
EXASCALE COMPUTING

ExaScience Lab
Intel Labs Europe

Evaluating application vulnerability to soft
errors in multi-level cache hierarchy

Z. Ma
T.E. Carlson
W. Heirman
L. Eeckhout

Report 09.2011.1, September 2011

This work is funded by Intel and by the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT).



Evaluating application vulnerability to soft
errors in multi-level cache hierarchy

Zhe Ma?13, Trevor Carlson23, Wim Heirman23, and Lieven Eeckhout23

1 Imec
Kapeldreef 75, 3000 Leuven, Belgium

mazhe@imec.be
2 Ghent university

Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
{tcarlson,wheirman,leeckhou}@elis.ugent.be

3 Intel ExaScience lab
Kapeldreef 75, 3000 Leuven, Belgium

Abstract. As the capacity of caches increases dramatically with new
processors, soft errors originating in cache memories has become a major
reliability concern for high performance processors. This paper presents
application specific soft error vulnerability analysis in order to under-
stand an application’s responses to soft errors from different levels of
caches. Based on a high-performance processor simulator called Graphite,
we have implemented a fault injection framework that can selectively in-
ject bit flips to different levels of caches. We simulated a wide range of
relevant bit error patterns and measured the applications’ vulnerabilities
to bit errors. Our experimental results have shown the differing vulner-
abilities of applications to bit errors in different levels of caches (e.g. the
application failure rate for one program is more than the doulbe of that
for another program for a given cache); the results have also indicated
the probabilities of different failure behaviors for the given applications.

Keywords: Soft error, processor simulator, fault injection

1 Introduction

Two trends are observed in the ongoing development of the future generations
of high performance computing systems: 1) the processor is fabricated with the
CMOS processing technology that is constanly scaling down and 2) commodity
high-end processors, rather than customized processors, are more widely em-
ployed to reduce the total cost. The combination of these two trends makes the
reliable working of hardware much more difficult [16]. Unreliable hardware be-
haviors can be roughly split into hard errors and soft errors. While a hard error is
a persistent hardware failure, a soft error is a transient failure and hence harder
to detect and analyze.

? This work is funded by Intel and by the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT).



2 Z. Ma, T. Carlson, W. Heirman and L. Eeckhout

Soft error is a well known reliability concern. However, it is known that appli-
cations have intrinsic masking of soft errors (error rate derating) [12, 14]. Thus
many bit errors are filtered out and are not visible at the application level. To find
a cost-effective soft error mitigation strategy, it is necessary for system designers
to have fault injection tests in order to obtain a good estimate of application
level soft error rate. How to perform error injection is an important topic in a
computer system reliability analysis. Different approaches are developed and can
be roughly grouped into the following categories:

hardware built-in injection These approaches [10] depend on specific units
built into hardwares, usually in the form of Built-In Self-Test. They are only
available in existing hardware.

accelerated hardware emulation These approaches [13, 6] employe a detailed
model of a target hardware, and simulate this model on an accelerator (usu-
ally a FPGA platform). The requirement of a detailed model usually means
this is performed already at a later stage of a design workflow.

software based injection These methods [5, 2] run an altered software appli-
cation natively on its target processor. The modifications inside the applica-
tion can inject faults to the application visible memory addresses.

simulated hardware based injection These approaches [17] employe a high
level model of a target hardware and simulate this model on a general pur-
pose computer. The high level model is usually less accurate but is easier
to modify in order to model innovative features in a yet to be implemented
processor. This high level model is usually fast enough to test relevant soft-
ware applications and hence to have more application specific estimate of
the effect of faults.

We choose simulated hardware based injection because 1) it has relatively
low development and deployment cost and 2) it provides flexibility to explore
novel processor architectures. Thanks to a high performance processor simulator
called Graphite [11], we can efficiently simulate an application’s responses when
soft error induced bit errors take place in a processor’s cache hierarchy.

Previous studies [5, 2] investigated the scientific applications derating ratio
to bit errors from the (off-chip) memory; they did not compare the effects of
soft errors from a multi-level cache hierarchy. However, as its capacity increases
dramatically, cache has become a major source of soft error induced bit errors
on high end processors [1]. To have an accurate estimation of an application’s
response to soft errors in cache, it is necessary to have an application’s access pat-
terns to different levels of caches. However, application cache accesses patterns
are difficult to determine from a static analysis, especially for multi-threading
applications.

In this paper we present a simulation based analysis that can better reveal
realistic cache access patterns. We then perform fault injection directly into the
caches when they are accessed by simulated applications. In this way we can
have the best approximation of the soft error’s effect to an application; and can
distinguish this effect from different levels of caches.



Evaluating application vulnerability to soft errors 3

In the rest of this paper we first describe the processor simulator that we used
for fault injection and how we can conduct fault injections in the cache hierarchy
(Section 2); then we present our motivation for various bit error patterns used
in the fault injection (Section 3); next, we describe the experimental process
(Section 4) and present the experimental results (Section 5); we finally discuss
the collected results and draw some conclusions (Section 6).

2 Graphite simulator and bit error injection

We want to obtain the applications response to cache bit errors by directly ob-
serving the simulated results after the fault injection. This simulation should
faithfully execute the target application’s instructions; and the error bits are
only injected to the instructions that are accessing the specific cache that we
select for injection during the specified time period. We have chosen a proces-
sor architecture simulator called Graphite developed at MIT [11]; and used the
extensions made by University of Ghent [3] .

2.1 Fast processor simulation

Graphite is a high performance processor simulator. Based on the dynamic in-
strumentation tool called Pin [9], Graphite can directly dynamically re-compile
and execute instructions from the x86 executable binary of a target application.
This feature allows us to easily evaluate scientific applications that are already
compiled for x86 target machines. Also, Graphite can be configured with differ-
ent processor parameters about cache, such as levels, capacities, latencies and
replacement strategies. This is especially true after we applied the extension de-
scribed in [3]. One thing to keep in mind is that Graphite is only for application
space simulation. All system calls in the simulated applications are intercepted
and handled by Graphite. Although these emulated system calls can affect the
insight into OS kernel’s responses to fault injection, our experiments are not
greatly affected because we are mainly interested in evaluating scientific com-
puting applications where most processor time is spent in application space.

2.2 Cache error injection

We use a partly modified Graphite that allows us to more flexibly configure the
cache hierarchy of a modeled processor. Based on a user defined cache model,
this Graphite simulator can determine for each memory access if it is hit in a
specific cache. If it is a hit, Graphite can also determine which cache line is
accessed.

Our Graphite can read in a separate configuration file with information about
the location and time in the cache hierarchy to insert a bit flip. An illustration
of such a configuration file is shown below.



4 Z. Ma, T. Carlson, W. Heirman and L. Eeckhout

...

[fault_injection_model/L3]

start_cycle = 12022450

total_faults_nr = 1

err_bit_nr = 2

multi_byte_upset = false

...

A random configuration generator has been made to generate a large number
of fault injection configuration files. While the injection location and time are
randomized by the generator, the bit error pattern (see Section3) in the configu-
ration files is given as an input to the generator. Because soft error is a rare event
and is unlikely to hit the same application more than once during its execution
with the input size used in our simulation, we only inject one soft error with a
single injection configuration file. One simulation is launched for each individual
fault injection configuration file. During every simulation, the Graphite simula-
tor flips the error bits that are specified in this configuration file providing that
a cache access at the selected cache level takes place during the specified time
period in the configuration file. The injected error bits stay as long as they are
not overwritten or flushed out of the cache.

3 Multiple cell upset and bit error patterns

When processing technology scales down, the probability of Multiple Cell Upset
(MCU) increases dramatically [15, 7]. We simulate the 2-, 4- and 6-cell upsets
which are known to increase in SRAMs and are hard to detect and/or correct
by a conventional ECC mechanism.

Because caches can use physical bit interleaving, A MCU cannot be directly
translated into a Multiple Bit Upset (MBU). Instead, how a MCU is translated
into a MBU depends on the physical bit interleaving implemented in the cache
array. Due to high energy overheads associated with physical bit interleaving in
large cache arrays [8], we only simulated physical bit interleaving for L1 and L2
caches (with different degrees of interleaving):

L1(D+I) 4-way interleaving For both L1 data and instruction caches we
assume a 4-way physical bit interleaving. Then the 2-, 4- and 6-cell MCUs
are translated into single bit upset and 2-bit upset in two consecutive bytes.

L2 2-way interleaving For L2 cache the 2-, 4- and 6-cell MCUs are translated
into single bit upset, 2- and 3-bit upset in two consecutive bytes.

L3 no interleaving When no physical bit interleaving is present, the 2-, 4-
and 6-cell MCUs are directly translated into 2-, 4, and 6-bit upset in a single
byte.



Evaluating application vulnerability to soft errors 5

4 Simulation setup

4.1 Applications

We use the SPLASH-2 benchmarks [18] as our applications for the fault injec-
tion simulation. SPLASH-2 benchmarks have a variety of scientific computing
programs that are widely used with processor simulators. Because computa-
tional kernels usually account for the main execution times of scientific com-
putations, we only present the results from three computational kernels from
SPLASH-2 suite in this paper. The selected kernels are a sparse matrix factor-
ization (Cholesky), a fast fast Fourier transform (FFT) and an integer radix sort
(Radix). The problem sizes used for each benchmark are listed in Table 1. All
benchmarks are compiled by GCC in 64-bit mode, with the -O3 optimization.

Table 1. Simulated SPLASH-2 benchmarks and problem sizes

Benchmark Program size

Cholesky tk25.O
FFT 256K points
Radix 256K integers

4.2 Simulation parameters

We simulate our application with a processor model that resembles the Intel
Xeon Dunnington processor (X7460). An X7460 has six cores; each core has
private L1 data and instruction caches (32KB + 32KB). Every two cores share
a L2 cache with the size of 3MB. All cores share a single L3 cache with the size
of 16MB.

Because of the large numbers of cache accesses, it is too expensive to do
an exhaustive fault injection at each cache access during simulation. Hence we
apply statistical sampling techniques to estimate the responses from simulated
applications. Suppose a cache is accessed for X times during the execution, the
total population space for this cache is X. What we need to determine is a sam-
pling size x that is (much) smaller but can still give a reasonable estimation
of the probabilities associated with different application responses. For applica-
tions that run for an extended period of time, the cache access numbers are very
large (up to several hundreds of millions for L1 caches). Thus we consider the
application responses follow the normal distribution. Based on the sampling the-
ory [4], and the baseline profiling results, we can calculate the sampling number
that we need for each cache is around 500. Such a sampling size can obtain an
error margin less than 5% with a statistical confidence interval of 95%. There-
fore, we repeat the fault injection for each individual cache for 500 times (i.e.,
with 500 different random fault injection files for each cache when simulating an
application).



6 Z. Ma, T. Carlson, W. Heirman and L. Eeckhout

5 Simulation results

We first profile our target applications by running them on the simulator without
fault injection. These profiling results are called baseline results. We use baseline
results 1)to setup the normal execution time for each application and 2) to collect
the correct output if applicable. We repeat each simulation for 10 times and
obtain consistent profiling results as shown in Table 2. Note that as a Dunnington
processor has six L1 I/D caches and three L2 caches, the access numbers in the
table are averaged access numbers for each individual L1 and L2 cache. The
total execution cycle is the largest execution cycle number among six cores.

Table 2. Baseline profiling information

Benchmark
L1-I cache L1-D cache L2 cache L3 cache Total exec.

accesses accesses accesses accesses cycles

Cholesky 147344731 48832936 1776513 1147177 296651192
FFT 34513627 7581382 368357 572405 54740721
Radix 12408179 1878307 150693 62016 16366277

In the second step we simulate the applications with the randomly generated
fault injection configuration files. We have observed different responses from the
simulations with injections. In the rest of this section, we first describe four
different responses caused by fault injections; then we compare the responses
from different benchmarks for fault injections from each cache level.

5.1 Application response to fault injections

The four types of responses that we observed from the applications are listed
below. These responses have different frequencies in our simulations. We sum-
marize the occuring percentages of each response in the Table 3, 4,5,6. Also, we
compared the vanished fault percentages of all applications in Figure 1. As shown
in this figure, applications have different levels of vulnerabilities to injected bit
errors in different caches.

fault vanished This is a response in which a target application finishes its
execution successfully.

application crash This is a response in which a target application aborts its
execution. This usually happens with an error return value from the appli-
cation or from the libraries (such as glibc) used by the application. In most
cases the application gets a segmentation fault.

application hang Because each run of simulation for a given application takes
the same input data, and the applications have no intrinsic reasons to show
very different execution times, we consider an application becomes a hanging
application if it has been running for three times as long as its baseline
execution time.



Evaluating application vulnerability to soft errors 7

silent data corruption This response is defined as a target application fin-
ishes its execution successfully without exceeding three times of its baseline
execution time. But the final output cannot pass the correctness test. We
only perform the test for FFT in this paper.

Table 3. Applications responses percentages for L1 instruction cache fault injection
simulations; as explained in Section 3, two types of bit error patterns are simulated:
1-bit upset in single byte(SBU1) and 2-bit upset in consecutive bytes(MBU2)

Cholesky FFT Radix

SBU1

Crash 10.5 12.1 11.2
Hang 1.1 1.9 1.5
SDC – 0.1 –
Vanished 88.4 85.9 87.3

MBU2

Crash 10.8 11.6 11.5
Hang 1.2 2.2 1.5
SDC – 0.3 –
Vanished 88.0 85.9 87.0

Table 4. Applications responses percentages for L1 data cache fault injection simula-
tions: 1-bit upset in single byte (SBU1) and 2-bit upset in consecutive bytes (MBU2)

Cholesky FFT Radix

SBU1

Crash 12.1 7.9 5.0
Hang 7.3 4.2 2.2
SDC – 1.5 –
Vanished 80.6 86.4 92.8

MBU2

Crash 16.0 9.0 6.7
Hang 5.2 4.1 2.3
SDC – 1.5 –
Vanished 78.8 85.4 91.0

6 Conclusions

We present a cache fault injection framework based on a fast processor simulator.
Running several scientific computing programs on this simulator with injected
cache bit errors, we have observed various responses from the simulated programs
with different probabilities. All programs show that a large percentage of errors
are filtered out and hence invisible at the application level. For the errors that do



8 Z. Ma, T. Carlson, W. Heirman and L. Eeckhout

Table 5. Applications responses percentages for L2 cache fault injection simulations;
three types of bit error patterns are simulated: 1-bit upset (MBU1), 2-bit upset (MBU2)
and 3-bit upset (MBU3), all three cases in consecutive bytes

Cholesky FFT Radix

MBU1

Crash 8.1 6.9 8.0
Hang 2.8 1.0 3.0
SDC – 0.5 –
Vanished 89.1 91.6 89.0

MBU2

Crash 9.0 7.5 8.9
Hang 4.2 1.7 4.2
SDC – 0.9 –
Vanished 86.8 89.9 86.9

MBU3

Crash 9.4 7.6 9.5
Hang 4.9 1.9 4.9
SDC – 0.9 –
Vanished 85.7 89.6 85.6

Table 6. Applications responses percentages for L3 cache fault injection simulations;
three types of bit error patterns are simulated: 2-bit upset (SBU2), 4-bit upset (SBU4)
and 6-bit upset (SBU6), all three cases in a single byte

Cholesky FFT Radix

SBU2

Crash 5.0 8.8 4.8
Hang 1.0 3.0 1.1
SDC – 0.7 –
Vanished 94.0 87.5 94.1

SBU4

Crash 5.2 11.4 5.6
Hang 1.3 4.8 1.4
SDC – 1.1 –
Vanished 93.5 82.7 93.0

SBU6

Crash 5.5 13.0 5.7
Hang 1.2 4.9 1.5
SDC – 5.1 –
Vanished 93.3 77.0 92.8



Evaluating application vulnerability to soft errors 9

Fig. 1. Comparison of consolidated percentages of vanished fault for all applications;
vanished fault percentage for each application is the average of its vanished fault per-
centages, assuming each bit error pattern has the same occuring probability

cause an application failure, application crash is the most likely type of failures
(4.8% – 16.0%); while silent data corruption, though relatively rare, is still not
negligible (up to 5.1% for FFT). Moverover, our results indicate that different
programs have different levels of vulnerability to bit errors injected in different
caches (e.g., 6.4% application failures for Cholesky vs. 17.6% for FFT in L3 cache
fault injection simulations). These results suggest that the benefits of protecting
an individual cache depends on the application program that is running on this
processor.

References

1. Robert Baumann. Soft errors in advanced computer systems. IEEE Design & Test
of Computers, 22(3):258–266, 2005.

2. Greg Bronevetsky and Bronis R. de Supinski. Soft error vulnerability of iterative
linear algebra methods. In SELSE, 2007.

3. Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Exploring the level of
abstraction for scalable and accurate parallel multicore simulation. In SC, 2011.

4. William G. Cochran. Sampling Techniques, 3rd Edition. John Wiley, 1977.
5. Charng da Lu and Daniel A. Reed. Assessing fault sensitivity in MPI applications.

In SC, page 37. IEEE Computer Society, 2004.
6. Jean-Marc Daveau, Alexandre Blampey, Gilles Gasiot, Joseph Bulone, and

Philippe Roche. An industrial fault injection platform for soft-error dependabil-
ity analysis and hardening of complex system-on-a-chip. In IRPS, pages 212–220,
2009.



10 Z. Ma, T. Carlson, W. Heirman and L. Eeckhout

7. David Heidel, Paul Marchal, and et al. Single-event upsets and multiple-bit up-
sets on a 45nm SOI SRAM. IEEE TRANSACTIONS ON NUCLEAR SCIENCE,
56(6):3499–3504, 2009.

8. Jangwoo Kim, Nikos Hardavellas, Ken Mai, Babak Falsafi, and James C. Hoe.
Multi-bit error tolerant caches using two-dimensional error coding. In MICRO,
pages 197–209, 2007.

9. Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Ge-
offrey Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation. In
PLDI, pages 190–200, 2005.

10. T. M. Mak, Subhasish Mitra, and Ming Zhang. DFT assisted built-in soft error
resilience. In IOLTS, page 69, 2005.

11. Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald III, Nathan
Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. Graphite: A
distributed parallel simulator for multicores. In HPCA, pages 1–12, 2010.

12. Shubhendu S. Mukherjee, Christopher T. Weaver, Joel S. Emer, Steven K. Rein-
hardt, and Todd M. Austin. A systematic methodology to compute the archi-
tectural vulnerability factors for a high-performance microprocessor. In MICRO,
pages 29–42. ACM/IEEE, 2003.

13. Pradeep Ramachandran, Prabhakar Kudva, Jeffrey W. Kellington, John Schu-
mann, and Pia Sanda. Statistical fault injection. In DSN, pages 122–127. IEEE
Computer Society, 2008.

14. Sonny Rao, Pia Sanda, Jerry Ackaret, Adrian Barrera, Jorge Yanez, and Subhasish
Mitra. Examing workload dependence of soft error rates. In SELSE, 2008.

15. Franz X. Ruckerbauer and Georg Georgakos. Soft error rates in 65nm SRAMs–
analysis of new phenomena. In IOLTS, pages 203–204, 2007.

16. Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-
performance computing systems. In DSN, pages 249–258, 2006.

17. Nicholas J. Wang, Michael Fertig, and Sanjay J. Patel. Y-branches: When you
come to a fork in the road, take it. In IEEE PACT, pages 56–, 2003.

18. Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The SPLASH-2 programs: Characterization and methodological
considerations. In ISCA, pages 24–36, 1995.


