second) or latency (average, worst case or 97% percentile of the
completion time of requests). Other, low-level metrics look at a more de-
tailed level inside the machine, such as remote memory access time or packet
latency.

High level metrics are usually more useful to an end user because they
relate directly to something the user of the machine can see, such as the run-
time of their application or the machine’s performance as a web or database
server. However, those high-level metrics are influenced by a great deal
more factors than the low level metrics. For instance, several of the SPLASH-
2 benchmarks used in this work use load balancing. This means that, if one
processor is executing its workload more slowly, some of its work will be
distributed to other processors, resulting in a potentially dramatic shift in

6.1 Variability of performance metrics 121

Figure 6.1: OS scheduling decisions are affected by memory latency
[Alameldeen et al., 2002]

high-level behavior of the application. This can happen even if the param-
eters of the multiprocessor machine, or the influence of other applications
running on the same machine, are changed even slightly. Synchronization
can also affect the program’s execution. Assume two processors want to
acquire a lock at nearly the same time. If processor A does this one cycle
ahead of processor B, it can continue, while B has to wait. A delay in the
execution speed of processor A by just a few clock cycles, caused for instance
by extra congestion in the network, can reverse this situation, so A now has
to wait. Usually, other processors are dependent on the work done by A,
so this change will propagate throughout the execution. All other situations
where a choice is made that will later affect the program’s execution, such
as which thread to schedule next, which virtual memory page to replace on
a page fault, etc., have the same effect.

Alameldeen et al. [2002] investigate this problem of non-deterministic
workload behavior further. They simulate the execution of an On-Line Trans-
action Processing (OLTP) application and introduce artificial cache misses
every 100 accesses. This experiment is repeated twice, with just one change:
the misses are introduced at accesses 0, 100, etc., for the first simulation, and
at accesses 50, 150, etc., for the second one. Although the average cache hit
rate is exactly the same in both cases, the effects of load balancing, schedul-
ing and synchronization as described before, cause the execution time to
deviate by up to 9% between both simulations. Figure 6.1 shows a trace of
the scheduling decisions made in both simulation runs. One can see that the
alteration between kernel mode (black) and user mode (gray) is different,
and that at a time of about 15.3M cycles the execution diverges completely
when a different process is scheduled during the second run.

122 6 Performance evaluation

Changing the network topology clearly influences packet latency and
thus remote memory access times. It therefore changes the speed with which
processors execute their work, and affects the outcome of synchronization
races, scheduler decisions, etc., which can change the amount of work done.
Therefore, when comparing simulation results of two different networks, it
is not correct to assume that the same work is being done in both simulations.

To characterize these effects, and to investigate which performance met-
rics are least influenced, and therefore most usable to compare different
network implementations, the following experiment was done. For each
benchmark, two simulations are performed: one with a base network only
and one with a reconfigurable network (a 16-node network characterized by
n = 16, f = 2, ∆t = 1 ms was used). The improvement after adding recon-
figuration is calculated for several performance metrics. This experiment is
repeated five times. Each time the scheduler is in a different state at the start
of the benchmark, this way variability is introduced in the measurement.1

The average and standard deviation of these five measurements of per-
formance improvement are shown in Figure 6.2. Program runtime clearly
has some problems when used as a performance metric. For some bench-
marks (those that have little communication), the runtime barely changes
or even degrades when adding reconfiguration. The number of instructions
executed is not really a network performance metric, but it does allow one
to gain insight into the reason of the variability (the instruction count of first
processor in the system is shown). Usually, if the amount of work does not
change, one would expect the number of executed instructions to remain the
same – i.e., the improvement should be zero. Especially for the radiosity
benchmark, this is not the case: this is one of the benchmarks where load
balancing is used, which clearly shows its influence in this experiment.

The low level metrics have much less variability. Their disadvantage is
that the relationship between a low level metric and application-level per-
formance isn’t always obvious, but they do allow one to make more reliable
statements about the performance of the network, without being influenced
by the peculiarities of other system components. They also enable a designer
to gain insight into what is happening in the system, and can suggest areas
where improvement is necessary. Note that, although much of the influence
of the benchmark is now removed from the metric, the difference in bench-
mark behavior still has a clear impact on network performance, through
mechanisms such as communication locality or burstiness.

1Our simulator is completely deterministic: executing a simulation with the same parameters
twice, will gave the same results. Therefore we delay the start of the simulation by executing
a sleep command on the UNIX command line of the simulated machine, before starting the
benchmark, to change the state of the scheduler.

0%

10%

20%

Program runtime

-20%
-10%

0%
10%
20%
30%
40%
50%

Instructions executed

0%

10%

20%

Average remote memory access latency

0%

10%

20%

30%

Average packet latency

0%

10%

20%

30%

40%

50%

Average packet waiting time

ba
rn

es

ch
ol

es
ky fft

fm
m lu

oc
ea

n.
co

nt

ra
di

os
ity

ra
di

x

ra
yt

ra
ce

vo
lre

nd

w
at

er
.s

p

Figure 6.2: Variability of possible network performance metric im-
provements (µ ± σ, minimum and maximum values) when the im-
provement of each metric, after adding a reconfigurable network, is
measured five times

124 6 Performance evaluation

 78
 80
 82
 84
 86
 88
 90
 92

 600 650 700 750 800 850 900

P
ro

gr
am

 r
un

tim
e

(m
s)

Remote memory access time (cycles)

fft

 215
 220
 225
 230
 235
 240
 245
 250

 750 800 850 900 950 1000 1050 1100

P
ro

gr
am

 r
un

tim
e

(m
s)

Remote memory access time (cycles)

cholesky

Baseline Network A Network B

Figure 6.3: A network is only statistically significantly better if its
improvement of a performance metric is higher than the variability of
that metric. All for a 16-node network, baseline: no reconfiguration;
network A: n = 16, f = 4, ∆t = 100 µs; network B: n = 16, f = 1,
∆t = 1 ms.

Another way to look at variability is shown in Figure 6.3. For three types
of networks, the simulation of the fft and cholesky benchmarks is repeated
ten times. The metrics “program runtime” and “average remote memory
access time” are plotted against each other for each simulation. Before we
can conclude that network A is better than network B, a statistically signifi-
cant improvement of the relevant performance metric must be visible. The
variability of the program runtime – about 5 ms for fft – is just as large
as its average improvement between the different networks. By measuring
the program runtime improvement just once per network, we can therefore
not conclude that network B is better than network A, because the improve-
ment – if any – visible between one pair of simulations can just as well be
attributed to noise. When using the average remote memory access time as
performance metric, the improvements are larger than the average absolute
value of the noise, so in this case we can conclude that B is better than A.

Comparing these results with Table 5.1, which showed the variability of
synthetic trace-driven simulations, it is clear that execution-driven simula-
tion, due to the interactions between network behavior and the software,
has a much higher variability than the trace-based approach. One can argue
that, in a real machine, these interactions are also present and therefore must
be modeled by the simulation tool. In practice though, their effect is very
unpredictable and effectively obscures much of what we might learn about
network behavior. Therefore, it is our opinion that research aiming to un-
derstand interconnect behavior should make abstraction of the interactions
with the software (i.e., use a trace-based or similar technique) to gain clear

6.2 Small networks: execution-driven simulation 125

insight into what plays at the interconnect level. The fact that the perfor-
mance figures obtained in this way will, in practice, be only average values
due to software interactions, must of course always be kept in mind. A
more thorough evaluation of this problem, which is also relevant to other
microarchitectural research on multiprocessor and multicore architectures,
will be presented in an upcoming publication [Heirman et al., 2008c].

6.2 Small networks: execution-driven
simulation

6.2.1 Selective broadcast implementation

We identify how the properties of a network implementation using the selec-
tive broadcast (SOB) component affects high-level network parameters, and
translate these properties into limitations that are imposed on our network
model. Three limitations are identified. Component count and cost limit
the fan-out of our network. The tuning range of the transmitters, combined
with the need for efficient use of transmitted power, forces us to partition
the network using the SOB device, this restricts the topology of the reconfig-
urable part of the network. Finally, the tuning speed of the VCSELs affects
the reconfiguration speed. For each of these limitations a number of simu-
lations are done with different parameters. This way, we can determine the
effect on the performance of the complete machine for each of the limitations
separately, and determine which of them are the most likely candidates for
future improvement.

The SOB-based implementation can be described using the parametric
network model from Section 4.1. We fix the network size at 16 processors or
nodes (p = 16). With one tunable laser per node, the number of unidirectional
elinks is fixed at n = 16. We gradually add the additional constraints set by
the implementation: a limited fan-out f = 1, and the restriction on the
node pairs as prescribed by the placement matrix of the SOB (only 9 out of
16 possible destinations). Finally, we sweep over a range of reconfiguration
intervals. The selection time tSe and the switching time tSw are both set to 10%
of the reconfiguration interval ∆t. Note that, in practice, tSw is determined by
the tuning speed of VCSELs used, so the reconfiguration interval ∆t should
be chosen to be for instance 10 tSw.

Figure 6.4 summarizes the simulation results. In Figure 6.4(a), we show
the average remote memory access latency for a selection of SPLASH-2

 0

 200

 400

 600

 800

 1000

 1200

barnes cholesky fft ocean.cont radix

La
te

nc
y

(c
yc

le
s)

(a) Average memory access latency

No reconfiguration With reconfiguration

0%
5%

10%
15%
20%
25%
30%
35%
40%

16 8 4 2 1

La
te

nc
y

re
du

ct
io

n

Fan-out

(b) Limited fan-out

0%

5%

10%

15%

20%

25%

full connectivity selective broadcast

La
te

nc
y

re
du

ct
io

n

(c) Limited connectivity

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms

La
te

nc
y

re
du

ct
io

n

Reconfiguration interval ∆t

(d) Limited tuning speed

barnes
cholesky

fft
ocean.cont

radix

Figure 6.4: Results for a 16-node network: from an idealized n = 16,
∆t = 1 ms network (a) to the SOB-based implementation with different
reconfiguration intervals (d)

6.2 Small networks: execution-driven simulation 127

benchmarks, first using only the 4×4 torus (base) network, next when a re-
configurable network is added. This is done using the idealized network
model as described in Section 4.1, with 16 unidirectional elinks, a reconfig-
uration interval of 1 ms and no constraints on connectivity or fan-out. The
access latency is significantly reduced, from 960 clock cycles to only 696 cy-
cles (averaged over the five benchmarks used), this is a reduction of 27%.
The next graphs show what remains of this improvement, once we trans-
form our idealized network model into something that can be physically
implemented by introducing the constraints imposed by the architecture.

First, we account for the fact that only one reconfigurable transmitter and
one wavelength-selective receiver are available per node. This means that
only one elink can terminate at each node. Figure 6.4(b) shows the reduction
of memory access latency over the baseline (using only the base network),
when we gradually reduce the maximum fan-out from f = 16 (there are only
16 elinks, so this effectively means no fan-out limitation) to just one elink
per node. The reconfiguration interval is fixed at 1 ms. Usually, network
traffic is localized, which means most nodes only talk to a limited set of
other nodes. This is visible in the graph: we can reduce the fan-out to four
almost without sacrificing performance. After that, the network is unable
to provide speedup for all of the important memory accesses, and latency
increases again (latency reduction goes down). Still, half to two-thirds of the
reduction is maintained after limiting fan-out to one. By placing two or more
tunable lasers and receivers per node, one could implement a network with
higher performance. This would of course drive up the cost. According to
Figure 6.4(b), using more than four would not provide additional gain.

Next, we introduce the properties of the SOB device into our simulations.
This limits the choice of possible node pairs that can be connected directly
using an elink from p · (p − 1) to just 9 · p. If two nodes communicating
heavily are not in the list of 9 · p possible node pairs, there cannot be a direct
link between them so we expect performance will suffer from this restricted
connectivity. As Figure 6.4(c) shows, this is only the case to a limited extent.
Indeed, even though a node pair cannot have a direct connection, it may still
be possible to offer a shorter path using one elink and one base network link,
compared to up to four base network links when no elinks are available.
Also, connecting two nodes with slightly less traffic between them with an
elink can free up part of the base network for use by other heavy traffic
streams. This makes that a reconfigurable network implementation using
the SOB device can still provide a significant performance improvement,
while being scalable to a large number of nodes.

Finally, we look at how the reconfiguration interval affects performance.
Since traffic is expected to change over time, we would like to reconfigure

128 6 Performance evaluation

 500

 600

 700

 800

 900

 1000

Torus only n = 16
f = ∞

∆t = 1 ms

n = 16
f = 1

∆t = 1 ms

SOB prism
∆t = 1 ms

SOB prism
∆t = 10 ms

A
ve

ra
ge

 m
em

or
y

ac
ce

ss
 la

te
nc

y

Figure 6.5: Summary of memory access latency, averaged over all
benchmarks

the network as often as possible. Remember though that the reconfigura-
tion interval is set to ten times the switching time of the VCSELs, setting
a shorter interval without using faster VCSELs would mean that the elinks
are unavailable for more than 10% of the time, limiting their usefulness.
Figure 6.4(d) shows the latency reduction for a number of reconfiguration
intervals, using the reconfigurable network implementation with the SOB
device. If VCSELs with a tuning speed of 1 ms are available, the reconfigu-
ration interval would be 10 ms which still provides a good speedup for most
of the benchmark applications. Note that the applications differ most in how
fast their traffic patterns change, so here the results are more differentiated
among the different benchmarks compared to the previous graphs.

Figure 6.5 summarizes these results, plotting the average memory ac-
cess latency, averaged over all benchmarks. Overall, we can conclude that
limiting fan-out to one and using selective instead of full broadcast are nec-
essary to allow the network to be implemented at a reasonable cost, but
they reduce the access latency improvement to about half of what we could
achieve if these limitations were not present. With a reconfiguration interval
of up to 10 ms, requiring a VCSEL tuning time of about 1 ms, no additional
performance is sacrificed.

6.2 Small networks: execution-driven simulation 129

 0
 25
 50
 75

 100
 125
 150

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6La
te

nc
y

(c
yc

le
s/

pa
ck

et
)

Throughput (bytes/cycle)

cholesky

 0
 25
 50
 75

 100
 125
 150

 0 0.1 0.2 0.3 0.4 0.5La
te

nc
y

(c
yc

le
s/

pa
ck

et
)

Throughput (bytes/cycle)

fft

Baseline
SOB prism, ∆t = 1 ms

n = 16, f = 1, ∆t = 1 ms
n = 16, f = 4, ∆t = 100 µs

Figure 6.6: Latency versus throughput, for a variety of benchmarks
and 16-node networks

6.2.2 Latency versus throughput

Figure 6.6 shows a classic network evaluation metric: the latency versus
throughput curve. Here, the average delay packets experience on their way
from source to destination (only waiting times are considered here, not the
transmission time) is shown as a function of the network load (the number of
bytes that are transmitted per clock cycle throughout the network, computed
in intervals of 100 µs). We have shown this relation for two benchmarks
being executed on a torus-only network and three different reconfigurable
networks, all with 16 nodes.

Generally, more traffic on the network (higher throughput) causes more
congestion and thus higher latency. Networks with more available band-
width (all three reconfigurable networks shown have 25% more bandwidth
than the baseline) should have less congestion, this is visible on both graphs.
A network that is able to better provide bandwidth where it is needed,
through higher fan-out or faster reconfiguration, can again reduce conges-
tion and provide lower latency – this explains the difference between the
∆t = 1 ms networks and the ∆t = 100 µs one. The difference between the
SOB prism network and the more general n = 16, f = 1 network is minor,
showing that the selective broadcast does not restrict performance too much.

Also note that on the baseline network, the same high values of through-
put as the reconfigurable networks are not reached: since the processors are
waiting for response packets to come back, which are being delayed, the
processors themselves execute slower. This reduces the rate at which they
can generate new requests, and thus limits throughput.

130 6 Performance evaluation

Finally, we can see clear differences between the cholesky and fft bench-
marks. fft requires less bandwidth, because communication is spread out
more in time, while cholesky has a bursty behavior resulting in periods
with high throughput. Note that one throughput value may yield a different
latency for both benchmarks, because the (source, destination) distributions
may be different. fft usually has a higher latency for the same through-
put, showing that during the execution of fft, the traffic is more localized
to hot-spots: small parts of the network with a disproportionally high load,
compared to the average load, which results in longer waiting times.

Especially during high-throughput phases, the reconfigurable networks
can provide a significant reduction in congestion, as is evident from the
graphs. In measurements of the total packet latency, such as those used in
the rest of this work, this reduction is less spectacular because the significant
reduction during periods with high-intensity traffic is averaged out with a
much more modest latency reduction during the rest of the benchmark’s exe-
cution. Also, measuring total latency, rather than just the waiting time, adds
latency components (transmission time, time of flight and routing time) that
are not influenced by congestion – again reducing the relative improvement
visible. On the other hand, the elinks can cause a reduction of the inter-node
distance. This reduces the routing time and thus also total packet latency in
a different way than through the waiting time shown in Figure 6.6.

6.3 Large networks: synthetic traffic

6.3.1 Scaling the reconfigurable architecture

Because full-system simulations are very slow (up to several hours each), it
is not feasible to do large-scale design-space explorations with them. Our
techniques from Chapter 5 do allow this. In this section, we use the synthetic
network traffic generator, presented in Section 5.3, to explore reconfigurable
network performance for networks of up to 64 nodes. Throughout this
section, the improvement of the average network latency, relative to a base
network only implementation, is used as the performance metric.

In Figure 6.7 the effect of adding more elinks is shown. The fan-out is
always f = 4 , the reconfiguration interval ∆t is fixed at 100 µs. As expected,
adding more elinks increases performance. An unlimited amount of elinks
is of course not technologically feasible. Further exploration will therefore
be done with as many elinks as there are CPUs (n = p). This is also the case
for our implementation with the SOB device. Also visible is a performance

6.3 Large networks: synthetic traffic 131

-10%

0%

10%

20%

30%

40%

50%

 2 4 8 16 32 64 128 256 512

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Number of elinks

16 nodes
32 nodes

64 nodes
64 nodes (*)

Figure 6.7: Performance scaling for increasing the number of elinks,
with f = 4 and ∆t = 100 µs, averaged over all benchmarks. The
64 nodes (*) case limits the use of each elink to a single node pair.

degradation compared to the baseline (negative improvement) in the 64-
node case with only four elinks. Here, too many nodes want to use the
few elinks causing, highly increased congestion. This has a large negative
impact on performance. The 64 nodes (*) case avoids this extra congestion
by allowing each elink to be used only by a single node pair. There, no
more performance degradation is observed. From 16 elinks upwards the
congestion problem is no longer present, the extra routing limitation now
degrades network performance compared to the original situation.

Next, we study the influence of the fan-out. If one node communicates
frequently with a large set of other nodes, it would be interesting to connect
multiple elinks to this first node. This is not technologically feasible, indeed,
in our prism implementation the fan-out is just one. Figure 6.8 shows the
effect of different fan-out limitations, all for n = p and ∆t = 100 µs. As can
be expected, improving the fan-out from one to two increases performance.
Higher fan-outs however do not result in more performance gains. This last
observation is not in agreement with Figure 6.4(b), however, which showed
a more significant improvement for networks with higher fan-out. Since
this graph was measured using execution-driven simulation it is probably
more accurate than Figure 6.8, in which synthetic network traffic was used.
This shows that, although simulations based on synthetic traffic are able to

132 6 Performance evaluation

0%

10%

20%

30%

40%

50%

1 2 4

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Fan-out

16 nodes 32 nodes 64 nodes

Figure 6.8: Performance scaling for increasing the fan-out, with n = p
and ∆t = 100 µs, averaged over all benchmarks

provide quick first-order approximations, for detailed measurements one
still has to revert to more detailed (and slower) methods of simulation.

Figure 6.9 shows the effect of faster reconfiguration. Here we vary ∆t
between 1 µs and 10 ms. The left side uses an idealized network model with
n = p and f = 2. On the right side, results for the SOB implementation are
shown, which can be modeled as n = p, f = 1 and an extra limitation on
which nodes are reachable from each processor. The different benchmarks
are plotted separately in these graphs, showing that the behavior of the
program being executed on the multiprocessor machine highly influences
the performance improvement obtained.

The limited connectivity of the SOB network is represented by a smaller
improvement in message latency. This is especially visible for very fast
reconfiguration, where the networks with higher connectivity are able to
better follow rapid changes in the application’s traffic pattern. Remember
though that the switching time, required from a component implementing
these reconfigurable networks, needs to be about ten times faster than the
reconfiguration times shown. The left side of the graphs, showing ∆t = 1 µs
– requiring 100 ns switching times – are therefore shown more as theoretical
results, rather than improvements that can be achieved in practice, at least
with the current generation of optical components.

5%

10%

15%

20%

25%

 1 10 100 1000 10000

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Reconfiguration interval (µs)

16 processors, n = 16

5%

10%

15%

20%

25%

 1 10 100 1000 10000

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Reconfiguration interval (µs)

16 processors, SOB network

15%

20%

25%

30%

35%

40%

45%

 1 10 100 1000 10000

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Reconfiguration interval (µs)

32 processors, n = 32

15%

20%

25%

30%

35%

40%

45%

 1 10 100 1000 10000

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Reconfiguration interval (µs)

32 processors, SOB network

20%

25%

30%

35%

40%

45%

50%

 1 10 100 1000 10000

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Reconfiguration interval (µs)

64 processors, n = 64

20%

25%

30%

35%

40%

45%

50%

 1 10 100 1000 10000

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

Reconfiguration interval (µs)

64 processors, SOB network

barnes
cholesky

cholesky29
fft

fft4M

fftscale
luscale

ocean.cont
ocean.contscale

radix

radixscale
water.sp
average

Figure 6.9: Performance trends for varying reconfiguration intervals,
for an idealized network with n = p, f = 2 (left) and the SOB imple-
mentation (right)

134 6 Performance evaluation

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

Torus only n = 16
f = 4

∆t = 100 µs

n = 16
f = 2

∆t = 100 µs

SOB prism
∆t = 100 µs

SOB prism
∆t=10 ms

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy

16 nodes 32 nodes 64 nodes

Figure 6.10: Summary of the average packet latency for different
network types, averaged over all benchmarks

In Figure 6.10 a summary is shown of the average packet latency for
different network types. First, a non-reconfigurable torus-only network is
shown. The second set of bars plots the latency for an idealized, n = p,
f = 4, ∆t = 100 µs network. Next, the fan-out is restricted to f = 2, then
the selective broadcast component is introduced. Finally, the reconfigura-
tion interval is lengthened to 10 ms. The average latency can be seen to
drop when introducing a reconfigurable network. Some of this gain has to
be relinquished when implementation constraints (fan-out limitation, selec-
tive broadcast, slower tuning) are introduced, but even then a very visible
performance improvement can be obtained.

6.3.2 Non-reconfigurable networks

Adding extra links to the basic torus network improves network performance
for three main reasons:

• more bandwidth is available which reduces congestion,

• the average distance is reduced, and

• reconfiguration adapts the network to current demands.

6.3 Large networks: synthetic traffic 135

All performance improvements observed up to now have been the result
of a combination of all these mechanisms. However, only the last one is
due to the network being reconfigurable. We can achieve a higher available
bandwidth and reduce the distance without costly reconfigurable compo-
nents. Therefore, it would be interesting to know how much of the observed
speedups is actually due to reconfiguration, and how much of it can be
achieved by simpler network adaptations.

Figure 6.11 compares the improvement in average packet latency for
three types of networks, all with the same total bandwidth. First a recon-
figurable network is shown, with n = p, f = 2 and varying reconfiguration
intervals. Since a torus has 4 · p (unidirectional links), the n elinks represent
an additional total bandwidth of 25%. The global measurements in the fig-
ure show a torus network in which each link has a bandwidth that is 25%
higher than the link bandwidth in the previous situation, the total network
bandwidth is therefore the same as in the n = p reconfigurable case. Finally,
in the random situation n non-reconfigurable links are added to the torus
topology at random positions, favoring longer links: a link’s probability is
proportional to the distance it spans on the base network. The minimum,
average and maximum improvements are shown for five different random
placements. Note that the maximum improvement in this case is obtained
with different placements for each benchmark. Therefore, in an actual im-
plementation with just one hardwired link placement, this maximum will
only be achieved on some benchmarks – making the average measurement a
more realistic representation of the improvement that should be expected in
practice.

For small networks with only 16 nodes, keeping the torus topology but
increasing the bandwidth of all links is the best solution – assuming this
is allowed by the technology that is used. This solution avoids the costs
of reconfiguration altogether, and has a slightly higher performance than a
reconfigurable network with the same total bandwidth. This is because the
distances in a 4×4 torus network are always small; elinks, reconfigurable
or not, cannot reduce this distance much. For larger networks with 32 and
64 nodes, the maximum distance through the torus network is a lot higher.
Here, elinks can provide a much shorter path and a corresponding reduction
in packet latency.

0%

5%

10%

15%

20%

25%

30%

1 10 100 1000 global random

P
ac

ke
t l

at
en

cy
 im

pr
ov

em
en

t

Reconfiguration interval (µs)

16 processors

15%

20%

25%

30%

35%

1 10 100 1000 global random

P
ac

ke
t l

at
en

cy
 im

pr
ov

em
en

t

Reconfiguration interval (µs)

32 processors

15%

20%

25%

30%

35%

40%

45%

1 10 100 1000 global random

P
ac

ke
t l

at
en

cy
 im

pr
ov

em
en

t

Reconfiguration interval (µs)

64 processors

Reconfigurable
Globally increased link speed

Random fixed elinks (min/avg/max)

Figure 6.11: Comparison between reconfigurable and non-
reconfigurable networks, with equal total bandwidth

6.4 Effect of reconfiguration heuristics 137

6.4 Effect of reconfiguration heuristics

6.4.1 Optimal elinks placement

Section 4.3 introduced the algorithm that selects which elinks to activate,
based on expected network traffic. Since this typically needs to be done in
less than about 1 ms, a greedy heuristic is used to minimize the cost function:

C =
∑
i< j

d(i, j) · T(i, j)

Using a branch and bound method, it proved possible to, for each in-
terval, determine the elink placement that results in the global minimum
of C. This takes several minutes to execute for each traffic pattern, which
underlines the need for a fast heuristic. In a simulated environment this
does not matter of course, so we ran some simulations to see the difference
in network performance between this optimal selector and our heuristic.
Figure 6.12 shows the results for three reconfiguration intervals and three
network implementations: two in which two or four elinks can be placed
freely (with an imposed fan-out limit of two) and the prism scenario which
uses the implementation with the prism from Section 4.2. In a few cases, the
optimal elink placement results in a slower network than the pseudo-optimal
placement from our heuristic. This is because the elink placement is only op-
timal for the traffic pattern from the previous interval, the traffic in the current
interval may have shifted such that the heuristic selector now gives a better
result. In most cases, however, the result is as expected, with the network
using the optimal selector being just a few percent faster. This means our
heuristic does a good job and only slightly affects network performance.

6.4.2 Perfect traffic prediction

Prediction is difficult,
especially of the future.
— Niels Bohr

In Section 4.1, it was noted that, to place the elinks, an estimate is needed
of what traffic is to be expected during the reconfiguration interval that is
about to start (the next interval). Our implementation assumes this traffic

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

fft

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

ocean.cont

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

radix

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

cholesky

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

barnes

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

average

Heuristic Optimal

Figure 6.12: Comparison of the heuristic elink selection algorithm
and the globally optimal elink placement

6.4 Effect of reconfiguration heuristics 139

will be equal to that measured during the previous interval. We can now ask
the question if this assumption is valid, and, if this turns out not to be the
case, what increased performance can be expected of a system where traffic
can be predicted more accurately.

To answer this question using normal simulation we would have to
develop such a traffic predictor first, which is not trivial. On the other hand,
with our performance prediction method from Section 5.1, an upper bound
can be determined for the performance of a system with an ideal traffic
predictor: since, while running the performance prediction, the execution-
driven simulation yielding all network traffic has completed, all traffic is
known, including that of the next interval. So in the prediction model, at the
point where the elink placement for a certain interval is determined, we can
use the traffic for the next interval instead of that for the previous interval.
This mimics the behavior of a system with perfect traffic prediction.

The results of this change are shown in Figure 6.13, which shows the
predicted improvements in memory access latency. As expected, the next
case, where elinks are placed at locations ideal for the next traffic, performs
consistently better than the previous case which uses the realistic placement
based on past traffic. The difference is not dramatic though, which shows
that our assumption that traffic does not change significantly between re-
configuration intervals holds.

Figure 6.14 plots the cost – in relative increase of the average memory
access latency – of a suboptimal traffic prediction for each benchmark, on a
16-node network with n = 8, f = 2 and varying ∆t. For longer reconfigu-
ration intervals, the cost is usually less, because in that case the placement
is based on a less specialized traffic profile. Here, a lot of the high-speed
dynamics have already been averaged out, so the traffic patterns in the pre-
vious and next intervals are much more alike. fft and cholesky are notable
exceptions, they have slow but important dynamics that cannot be exploited
as good by a simple prediction method. Still, the cost is always less than
5% (of the baseline memory access time). Since the next case represents the
upper limit for all traffic prediction methods, this means that even a very
sophisticated and expensive traffic prediction algorithm can only result in a
very limited performance increase.

0%

5%

10%

15%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

fft

0%

5%

10%

15%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

ocean.cont

0%

5%

10%

15%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

radix

0%

5%

10%

15%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

cholesky

0%

5%

10%

15%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

barnes

0%

5%

10%

15%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

average

Previous Next

Figure 6.13: Comparison of placing elinks based on traffic in the
previous or the next interval

0%

1%

2%

3%

4%

5%

100 µs 1 ms 10 ms

S
ub

op
tim

al
 p

re
di

ct
or

 c
os

t

Reconfiguration interval

barnes
cholesky

fft
ocean.cont

radix

Figure 6.14: Cost of suboptimal traffic prediction

7
Conclusions

L’imagination est la seule arme
dans la guerre contre la réalité.
— Jules de Gaultier

In this final chapter, we will look back at what was accomplished in this
work, and look forward at what may lay ahead. Section 7.1 provides a
summary of the results obtained in this work. In Section 7.2 continuations
of this work are explored. We start with a few direct extensions, giving
pointers as to how the accuracy of the performance prediction techniques
proposed here can be increased. Next, the projects in which this work will
be contiued, or its results will be used, are described. Finally, in Section 7.3
our conclusions are drawn.

7.1 Summary

Network traffic is irregular

In a distributed shared-memory multiprocessor machine, the interconnec-
tion network, connecting processors and memories, is part of the memory
hierarchy [Lenoski et al., 1992]. Because the network is at such a low architec-
tural level, where components are very closely connected, it is very hard to
tolerate network latency. Also, because communication in shared-memory
machines is implicit, the programmer has a limited ability to schedule com-
munication, which makes it difficult to effectively hide latency. This makes

144 7 Conclusions

the performance of shared-memory machines very dependent upon their
network’s latency.

Current interconnection networks, which are regular and have a topology
that remains fixed through time, work best when network traffic is uniformly
distributed in both space and time. Unfortunately, realistic network traffic,
generated in response to memory accesses made by the application running
on the multiprocessor machine, is neither. Fixed networks therefore often
experience congestion, caused by hot-spots in the communication pattern.
This can dramatically increase network latency.

We characterized this network traffic, and found that it can be described
as consisting of bursts, which are periods of high-intensity communication
between specific node pairs, on a background of more uniform traffic of
much lower intensity. Multiple bursts are usually active concurrently, each
can last up to several milliseconds [Heirman et al., 2005; Artundo et al.,
2006b].

An ideal solution for this problem would be a reconfigurable intercon-
nection network: one that is able to change its topology through time, so that
at each point in time the topology is optimal for the current traffic pattern.
The possibilities of this solution were explored in this work.

Optical reconfigurable networks can exploit traffic bursts

Future multiprocessor interconnection networks are expected to be optical,
which will become necessary to accommodate the bandwidth density re-
quirements that rise with each new generation of machines [Collet et al.,
2000; Benner et al., 2005]. At the same time, optics presents us with a
range of components that allow for data-transparent reconfiguration [Chang-
Hasnain, 2000; d’Alessandro and Asquini, 2003; Pardo et al., 2003]. Since the
switching times of these components – at least the cheap, small, low-power
ones that are suitable for use in a short-range interconnection setting – are
slow compared to single network packets, it is not feasible to do packet
switching with them. Rather, reconfiguration should take place on a slower
time scale, such as that of communication bursts.

Using these components, we proposed a reconfigurable network archi-
tecture, that can efficiently support communication bursts. Our architecture
consists of a fixed base network for regular traffic, augmented with recon-
figurable extra links to support high-intensity bursts [Heirman et al., 2008a].
Just like the shared-memory paradigm insulates the application and its pro-
grammer from the implementation details of memory (data placement, cache
coherence), we wanted network reconfiguration to be transparent to the ap-
plication. Therefore, reconfiguration is solely based on observed network

7.1 Summary 145

traffic, in which bursts are detected automatically. No input from the pro-
grammer or compiler is needed.

Aside from a parametric architecture, with a configurable number of
extra links, fan-out and reconfiguration, we also propose a possible imple-
mentation of this architecture, using tunable VCSELs, a Selective Optical
Broadcast (SOB) system and wavelength-selective photodetectors. The SOB
system was developed at the Vrije Universiteit Brussel (VUB), and imple-
ments a 1-to-9 optical broadcast [Artundo et al., 2008b].

On the evaluation of reconfigurable networks

Evaluating the performance of interconnection networks is done most ac-
curately using execution-driven simulation. This way, network traffic is
extremely realistic, and interactions between network performance and soft-
ware behavior can be studied. This method is also the slowest, requiring
several hours per benchmark and per network that is to be analyzed. Design-
space explorations are therefore necessarily conducted using less accurate,
but much faster techniques.

Since the operation of a reconfigurable network depends on the non-
uniformity of network traffic, existing techniques – which use simple traffic
models such as uniform or hot-spot distributions – did not suffice, however.
New techniques were therefore developed, that do allow an accurate pre-
diction of a reconfigurable network’s performance to be made, using more
realistic network loads [Heirman et al., 2006, 2007c, 2008a].

Using these performance prediction techniques, augmented with a lim-
ited number of execution-driven simulations, we were able to do a thorough
analysis of reconfigurable network performance: depending on the network
parameters and available reconfiguration speeds, improvements in memory
access latency of up to 40% can be obtained [Heirman et al., 2007a; Artundo
et al., 2008a].

We also compared our reconfigurable network solution with the most
prevalent existing technique used to cope with changing network traffic
behavior, which is thread and data migration. Since this is a software tech-
nique, it lives at a time scale of seconds, rather than milliseconds for a recon-
figurable network. Both techniques are therefore complementary: thread
and data migration can cheaply handle slow changes in the application’s
dynamics, while network reconfiguration can cope with faster changes, and
moreover support the migration of threads and data efficiently – by creat-
ing fast communication paths for efficiently executing the migration of data
blocks throughout the network. Also, a reconfigurable network can provide

146 7 Conclusions

a richer network topology when a good placement of threads and data on
the basic topology is not possible.

7.2 Future research

“Would you tell me, please, which way I ought to go
from here?” asked Alice. “That depends a good deal on
where you want to get to,” said the Cat.
— Alice in Wonderland

7.2.1 Extensions to the current work
While the network performance prediction methods, presented in Chap-
ter 5, posseses sufficient relative accuracy for their use in a design-space
exploration, higher accuracy – especially in an absolute sense – is always
useful. Here, we will give some pointers as to how this may be achieved.
Also, we suggest some extensions to the models, that allow them to be used
in a broader context.

Congestion model

Because the network is in a constant state of flux, the steady state queueing
model used in Section 5.2 does not accurately describe what is happening
inside the network. Two approaches can be followed. One can keep using
the steady state model as a heuristic, but add special handling for links
that have a high utilization factor. This could increase accuracy at only a
slight increase in complexity. The other choice is to remodel the network as
a dynamic system, probably with significantly higher accuracy, but at the
expense of reduced simplicity and simulation speed. Since, both in research
and during network design, there is room for multiple methods, each with
a different trade-off between speed and accuracy, both approaches can be
useful.

Another, more straightforward adaptation, which can also be applied to
our other models, is to allow different bandwidths per link. This would
allow the investigation of a wider range of architectures, for instance that
from Figure 4.3, where bandwidth on a physical link is divided into separate
logical links for packet routing (the base network) and circuits (the elinks).

7.2 Future research 147

Asymmetric link bandwidths

In Section 4.1, we described the parallel of an interconnection cached net-
work, with the base network and reconfigurable extra links being the com-
munication equivalents of main and cache memories. When drawing this
parallel even further, one might introduce a significant asymmetry between
bandwidth and latency properties of the base network links and those of
the elinks. The base network would now become a very slow last resort
communication method, while the bulk of the traffic could be carried by
just a few, but much faster, reconfigurable elinks. This of course requires a
rather high hit rate of the elinks, i.e., depending on the amount of asymme-
try, a very high fraction of traffic has to be able to use the elinks in order
for the network to provide an average latency characteristic close to that of
the elinks. Nonetheless, there seems to be potential in this idea, as it has
been successfully realized by Barker et al. [2005] – although this was done in
a context where reconfiguration was under control of the application. This
type of implementation does allow a much more global view of communi-
cation, since the whole program, including its future behavior, is known the
programmer or compiler. An automatic approach such as ours, on the other
hand, can only learn from past communication patterns.

Other architectural trade-offs

The introduction of the elinks concept enables a whole new range of trade-
offs. Since time and space constraints prevented us from including much
more simulation results in this work – instead favoring the description of
topics that represented more novelty in a methodological sense – several
interesting questions remain.

One future line of research may consist of the adaptation of the cache
hierarchy, its coherence protocol, or the network routing protocol to make
better use of both the added bandwidth provided by optics, and the existence
of extra links. Consider for instance the situation in which a processor
is accessing a certain data word in its cache, and that there happens to
be an elink connecting the processor to the home node of this cache line.
The coherence protocol could now temporarily switch this line to a write-
update mode. This would use the ample bandwidth to the home node that
is available at that time, and avoid a later write-back which would need
to happen using the slower base network, and while another processor is
actively waiting for it.

Also, several optimizations are possible in the way reconfiguration is
now done. The reconfiguration interval can be made dynamic, reacting

148 7 Conclusions

to changes (or the lack thereof) in network traffic. This can result both in
a quicker response time and in less unneeded reconfigurations when the
traffic pattern remains constant. The ‘down-time’ of elinks, while they are
undergoing reconfiguration, can be avoided using multiple sources per node,
one of which is being re-tuned while the other one is still sending data.

Synthetic traffic

The simulations based on synthetic traffic traces suffer some systematic inac-
curacies. The main problem here is that the network traffic behavior changes
throughout the execution of the program, so that just one traffic profile does
not suffice. Using known program phase behavior techniques [Sherwood et al.,
2002] this can be investigated, by dividing the program into several distinct
phases. Each phase has a different behavior, and should be represented by a
separate traffic profile. The performance of the network for each benchmark
application will thus be determined by its performance under a multitude
of traffic profiles, one per program phase, averaged according to the relative
occurrences of each phase in the program.

Another idea is to parametrize the traffic profile (the distributions shown
in Figure 5.13), making it possible to generate traces for different benchmarks
or execution on larger machines by intra- or extrapolating the profile’s pa-
rameters, rather than measuring the distributions again in execution-driven
simulations. This way, applications with similar traffic patterns can be recog-
nized by clustering them on their profile parameters, and future applications
can be represented by extrapolation of parameters for current benchmarks.

7.2.2 Towards a reconfigurable demonstrator
Currently, the design and fabrication of the SOB system is underway at
the VUB. The optical transmission and broadcast properties of this system
will be characterized, providing measurements of the efficiency and power
consumption of our proposed reconfigurable network implementation. A
complete demonstration of real-time network reconfiguration, driven by
network traffic from an actual multiprocessor, is currently not the aim, but
might be attempted in the future.

7.2.3 On-chip communication
The research results and methodologies from this work will be used, both in
the continuation of the exploration of the specific concept of reconfigurable
optical interconnects at the VUB, but also in two new projects, both in an

7.2 Future research 149

on-chip setting: WADIMOS will focus on on-chip optical networks, while
OptiMMA aims at optimizing resource usage – which includes network
resources – in an embedded multiprocessor-on-chip environment.

WADIMOS: on-chip optical interconnects

The “Wavelength Division Multiplexed Photonic Layer on CMOS” (WADI-
MOS) project was mentioned before in Section 2.2. Its aim is to build an
optical Network-on-Chip (NoC). Indeed, even on-chip the limitations of
electrical interconnections will become apparent in the near future [Hau-
rylau et al., 2006]. One of the planned demonstrator chips in WADIMOS
will integrate an 8×8 lambda-router – which performs routing from eight
sources to eight destinations based on the source’s wavelength – with micro-
disc laser sources, photodetectors and driver electronics, onto a System-on-
Chip (SoC). One such SoC can implement, for instance, a complete set-top
box, integrating networking, video compression and decompression, etc., in
a single chip.

For this project, characterization of the complete system will be per-
formed, including interactions with software through the application’s spe-
cific traffic patterns, using the simulation setup and prediction tools de-
scribed in this work. Moreover, when equipped with tunable lasers, this
architecture would effectively implement a single-chip version of the recon-
figurable network architecture proposed in this work. This concept can also
be explored, allowing a further development of the reconfigurable archi-
tecture described here – this time aimed at an actual implementation, with
regards for its specific characteristics.

OptiMMA: optimization of on-chip communication

Another project pertaining to on-chip multiprocessor communication, is
called “Optimization of MPSoC Middleware for Event-driven Applications”
(OptiMMA). In this project, a middleware component will be developed
that can optimize resource usage, based on inherent properties of event-
driven applications, in a Multi-Processor SoC (MPSoC) environment. The
‘resources’ considered in this context are processors, memories, and, of
course, the communication network. While a reconfigurable network is
not necessarily envisaged in this project, the traffic analysis methods from
Chapter 3, and the performance prediction tools described in Chapter 5, can
be directly applied to this project.

150 7 Conclusions

7.2.4 Faster reconfiguration
As was mentioned in Section 2.3, components that allow very fast reconfig-
uration, in the order of micro- or even nanoseconds, are becoming available.
Moreover, even if the right components do not exist today, system-level
research can, in advance, show whether continued research into faster com-
ponents would be beneficial.

From our analysis in Chapter 6 it is clear that faster reconfiguration gen-
erally improves performance. Furthermore, Figure 6.9 did not show an
obvious point of performance saturation, for reconfiguration intervals down
to one microsecond, suggesting that more performance can be found in even
faster reconfiguration. However, this analysis did not take the so-called
selection and switching times into account, instead assuming that the com-
putation of the new topology and routing tables, the distribution of this
information to all concerned entities in the system, and the physical recon-
figuration, can be done instantaneous. Yet, in reality, even if the physical
components can support sub-microsecond switching times, the topology
calculation will at some point become a bottleneck.

Clearly, if cheap components with tuning times of just a few nanoseconds
would be available, the kind of slow reconfiguration as assumed in this work
– which invests a significant amount of time to compute a topology resulting
in the globally optimal use of available resources – makes no sense. Rather, as
described in Section 3.1.1, a technique such as Optical Packet Switching (OPS)
would be much more efficient in this domain. When tuning times range from
several nanoseconds up to some tens of microseconds, however, all is not so
clear. Packet switching is not possible there, while the global reconfiguration
proposed in this work will still incur too much overhead. The solution will
probably be some kind of hybrid approach between packet switching and full
reconfiguration, such as a form of circuit switching or local reconfiguration,
striking a balance between an optimal use of the available resources and the
time required to make the necessary calculations.

7.3 Conclusion 151

7.3 Conclusion

To know the road ahead,
ask those coming back.
— Chinese Proverb

In its current proposed implementation, a reconfigurable optical network
adds a large design and manufacturing cost to the system, while resulting in
– at least for small networks – only modest improvements in performance.
Also, an unsolved problem is that of the compatibility of parallel intercon-
nects with reconfiguration: will it be possible to increase single link band-
widths enough to satisfy communication requirements using serial links, or
will parallel connections still be needed, possibly necessitating the replica-
tion of all reconfigurable components across the parallel channels?

However, reconfigurable networks are also very promising for goals
other than performance improvement, such as fault tolerance. If reconfigu-
ration is added for this reason, then the complexity investment has already
been made. In this case the use of an existing reconfiguration infrastructure
can, using our techniques, result in a 40% speed improvement at very little
additional cost.

Moreover, the applicability of this work is not limited to the specific
implementation from Section 4.2. The analysis of network traffic, made
in Chapter 3, is valid for all multiprocessor systems, no matter what in-
terconnection network is used in them. New reconfigurable components
and network architectures can be developed, based on the lessons learned
in this work. Since the burstiness of network traffic is an essential prop-
erty, inherent to the communication resulting from most parallel algorithms,
the useful scope of reconfiguration is not limited to shared-memory en-
vironments. A similar method of reconfiguration can be implemented in
architectures different from our distributed shared-memory multiprocessor,
such as message-passing machines, or even inside Single Instruction, Mul-
tiple Data (SIMD) processors or graphics accelerators. Finally, the tools
and methodologies developed here, specifically the methods from Chapter 5
to speed up design-space explorations, can be, and are being, applied in
network design of both static and reconfigurable, on- and off-chip intercon-
nection networks.

Publications

Journal papers
• Heirman, W., Dambre, J., Artundo, I., Debaes, C., Thienpont, H.,

Stroobandt, D., and Van Campenhout, J. (2008). Predicting the per-
formance of reconfigurable optical interconnects in distributed shared-
memory systems. Photonic Network Communications. 15(1):25–40.

• Heirman, W., Dambre, J., Artundo, I., Debaes, C., Thienpont, H.,
Stroobandt, D., and Van Campenhout, J. (2007). Predicting reconfig-
urable interconnect performance in distributed shared-memory sys-
tems. Integration, the VLSI Journal, 40(4):382–393.

• Artundo, I., Desmet, L., Heirman, W., Debaes, C., Dambre, J.,
Van Campenhout, J., and Thienpont, H. (2006). Selective optical broad-
cast component for reconfigurable multiprocessor interconnects. IEEE
Journal of Selected Topics in Quantum Electronics: Special Issue on Optical
Communication, 12(4):828–837.

Conference papers
• Heirman, W., Dambre, J., Stroobandt, D., Van Campenhout, J. (2008).

Runtime variability in scientific parallel applications. In Proceedings of
the Fourth Workshop on Modeling, Benchmarking and Simulation at ISCA-
35, pages 37–46, Beijing, China.

• Artundo, I., Heirman, W., Debaes, C., Dambre, J., Van Campenhout,
J., Thienpont, H. (2008). Design of a reconfigurable optical intercon-
nect for large-scale multiprocessor networks. In Proceedings of SPIE
Photonics Europe, volume 6996, page 69961H, Strasbourg, France.

154 Publications

• Heirman, W., Dambre, J., Stroobandt, D., Van Campenhout, J. (2008).
Rent’s rule and parallel programs: characterizing network traffic be-
havior. In Proceedings of the 10th International Workshop on System Level
Interconnect Prediction (SLIP 2008), pages 87–94, Newcastle, United
Kingdom.

• Artundo, I., Heirman, W., Debaes, C., Dambre, J., Van Campenhout, J.,
and Thienpont, H. (2007). Performance of large-scale reconfigurable
optical interconnection networks in DSM systems. In Proceedings of
the IEEE/LEOS Symposium Benelux Chapter, pages 123–126, Brussels,
Belgium.

• Heirman, W., Artundo, I., Dambre, J., Debaes, C., Pham Doan, T.,
Bui Viet, K., Thienpont, H., and Van Campenhout, J. (2007). Perfor-
mance evaluation of large reconfigurable interconnects for multipro-
cessor systems. In Proceedings of the International Symposium on Electrical
– Electronics Engineering (ISEE 2007), pages 145–150, Ho Chi Minh City,
Vietnam.

• Heirman, W., Dambre, J., and Van Campenhout, J. (2007). Synthetic
traffic generation as a tool for dynamic interconnect evaluation. In
Proceedings of the 9th International Workshop on System Level Interconnect
Prediction (SLIP 2007), pages 65–72, Austin, Texas.

• Artundo, I., Manjarres, D., Heirman, W., Debaes, C., Dambre, J.,
Van Campenhout, J., and Thienpont, H. (2006). Reconfigurable in-
terconnects in DSM systems: a focus on context switch behavior. In
Frontiers of High Performance Computing and Networking – ISPA 2006
Workshops, volume 4331, pages 311–321, Sorrento, Italy.

• Bui Viet, K., Pham Doan, T., Nguyen Nam, Q., Artundo, I., Manjarres,
D., Heirman, W., Debaes, C., Dambre, J., Van Campenhout, J., and
Thienpont, H. (2006). Reconfigurable interconnection networks in dis-
tributed shared memory systems: a study on communication patterns.
In Proceedings of the First International Conference on Communications and
Electronics (HUT-ICCE 2006), pages 343–347, Hanoi, Vietnam.

• Artundo, I., Desmet, L., Heirman, W., Debaes, C., Dambre, J.,
Van Campenhout, J., and Thienpont, H. (2006). Selective optical broad-
casting in reconfigurable multiprocessor interconnects. In Proceedings
of SPIE Photonics Europe, volume 6185, page 61850J, Strasbourg, France.

• Heirman, W., Dambre, J., and Van Campenhout, J. (2006). Congestion
modeling for reconfigurable inter-processor networks. In Proceedings

Publications 155

of the 8th International Workshop on System Level Interconnect Prediction
(SLIP 2006), pages 59–66, Munich, Germany.

• Heirman, W., Artundo, I., Desmet, L., Dambre, J., Debaes, C., Thien-
pont, H., and Van Campenhout, J. (2006). Speeding up multiprocessor
machines with reconfigurable optical interconnects. In Proceedings
of SPIE, Optoelectronic Integrated Circuits VIII, Photonics West, volume
6124, page 61240K, San Jose, California.

• Artundo, I., Desmet, L., Heirman, W., Debaes, C., Dambre, J.,
Van Campenhout, J., and Thienpont, H. (2005). Selective broadcasting
for reconfigurable optical interconnects in DSM systems. In Proceed-
ings of the IEEE/LEOS Symposium Benelux Chapter, pages 225–228, Mons,
Belgium.

• Heirman, W., Dambre, J., and Van Campenhout, J. (2005). Predicting
the performance of reconfigurable interconnects in distributed shared-
memory systems. In Proceedings of the 16th ProRISC Workshop, pages
508–517, Veldhoven, the Netherlands.

• Heirman, W., Artundo, I., Carvajal, D., Desmet, L., Dambre, J., De-
baes, C., Thienpont, H., and Van Campenhout, J. (2005). Wavelength
tuneable reconfigurable optical interconnection network for shared-
memory machines. In Proceedings of the 31st European Conference on
Optical Communication (ECOC 2005), volume 3, pages 527–528, Glas-
gow, United Kingdom.

• Heirman, W., Dambre, J., Van Campenhout, J., Debaes, C., and Thien-
pont, H. (2005). Traffic temporal analysis for reconfigurable inter-
connects in shared-memory systems. In Proceedings of the 19th IEEE
International Parallel & Distributed Processing Symposium (IPDPS 2005),
page 150, Denver, Colorado.

• Heirman, W., Dambre, J., Stroobandt, D., Van Campenhout, J., Debaes,
C., and Thienpont, H. (2005). Prediction model for evaluation of re-
configurable interconnects in distributed shared-memory systems. In
Proceedings of the 7th International Workshop on System Level Interconnect
Prediction (SLIP 2005), pages 51–58, San Francisco, California.

• Debaes, C., Artundo, I., Heirman, W., Dambre, J., Bui Viet, K., and
Thienpont, H. (2004). Architectural study of the opportunities for re-
configurable optical interconnects in distributed shared memory sys-
tems. In Proceedings of the IEEE/LEOS Symposium Benelux Chapter, pages
275–278, Ghent, Belgium.

156 Publications

• Heirman, W., Dambre, J., Debaes, C., Van Campenhout, J., and Thien-
pont, H. (2004). Traffic pattern analysis for reconfigurable intercon-
nects in shared-memory systems. In Proceedings of the 15th ProRISC
Workshop, pages 39–44, Veldhoven, the Netherlands.

Poster presentations and abstracts
• Heirman, W., Dambre, J., and Van Campenhout, J. (2006). Predicting

the performance of reconfigurable interconnects in shared-memory
systems. In Seventh FirW PhD Symposium, page 84, Ghent, Belgium.

• Heirman, W., Dambre, J., Artundo, I., Debaes, C., Thienpont, H.,
Stroobandt, D., and Van Campenhout, J. (2006). Predicting the
performance of reconfigurable interconnects in distributed shared-
memory systems. In Architectures and Compilers for Embedded Systems
(ACES 2006): Symposium Proceedings, pages 31–34, Edegem, Belgium.

• Vandeputte, F., Eeckhout, L., De Bosschere, K., and Heirman, W.
(2006). Identifying program phase behavior in parallel programs
on distributed shared-memory systems. In Advanced Computer Archi-
tecture and Compilation for Embedded Systems (ACACES 2006), Ghent,
Belgium.

• Heirman, W., Dambre, J., O‘Connor, I., and Van Campenhout, J. (2006).
Reconfigurable optical networks for on-chip multiprocessors. In Future
Interconnects and Networks on Chip Workshop at DATE 2006, Munich,
Germany.

• Heirman, W., Dambre, J., and Van Campenhout, J. (2005). Reconfig-
urable optical interconnects for distributed shared-memory systems.
In Advanced Computer Architecture and Compilation for Embedded Systems
(ACACES 2005), pages 19–22, Ghent, Belgium.

• Heirman, W., Dambre, J., and Van Campenhout, J. (2005). Recon-
figurable optical interconnects for distributed shared-memory multi-
processors. In PhD Forum at Design, Automation and Test in Europe
(DATE 2005), Munich, Germany.

• Heirman, W., Dambre, J., and Van Campenhout, J. (2004). Traffic
locality analysis for reconfigurable interconnects in shared-memory
systems. In Fifth FTW PhD Symposium, Ghent, Belgium.

References

Akulova, Y., Fish, G., Koh, P.-C., Schow, C., Kozodoy, P., Dahl, A., Nak-
agawa, S., Larson, M., Mack, M., Strand, T., Coldren, C., Hegblom, E.,
Penniman, S., Wipiejewski, T., and Coldren, L. (2002). Widely tunable
electroabsorption-modulated sampled-grating dbr laser transmitter. IEEE
Journal of Selected Topics in Quantum Electronics, 8(6):1349–1357.

Alameldeen, A., Mauer, C., Xu, M., Harper, P., Martin, M., Sorin, D., Hill,
M., and Wood, D. (2002). Evaluating non-deterministic multi-threaded
commercial workloads. In Proceedings of the Fifth Workshop on Computer
Architecture Evaluation using Commercial Workloads, pages 30–38.

Aljada, M., Alameh, K. E., Lee, Y.-T., , and Chung, I.-S. (2006). High-speed
(2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI
processors. Optics Express, 14(15):6823–6836.

AMD (2004). Functional data sheet, 940 pin package,
http://www.amd.com/us-en/assets/content_type/

white_papers_and_tech_docs/31412.pdf.

Amdahl, G. (1967). Validity of the single processor approach to achieving
large-scale computing capabilities. In AFIPS Conference Proceedings, vol-
ume 30, pages 483–485, Atlantic City, New Jersey.

Artiaga, E., Martorell, X., Becerra, Y., and Navarro, N. (1998). Experiences
on implementing PARMACS macros to run the SPLASH-2 suite on mul-
tiprocessors. In Proceedings of the 6th Euromicro Workshop on Parallel and
Distributed Processing, pages 64–69, Madrid, Spain.

Artundo, I., Desmet, L., Heirman, W., Debaes, C., Dambre, J., Van Camp-
enhout, J., and Thienpont, H. (2006a). Selective optical broadcast com-

158 References

ponent for reconfigurable multiprocessor interconnects. IEEE Journal of
Selected Topics in Quantum Electronics: Special Issue on Optical Communica-
tion, 12(4):828–837.

Artundo, I., Heirman, W., Bui Viet, K., Debaes, C., Dambre, J., Van Camp-
enhout, J., and Thienpont, H. (2008a). Performance evaluation of recon-
figurable interconnects for large distributed shared-memory multiproces-
sors. IEEE Transactions on Parallel and Distributed Systems. Submitted for
review.

Artundo, I., Heirman, W., Debaes, C., Dambre, J., Van Campenhout, J., and
Thienpont, H. (2008b). Design of a reconfigurable optical interconnect
for large-scale multiprocessor networks. In Proc. of SPIE Photonics Europe,
volume 6996, page 69961H, Strasbourg, France. To appear.

Artundo, I., Manjarres, D., Heirman, W., Debaes, C., Dambre, J., Van Camp-
enhout, J., and Thienpont, H. (2006b). Reconfigurable interconnects in
DSM systems: A focus on context switch behavior. In Frontiers of High Per-
formance Computing and Networking – ISPA 2006 Workshops, volume 4331,
pages 311–321, Sorrento, Italy. Springer Berlin / Heidelberg.

Barford, P. and Crovella, M. (1998). Generating representative web work-
loads for network and server performance evaluation. In Proceedings of the
1998 ACM SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, pages 151–160, Madison, Wisconsin.

Barker, K. J., Benner, A., Hoare, R., Hoisie, A., Jones, A. K., Kerbyson, D. K.,
Li, D., Melhem, R., Rajamony, R., Schenfeld, E., Shao, S., Stunkel, C.,
and Walker, P. (2005). On the feasibility of optical circuit switching for
high performance computing systems. In SC ‘05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 16, Washington, DC. IEEE
Computer Society.

Beeckman, J., Neyts, K., and Haelterman, M. (2006). Patterned electrode
steering of nematicons. Journal of Optics A: Pure and Applied Optics, 8:214–
220.

Benner, A. F., Ignatowski, M., Kash, J. A., Kuchta, D. M., and Ritter, M. B.
(2005). Exploitation of optical interconnects in future server architectures.
IBM Journal of Research and Development, 49(4/5):755–776.

Bertels, P. and Stroobandt, D. (2006). Profiling based estimation of commu-
nication for system partitioning. In Proceedings of the 17th Annual ProRISC
Workshop, pages 233–239.

References 159

Beyls, K. and D’Hollander, E. (2001). Reuse distance as a metric for cache
behavior. In Gonzalez, T., editor, Proceedings of the IASTED International
Conference on Parallel and Distributed Computing and Systems, pages 617–622,
Anaheim, California.

Biswas, R., Djomehri, M. J., Hood, R., Jin, H., Kiris, C., and Saini, S. (2005).
An application-based performance characterization of the columbia super-
cluster. In Proceedings of the 2005 ACM/IEEE conference on Supercomputing
(SC‘05), page 26, Washington, DC. IEEE Computer Society.

Bockstaele, R., De Wilde, M., Meeus, W., Rits, O., Lambrecht, H., Van Camp-
enhout, J., De Baets, J., Van Daele, P., van den Berg, E., Clemenc, M.,
Eitel, S., Annen, R., Van Koetsem, J., Widawski, G., Goudeau, J., Bareel, B.,
Le Moine, P., Fries, R., Straub, P., and Baets, R. (2004). A parallel optical
interconnect link with on-chip optical access. In Thienpont, H., Choquette,
K. D., and Taghizadeh, M. R., editors, Micro-Optics, VCSELs, and Photonic
Interconnects, volume 5453 of Proceedings of SPIE, pages 124–133.

Boden, N., Cohen, D., Felderman, R., Kulawik, A., Seitz, C., Seizovic, J., and
Su, W.-K. (1995). Myrinet: A gigabit-per-second local area network. IEEE
Micro, 1(15):29–38.

Brunfaut, M., Meeus, W., Van Campenhout, J., Annen, R., Zenklusen, P.,
Melchior, H., Bockstaele, R., Vanwassenhove, L., Hall, J., Wittman, B.,
Nayer, A., Heremans, P., Van Koetsem, J., King, R., Thienpont, H., and
Baets, R. (2001). Demonstrating optoelectronic interconnect in a FPGA
based prototype system using flip chip mounted 2D arrays of optical
components and 2D POF-ribbon arrays as optical pathways. In Proceedings
of SPIE, volume 4455, pages 160–171, Bellingham, Washington.

Chandra, R., Devine, S., Verghese, B., Gupta, A., and Rosenblum, M. (1994).
Scheduling and page migration for multiprocessor compute servers. In
ASPLOS-VI: Proceedings of the sixth international conference on Architectural
support for programming languages and operating systems, pages 12–24, San
Jose, California. ACM.

Chang-Hasnain, C. (2000). Tunable VCSEL. IEEE Journal of Selected Topics in
Quantum Electronics, 6(6):978–987.

Charlesworth, A. (2001). The Sun Fireplane system interconnect. In
ACM/IEEE Conference on Supercomputing, page 7, Denver, Colorado.

Charlesworth, A., Phelps, A., Williams, R., and Gilbert, G. (1997). Gigaplane-
XB: extending the ultra enterprise family. In Proceedings of Hot Interconnects
V, pages 97–112, Stanford, California.

160 References

Christie, P. and Stroobandt, D. (2000). The interpretation and application of
Rent’s rule. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
8(6):639–648.

Clark, N. and Handshy, M. (1990). Surface-stabilized ferroelectric liquid-
crystal electro-optic waveguide switch. Applied Physics Letters, 57:1852–
1854.

Collet, J., Litaize, D., Campenhout, J. V., Desmulliez, M., Jesshope, C., Thien-
pont, H., Goodman, J., and Louri, A. (2000). Architectural approach to
the role of optics in monoprocessor and multiprocessor machines. Applied
Optics, 39(5):671–682.

Crossland, W., Manolis, I., Redmond, M., Tan, K., Wilkinson, T., Holmes,
M., Parker, T., Chu, H., Croucher, J., Handerek, V., Warr, S., Robert-
son, B., Bonas, I., Franklin, R., Stace, C., H.White, R.Woolley, and Hen-
shall, G. (2000). Holographic optical switching: The ‘roses’ demonstrator.
IEEE/OSA Journal of Lightwave Technology, 18:1845–1854.

Culler, D. E. and Singh, J. P. (1999). Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, Inc., San Francisco,
California.

d’Alessandro, A. and Asquini, R. (2003). Liquid crystal devices for photonic
switching applications: State of the art and future developments. Molecular
Crystals and Liquid Crystals, 398:207–221.

Dally, W. J. and Towles, B. P. (2004). Principles and Practices of Interconnection
Networks. Morgan Kaufmann.

De Wilde, M. (2007). Modeling and Integration of Highly Parallel Optical Inter-
connect in Electronic Systems. PhD thesis, Universiteit Gent.

De Wilde, M., Rits, O., Baets, R., and Van Campenhout, J. (2008). Syn-
chronous parallel optical I/O on CMOS: A case study of the uniformity
issue. IEEE/OSA Journal of Lightwave Technology, 26(2):257–275.

Debaes, C., Erps, J. V., Vervaeke, M., Volckaerts, B., Ottevaere, H., Gomez,
V., Vynck, P., Desmet, L., Krajewski, R., Ishii, Y., Hermanne, A., and
Thienpont, H. (2006). Deep proton writing: a rapid prototyping polymer
micro-fabrication tool for micro-optical modules. New Journal of Physics,
8(11):270.

Duato, J., Yalamanchili, S., and Ni, L. (2003). Interconnection Networks: an
Engineering Approach. Morgan Kaufmann.

References 161

Dudley, D., Duncan, W. M., and Slaughter, J. (2003). Emerging digital mi-
cromirror device (DMD) applications. In Proceedings of SPIE: MOEMS
Display and Imaging Systems, volume 4985, pages 14–25, San Jose, Califor-
nia. SPIE.

FDDI (1987). Fiber-distributed data interface (FDDI) – Token ring media ac-
cess control (MAC). American National Standard for Information Systems
ANSI X3.139-1987.

Feldman, M. R., Esener, S. C., Guest, C. C., and Lee, S. H. (1988). Comparisons
between optical and electrical interconnects based on power and speed
considerations. Applied Optics, 27(9):1742.

Filios, A., Gutiérrez-Castrejón, R., Tomkos, I., Hallock, B., Vodhanel, R.,
Coombe, A., Yuen, W., Moreland, R., Garrett, B., Duvall, C., and Chang-
Hasnain, C. (2003). Transmission performance of a 1.5 µm 2.5 Gb/s directly
modulated tunable VCSEL. IEEE Photonics Technology Letters, 15(4):599–
601.

Garcia, J. and Duato, J. (1993). Dynamic reconfiguration of multicomputer
networks: limitations and tradeoffs. In Proceedings of the Euromicro Work-
shop on Parallel and Distributed Processing, pages 317–323, Gran Canaria,
Spain.

Geer, D. (2005). Chip makers turn to multicore processors. IEEE Computer,
38(5):11–13.

Goddard, I. (2003). Division of labor in embedded systems. ACM Queue,
1(2):32.

Greenfield, D., Banerjee, A., Lee, J.-G., and Moore, S. (2007). Implications of
Rent’s rule for NoC design and its fault-tolerance. In Proceedings of the First
International Symposium on Networks-on-Chips (NOCS‘07), pages 283–294,
Princeton, New Jersey.

Greenfield, D. and Moore, S. (2008). Fractal communication in software data
dependency graphs. In Proceedings of the 20th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA‘08), pages 116–118, Munich,
Germany.

Gros, E. and Dupont, L. (2001). Ferroelectric liquid crystal optical waveguide
switches using the double-refraction effect. IEEE Photonics Technology Let-
ters, 13(2):115–117.

162 References

Gupta, V. and Schenfeld, E. (1994). Performance analysis of a synchronous,
circuit-switched interconnection cached network. In ICS ‘94: Proceedings
of the 8th international conference on Supercomputing, pages 246–255, Manch-
ester, England. ACM.

Gustafson, J. (1988). Reevaluating Amdahl’s law. Communications of the ACM,
31(5):532–533.

Habata, S., Umezawa, K., Yokokawa, M., and Kitawaki, S. (2004). Hardware
system of the earth simulator. Parallel Computing, 30(12):1287–1313.

Han, X. and Chen, R. T. (2004). Improvement of multiprocessing performance
by using optical centralized shared bus. In Proceedings of the SPIE, volume
5358, pages 80–89.

Haurylau, M., Chen, G., Chen, H., Zhang, J., Nelson, N., Albonesi, D., Fried-
man, E., and Fauchet, P. (2006). On-chip optical interconnect roadmap:
Challenges and critical directions. IEEE Journal of Selected Topics in Quan-
tum Electronics: Special Issue on Silicon Photonics, 12(6):1699–1705.

Hawkins, C., Small, B. A., Wills, D. S., and Bergman, K. (2007). The data
vortex, an all optical path multicomputer interconnection network. IEEE
Transactions on Parallel and Distributed Systems, 18(3):409–420.

Heirman, W., Artundo, I., Dambre, J., Debaes, C., Pham Doan, T., Bui Viet, K.,
Thienpont, H., and Van Campenhout, J. (2007a). Performance evaluation
of large reconfigurable interconnects for multiprocessor systems. In Pro-
ceedings of the International Symposium on Electrical - Electronics Engineering
(ISEE 2007), pages 145–150, Ho Chi Minh City, Vietnam.

Heirman, W., Dambre, J., Artundo, I., Debaes, C., Thienpont, H., Stroobandt,
D., and Van Campenhout, J. (2007b). Predicting reconfigurable intercon-
nect performance in distributed shared-memory systems. Integration, the
VLSI Journal, 40(4):382–393.

Heirman, W., Dambre, J., Artundo, I., Debaes, C., Thienpont, H., Stroobandt,
D., and Van Campenhout, J. (2008a). Predicting the performance of re-
configurable optical interconnects in distributed shared-memory systems.
Photonic Network Communications, 15(1):25–40.

Heirman, W., Dambre, J., Stroobandt, D., and Van Campenhout, J. (2008b).
Rent’s rule and parallel programs: Characterizing network traffic behav-
ior. In Proceedings of the 2008 International Workshop on System Level In-
terconnect Prediction (SLIP‘08), pages 87–94, Newcastle, United Kingdom.
ACM.

References 163

Heirman, W., Dambre, J., Stroobandt, D., and Van Campenhout, J. (2008c).
Runtime variability in scientific parallel applications. In Proceedings of
the Fourth Workshop on Modeling, Benchmarking and Simulation at ISCA-35,
pages 37–46, Beijing, China.

Heirman, W., Dambre, J., and Van Campenhout, J. (2006). Congestion mod-
eling for reconfigurable inter-processor networks. In Proceedings of the
2006 International Workshop on System Level Interconnect Prediction (SLIP‘06),
pages 59–66, Munich, Germany. ACM Press.

Heirman, W., Dambre, J., and Van Campenhout, J. (2007c). Synthetic traffic
generation as a tool for dynamic interconnect evaluation. In Proceedings
of the 2007 International Workshop on System Level Interconnect Prediction
(SLIP‘07), pages 65–72, Austin, Texas. ACM Press.

Heirman, W., Dambre, J., Van Campenhout, J., Debaes, C., and Thienpont,
H. (2005). Traffic temporal analysis for reconfigurable interconnects in
shared-memory systems. In Proceedings of the 19th IEEE International Par-
allel & Distributed Processing Symposium, page 150, Denver, Colorado. IEEE
Computer Society.

Held, J., Bautista, J., and Koehl, S. (2006). From a few cores to many: A
tera-scale computing research overview. Research at Intel White Paper.

Henderson, C. J., Leyva, D. G., and Wilkinson, T. D. (2006). Free space
adaptive optical interconnect at 1.25 Gb/s, with beam steering using a
ferroelectric liquid-crystal SLM. IEEE/OSA Journal of Lightwave Technology,
24(5):1989–1997.

Horowitz, M. (2007). Microprocessors through the ages,
http://www-vlsi.stanford.edu/group/chips_micropro.html.

Hu, S.-Y., Ko, J., Hegblom, E., and Coldren, L. (Aug 1998). Multimode wdm
optical data links with monolithically integrated multiple-channel vcsel
and photodetector arrays. IEEE Journal of Quantum Electronics, 34(8):1403–
1414.

Huang, D., Sze, T., Landin, A., Lytel, R., and Davidson, H. (2003). Optical
interconnects: out of the box forever? IEEE Journal of Selected Topics in
Quantum Electronics, 9(2):614–623.

Huang, M. C. Y., Zhou, Y., and Chang-Hasnain, C. J. (2008). A nanoelec-
tromechanical tunable laser. Nature Photonics, 2(3):180–184.

Inifiniband (2000). http://www.infinibandta.com/.

164 References

Jiang, D. and Singh, J. P. (1999). Scaling application performance on a cache-
coherent multiprocessors. In Proceedings of the 26th International Symposium
on Computer Architecture, pages 305–316, Atlanta, Georgia.

Kanter, D. (2007). The Common System Interface: Intel’s future interconnect.
Real World Technologies.

Katsinis, C. (2001). Performance analysis of the simultaneous optical multi-
processor exchange bus. Parallel Computing, 27(8):1079–1115.

Keltcher, C., McGrath, K., and Ahmed, A.and Conway, P. (2003). The AMD
Opteron processor for multiprocessor servers. IEEE Micro, 23(2):66–76.

Kirman, N., Kirman, M., Dokania, R., Martinez, J., Apsel, A., Watkins, M.,
and Albonesi, D. (2007). On-chip optical technology in future bus-based
multicore designs. IEEE Micro, 27(1):56–66.

Koyama, F. (2006). Recent advances of VCSEL photonics. IEEE/OSA Journal
of Lightwave Technology, 24(12):4502–4513.

Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K.,
Chapin, J., Nakahira, D., Baxter, J., Horowitz, M., Gupta, A., Rosenblum,
M., and Hennessy, J. (1994). The Stanford FLASH multiprocessor. ACM
SIGARCH Computer Architecture News, 22(2):302–313.

Landman, B. S. and Russo, R. L. (1971). On a pin versus block relationship for
partitions of logic graphs. IEEE Transactions on Computers, C-20(12):1469–
1479.

Lee, S.-S., Huang, L.-S., Kim, C.-J., and Wu, M. (1999). Free-space fiber-optic
switches based on mems vertical torsion mirrors. IEEE/OSA Journal of
Lightwave Technology, 17(1):7–13.

Leiserson, C. E., Abuhamdeh, Z. S., Douglas, D. C., Feynman, C. R., Gan-
mukhi, M. N., Hill, J. V., Hillis, W. D., Kuszmaul, B. C., Pierre, M. A. S.,
Wells, D. S., Wong-Chan, M. C., Yang, S.-W., and Zak, R. (1996). The net-
work architecture of the Connection Machine CM-5. Journal of Parallel and
Distributed Computing, 33(2):145–158.

Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.-D., Gupta, A., Hen-
nessy, J. L., Horowitz, M., and Lam, M. S. (1992). The Stanford DASH
multiprocessor. IEEE Computer, 25(3):63–79.

Los Alamos National Laboratory (2005). Operational data to support and
enable computer science research,
http://institutes.lanl.gov/data/fdata/.

References 165

Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G.,
Hogberg, J., Larsson, F., Moestedt, A., and Werner, B. (2002). Simics: A
full system simulation platform. IEEE Computer, 35(2):50–58.

Mannava, P. K., Lee, V. W., Kumar, A., Jayasimha, D. N., and Schoinas, I. T.
(2008). Dynamic interconnect width reduction to improve interconnect
availability. US Patent 7,328,368. Intel.

McNutt, B. (2000). The Fractal Structure of Data Reference: Applications to the
Memory Hierarchy. Kluwer Academic Publishers.

Miller, D. A. B. and Ozaktas, H. M. (1997). Limit to the bit-rate capacity of
electrical interconnects from the aspect ratio of the system architecture.
Journal of Parallel and Distributed Computing, 41(1):42–52.

Mohammed, E. et al. (2004). Optical interconnect system integration for
ultra-short-reach applications. Intel Technology Journal, 8(2):115–127.

Moore, G. E. (1965). Cramming more components onto integrated circuits.
Electronics, 38(8):144–116.

Nabiev, R. and Yuen, W. (2003). Tunable lasers for multichannel fiber-optic
sensors. Sensors. Available online.

Neilson, D. T. (2006). Photonics for switching and routing. IEEE Journal of
Selected Topics in Quantum Electronics, 12(4):669–678.

Noordergraaf, L. and van der Pas, R. (1999). Performance experiences on
Sun’s WildFire prototype. In Proceedings of Supercomputing ‘99, Portland,
Oregon.

O’Connor, I. (2004). Optical solutions for system-level interconnect. In
Proceedings of the 2004 International Workshop on System Level Interconnect
Prediction (SLIP‘04), pages 79–88, Paris, France.

O’Connor, I., Tissafi-Drissi, F., Gaffiot, F., Dambre, J., De Wilde, M.,
Van Campenhout, J., Van Thourhout, D., Van Campenhout, J., and
Stroobandt, D. (2007). Systematic simulation-based predictive synthe-
sis of integrated optical interconnect. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 15(8):927–940.

Pardo, F., Aksyuk, V. A., Arney, S., Bair, H., Basavanhally, N. R., Bishop, D. J.,
Bogart, G. R., Bolle, C. A., Bower, J. E., and Carr, D. (2003). Optical MEMS
devices for telecom systems. In Proceedings of SPIE, volume SPIE-5116,
pages 435–444. SPIE.

166 References

Patterson, D. A. (2004). Latency lags bandwith. Communications of the ACM,
47(10):71–75.

Phelps, A. E., Drogichen, D. P., and Kay, D. B. (2005). Dynamically reconfig-
urable interconnection. US Patent 6,871,294. Sun Microsystems.

Pinkston, T. M. and Goodman, J. W. (1994). Design of an optical recon-
figurable shared-bus-hypercube interconnect. Applied Optics, 33(8):1434–
1443.

Ridruejo, F., Gonzalez, A., and Miguel-Alonso, J. (2005). TrGen: A traffic
generation system for interconnection network simulators. In 1st. Int.
Workshop on Performance Evaluation of Networks for Parallel, Cluster and Grid
Computing Systems (PEN-PCGCS‘05), pages 547–553, Olso, Norway.

Rits, O., De Wilde, M., Roelkens, G., Bockstaele, R., Annen, R., Bossard,
M., Marion, F., and Baets, R. (2006). 2d parallel optical interconnects
between cmos ics. In Eldada, L. and Lee, E.-H., editors, Proceedings of
SPIE, Optoelectronic Integrated Circuits VIII, Photonics West, volume 6124,
pages 168–179, San Jose, California. SPIE.

Robertazzi, T. (2000). Computer Networks & Systems: Queueing Theory and
Performance Evaluation. Springer.

Roelkens, G., Van Campenhout, J., Brouckaert, J., Van Thourhout, D., Baets,
R., Rojo Romeo, P., Regreny, P., Kazmierczak, A., Seassal, C., Letartre, X.,
Hollinger, G., Fedeli, J., Di Cioccio, L., and Lagahe-Blanchard, C. (2007).
III-V/Si photonics by die-to-wafer bonding. Materials Today, 10(7-8):36–43.

Rogers, A. and Pingali, K. (1994). Compiling for distributed memory archi-
tectures. IEEE Transactions on Parallel and Distributed Systems, 5(3):281–298.

Sánchez, J. L., Duato, J., and García, J. M. (1998). Using channel pipelining
in reconfigurable interconnection networks. In Proceedings of the Sixth
Euromicro Workshop on Parallel and Distributed Processing.

Schares, L., Kash, J., Doany, F., Schow, C., Schuster, C., Kuchta, D., Pepelju-
goski, P., Trewhella, J., Baks, C., John, R., Shan, L., Kwark, Y., Budd, R.,
Chiniwalla, P., Libsch, F., Rosner, J., Tsang, C., Patel, C., Schaub, J., Dan-
gel, R., Horst, F., Offrein, B., Kucharski, D., Guckenberger, D., Hegde, S.,
Nyikal, H., Lin, C.-K., Tandon, A., Trott, G., Nystrom, M., Bour, D., Tan,
M., and Dolfi, D. (2006). Terabus: Terabit/second-class card-level opti-
cal interconnect technologies. IEEE Journal of Selected Topics in Quantum
Electronics, 12(5):1032–1044.

References 167

Schroeder, B. and Gibson, G. A. (2007). Understanding failures in petascale
computers. Journal of Physics: Conference Series, 78:012022 (11pp).

Shacham, A., Small, B. A., Liboiron-Ladouceur, O., and Bergman, K. (2005).
A fully implemented 12× 12 data vortex optical packet switching intercon-
nection network. IEEE/OSA Journal of Lightwave Technology, 23(10):3066–
3075.

Sherwood, T., Perelman, E., Hamerly, G., and Calder, B. (2002). Automati-
cally characterizing large scale program behavior. In ASPLOS-X: Proceed-
ings of the 10th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 45–57, San Jose, California.

Shively, R. R., Morgan, E. B., Copley, T. W., and Gorin, A. L. (1989). A high
performance reconfigurable parallel processing architecture. In Supercom-
puting ‘89: Proceedings of the 1989 ACM/IEEE Conference on Supercomputing,
pages 505–509. ACM.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. (1995).
MPI: The Complete Reference. MIT Press.

Snyder, L. (1982). Introduction to the configurable, highly parallel computer.
Computer, 15(1):47–56.

Stroobandt, D. (2001). A Priori Wire Length Estimates for Digital Design. Kluwer
Academic Publishers, Boston / Dordrecht / London.

Sun Microsystems (2003a). An overview of UltraSPARC III Cu,
http://www.sun.com/processors/whitepapers/usiiicuoverview.pdf.

Sun Microsystems (2003b). Sun Fire 6800 midframe server datasheet,
http://www.sun.com/servers/midrange/sunfire6800/datasheet.pdf.

Sutter, H. (2005). The free lunch is over: A fundamental turn toward con-
currency in software. Dr. Dobb’s Journal, 30(3):16–20.

Trezza, J., Hamster, H., Iamartino, J., Bagheri, H., and DeCusatis, C. (2003).
Parallel optical interconnects for enterprise class server clusters: needs
and technology solutions. IEEE Communications Magazine, 41(2):S36–S42.

Tseng, P.-S. (1989). A parallelizing compiler for distributed memory parallel com-
puters. PhD thesis, Carnegie Mellon University, Pittsburgh, Pensilvania.

Van Campenhout, J. (2007). Thin-Film Microlasers for the Intergration of Elec-
tronic and Photonic Intergrated Circuits. PhD thesis, Universiteit Gent.

168 References

Van Campenhout, J., Romeo, P. R., Van Thourhout, D., Seassal, C., Regreny,
P., Di Cioccio, L., Fedeli, J.-M., and Baets, R. (2008). Design and opti-
mization of electrically injected InP-based microdisk lasers integrated on
and coupled to a SOI waveguide circuit. IEEE/OSA Journal of Lightwave
Technology, 26(1):52–63.

Van Kan, J., Sanchez, J., Xu, B., Osipowicz, T., and Watt, F. (1999). Microma-
chining using focused high energy ion beams: Deep ion beam lithography.
Nuclear Instruments and Methods in Physics Research B, 148:1085–1089.

Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D.,
Singh, A., Jacob, T., Jain, S., Erraguntla, V., Roberts, C., Hoskote, Y., Borkar,
N., and Borkar, S. (2008). An 80-tile sub-100-W TeraFLOPS processor in
65-nm CMOS. IEEE Journal of Solid-State Circuits, 43(1):29–41.

Verghese, B., Devine, S., Gupta, A., and Rosenblum, M. (1996). Operat-
ing system support for improving data locality on CC-NUMA compute
servers. In ASPLOS-VII: Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 279–289, Cambridge, Massachusetts. ACM.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. (1995). The
SPLASH-2 programs: Characterization and methodological considera-
tions. In Proceedings of the 22th International Symposium on Computer Archi-
tecture, pages 24–36, Santa Margherita Ligure, Italy.

Yoshimura, T., Ojima, M., Arai, Y., and Asama, K. (2003). Three-dimensional
self-organized microoptoelectronic systems for board-level reconfigurable
optical interconnects-performance modeling and simulation. IEEE Journal
of Selected Topics in Quantum Electronics, 9(2):492–511.

	Title page
	Acknowledgements
	Examination commission
	Dutch summary
	English summary
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Parallel processing
	Why do we need parallel processing?
	Limits to parallelism
	Communication

	Optical communication
	Data communication using light
	Short range optical interconnects
	State of optics in computing
	Reconfigurable optical interconnects

	Reconfigurable processor networks
	Contributions
	Communication requirements
	Reconfigurable architecture
	Tools for design-space exploration
	Performance evaluation

	Structure of this thesis

	Related work
	Optical interconnects
	System level
	Optical interconnect demonstrators
	Reconfigurable network architectures

	Photonics projects at ELIS
	IAP PHOTON and photonics@be
	Optical demonstrators
	On-chip

	Reconfigurable components
	Tunable VCSELs
	Liquid crystal switches
	MEMS mirrors
	The SOB system

	Thread and data migration

	Traffic patterns
	Time scales
	Packets: nanoseconds
	Memory accesses: microseconds
	Communication bursts: milliseconds
	Context switching: tens of milliseconds
	Applications: hours
	Hardware failures: days

	Communication bursts
	Traffic burst length distribution
	Traffic size fraction
	Application speedup

	Thread and data migration
	A case for reconfigurable networks

	A reconfigurable network architecture
	Proposed reconfigurable network architecture
	Hardware implementation
	Extra link selection
	Simulation framework
	Benchmarks

	Speeding up design-space explorations
	Predicting network performance
	Prediction model
	Prediction accuracy
	Improving accuracy
	Reduction in simulation time

	Congestion modeling
	Contention model
	Results
	Discussion
	Improving accuracy
	Reduction in simulation time

	Synthetic network traffic
	Synthetic traffic generation
	Generating synthetic traffic patterns
	Simulating the synthetic traffic flow
	Results
	Required trace length

	Comparison

	Performance evaluation
	Variability of performance metrics
	Small networks: execution-driven simulation
	Selective broadcast implementation
	Latency versus throughput

	Large networks: synthetic traffic
	Scaling the reconfigurable architecture
	Non-reconfigurable networks

	Effect of reconfiguration heuristics
	Optimal elinks placement
	Perfect traffic prediction

	Conclusions
	Summary
	Future research
	Extensions to the current work
	Towards a reconfigurable demonstrator
	On-chip communication
	Faster reconfiguration

	Conclusion

	Publications
	References

