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Abstract—High performance large scale graph analytics is
essential to timely analyze relationships in big data sets. Con-
ventional processor architectures suffer from inefficient resource
usage and bad scaling on graph workloads. To enable efficient
and scalable graph analysis, Intel developed the Programmable
Integrated Unified Memory Architecture (PIUMA). PIUMA con-
sists of many multi-threaded cores, fine-grained memory and
network accesses, a globally shared address space and powerful
offload engines. This paper presents the PIUMA architecture,
and provides initial performance estimations, projecting that
a PIUMA node will outperform a conventional compute node
by one to two orders of magnitude. Furthermore, PIUMA
continues to scale across multiple nodes, which is a challenge
in conventional multinode setups.

I. INTRODUCTION

Current practices in data analytics and artificial intelligence
perform tasks such as object classification on unending streams
of data. Computing infrastructure for classification is pre-
dominantly oriented toward “dense” compute, such as matrix
computations. The continuing exponential growth in generated
data [1] has shifted compute to offload to GPUs and other
focused accelerators across multiple domains that are dense-
compute dominated.

The next step in both AI and data analytics is reasoning
about the relationships between these classified objects, typ-
ically represented as a graph. Determining the relationships
between entities in a graph is the basis of graph analytics
[2]. Graph analytics poses important challenges on existing
processor architectures due to its sparse structure. This sparse-
ness leads to scattered and irregular memory accesses and
communication, challenging the optimizations implemented
for decades that have gone into traditional dense compute
solutions. Consider the common case of pushing data along
the graph edges, see the example graph in Figure 1. All
vertices initially store a value locally and then proceed to
add their value to all neighbors along outgoing edges. This
basic computation is ubiquitous in graph algorithms such as
PageRank [3]. The resulting access stream (Figure 1b) is

§Ankit More and Shaden Smith were with Intel when working on this
project.

(a) 2 1

3
5

7
4

6

(b)
1 2 3 4 5 6 7

Fig. 1. (a) A sparse graph with directed edges. (b) Memory access patterns
observed when moving data along the edges of (a).

irregular and has no locality, making conventional prefetching
and caching useless.

The combination of low performance and very large graph
sizes limits the usability of graph analytics. Recognizing both
the increasing importance of graph analytics and the need for
vastly improved sparse computation performance compared to
traditional approaches, DARPA launched their HIVE program
to achieve at least 1000× Performance/Watt breakthrough on
such large problems before the end of 2022 [4].

This paper introduces the Programmable Integrated Unified
Memory Architecture (PIUMA) developed for the DARPA
HIVE program. The PIUMA machine is designed for graph
analytics at massive scales. PIUMA enables high-performance
graph processing by addressing constraints across the network,
memory, and compute architectures that typically limit perfor-
mance on graph workloads.

II. GRAPH WORKLOAD CHALLENGES

Graph algorithms face several major scalability challenges
on existing architectures, because of their irregularity and
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Fig. 2. Cache line utilization for graph workloads.

sparsity.

A. Challenge 1: Cache and Bandwidth Utilization

Figure 2 shows the cache line utilization for a variety of
graph analysis applications when executed on a conventional
cache based processor with prefetcher. For every 64 byte
cache line fetched from memory, it shows how many bytes
are actually used by the CPU. For most cache lines, either 0,
8, or the full 64 bytes are used.

The zero usage fraction stems from cache lines that were
prefetched but never used. Cache lines with 8 or fewer bytes
used are caused by sparse accesses with no spatial locality. A
typical pattern in graph application is a chain of indirect loads,
similar to a pointer chasing pattern: a vertex’s neighbors are
stored in a list, which are used to index the data array. Because
neighbor lists do not show regularity or locality, accesses to
the data array are intrinsically sparse. Other memory accesses
have limited locality (e.g., fetching the neighbor list itself), as
shown by the fraction where all 64 bytes are used, but they
are limited in size, explaining the useless prefetches that fetch
past the end of the list.

As a result, the execution of graph applications suffers from
inefficient cache and bandwidth utilization: caches are thrashed
with single-use sparse accesses and useless prefetches, and
most of the 64 byte memory fetches contain only one 8-byte
useful data element. Overprovisioning memory bandwidth
and/or cache space to cope with sparsity is inefficient in terms
of power consumption, chip area and I/O pin count. Instead,
PIUMA uses limited caching and small granularity memory
accesses to efficiently deal with the memory behavior of graph
applications.

B. Challenge 2: Irregular Computation and Memory Intensity

Further analysis of graph algorithms shows additional prob-
lems in optimizing performance. The computations are irregu-
lar: they exhibit skewed compute time distributions, encounter
frequent control flow instructions, and perform many memory
accesses. The compute time for a vertex in the PageRank
example is proportional to the number of outgoing edges
(degree) of that vertex. Graphs such as the one illustrated

in Figure 1 have skewed degree distributions, and thus the
work per vertex has a high variance, leading to significant
load imbalance.

Our analysis reveals that graph applications are heavy on
branches and memory operations. Furthermore, conditional
branches are often data dependent, e.g., checking the degree or
certain properties of vertices, leading to irregular and therefore
hard to predict branch outcomes. Together with the high
cache miss rates caused by the sparse accesses, conventional
performance oriented out-of-order processors are largely un-
derutilized: most of the time they are stalled on cache misses,
while a large part of the speculative resources is wasted due
to branch mispredictions. In PIUMA, this observation was
the incentive to use single issue in-order pipelines with many
threads to hide memory latency and avoid speculation.

C. Challenge 3: Fine- and Coarse-Grained synchronization

Graph algorithms require frequent fine- and coarse-grained
synchronization. For example, PageRank requires fine-grained
synchronizations (e.g., atomics) to prevent race conditions
when pushing values along edges. Synchronization instruc-
tions that resolve in the cache hierarchy place a large stress on
the cache coherency mechanisms for multi-socket systems, and
all synchronizations incur long round-trip latencies on multi-
node systems. Additionally, the sparse memory accesses result
in even more memory traffic for synchronizations due to false
sharing in the cache coherency system.

Coarse-grained synchronizations (e.g., system-wide barriers
and prefix scans) fence the already-challenging computations
in graph algorithms. These synchronizations have diverse uses
including resource coordination, dynamic load balancing, and
the aggregation of partial results. These synchronizations can
dominate execution time on large-scale systems due to high
network latencies and imbalanced computation.

D. Challenge 4: Massive Datasets

Current commercial graph databases exceed 20 TB as an
in-memory representation. Such large problems exceed the
capabilities of even a rack of computational nodes of any
type, which requires a large-scale multi-node platform to
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Fig. 3. High-level diagram of PIUMA architecture.

even house the graph’s working set. When combined with
the prior observations – poor memory hierarchy utilization,
high control flow changes, frequent memory references, and
abundant synchronizations – any architecture that targets graph
workloads must focus on reducing latency to access remote
data, combined with latency hiding techniques in the process-
ing elements.

Although the analysis in this section focuses on CPUs,
the same challenges apply for GPUs: sparse accesses prevent
memory coalescing, branches cause thread divergence and
synchronization limits thread progress. Nevertheless, GPUs
usually perform better on graph algorithms than CPUs for
small graphs [5], because they have more threads, which
hides memory latency, and much higher memory bandwidth,
brute-forcing the inefficient bandwidth utilization. However,
GPUs have limited memory capacity and limited scale-out
capabilities, which means that they are unable to process large,
multi-TB graphs. Furthermore, graphs are extremely sparse
(� 1% non-zeros), so the typical GPU trick to densify the
connectivity matrix for a more efficient GPU execution leads
to another few orders of magnitude increase in memory usage,
restricting it to small graphs only. PIUMA directly operates on
sparse data (e.g., CSR).

III. PIUMA ARCHITECTURE

The observations on graph analysis workloads guided the
PIUMA design, targeting breakthrough performance per Watt
for graph analytics. We discuss how each component of the
UMA architecture is designed to cope with the challenges
imposed by graph workloads.

A. PIUMA Cores

The design of PIUMA cores builds on the observations that
most graph workloads have abundant parallelism, are memory
bound and are not compute intensive. These observations call
for many simple pipelines, with multi-threading to hide mem-
ory latency, see Figure 3. PIUMA multi-threaded cores (MTC)

are round-robin multi-threaded in-order pipelines [6]. At any
moment, each thread can only have one in-flight instruction,
which considerably simplifies the core design for better energy
efficiency. Single-threaded cores (STC) are used for single-
thread performance sensitive tasks, such as memory and thread
management threads (e.g., from the operating system). These
are in-order stall-on-use cores that are able to exploit some
instruction and memory-level parallelism, while avoiding the
high power consumption of aggressive out-or-order pipelines.
Both core types implement the same custom RISC instruction
set.

Each core has a small data and instruction cache (D$
and I$), and a register file (RF) to support its thread count.
Because of the low locality in graph workloads, no higher
cache levels are included, avoiding useless chip area and power
consumption of large caches. For scalability, caches are not
coherent across the whole system. It is the responsability
of the programmer to avoid modifying shared data that is
cached, or to flush caches if required for correctness. MTCs
and STCs are grouped into blocks, each of which has a large
local scratchpad (SPAD) for low latency storage. Programmers
are responsible for selecting which memory accesses to cache
(e.g., local stack), which to put on SPAD (e.g., often reused
data structures or the result of a DMA gather operation) and
which not to store locally. There are no prefetchers to avoid
useless data fetches and to limit power consumption. Instead,
the offload engines described below can be used to efficiently
fetch large chunks of useful data.

B. Offload Engines

Although the MTCs hide some of the memory latency by
supporting multiple concurrent threads, their in-order design
limits the number of outstanding memory accesses to one
per thread. To increase memory-level parallelism and to free
more compute cycles to the cores, a memory offload engine
is added to each block. The offload engine performs memory
operations typically found in many graph applications in the
background, while the cores continue with their computations.
The direct memory access (DMA) engine performs operations
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such as (strided) copy, scatter and gather. Queue engines
are responsible for maintaining queues allocated in shared
memory, alleviating the core from atomic inserts and removals.
They can be used for work stealing algorithms and dynami-
cally partitioning the workload. Collective engines implement
efficient system-wide reductions and barriers. Remote atomics
perform atomic operations at the memory controller where
the data is located, instead of burdening the pipeline with first
locking the data, moving the data to the core, updating it,
writing back and unlocking. They enable efficient and scalable
synchronization, which is indispensable for the high thread
count in PIUMA.

The engines are directed by the PIUMA cores using specific
PIUMA instructions. These instructions are non-blocking,
enabling the cores to perform other work while the opera-
tion is done in the background. Custom polling and waiting
instructions are used to synchronize the threads and offloaded
computations.

C. Memory Organization

Sparse and irregular accesses to a large data structure are
typical for graph analysis applications. Therefore, accesses
to remote memory should be done with minimal overhead.
PIUMA implements a hardware distributed global address
space (DGAS), which enables each core to uniformly access
memory across the full system (multiple PIUMA nodes) with
one address space. Besides avoiding the overhead of setting
up communication for remote accesses, a DGAS also greatly
simplifies programming, because there is no implementation
difference between accessing local and remote memory. Ad-
dress translation tables (ATT) contain programmable rules to
translate application memory addresses to physical locations,
to arrange the address space to the need of the application
(e.g., address interleaved, block partitioned, etc.).

The memory controllers (one per block) are redesigned to
support native 8-byte acesses, while supporting standard cache
line accesses as well. Fetching only the data that is actually
needed reduces memory bandwidth pressure and utilizes the
available bandwidth more efficiently.

D. Network

The network connecting the blocks is responsible for send-
ing memory requests to remote memory controllers. Similar
to the memory controller, it is optimized for small 8 byte
messages. Furthermore, due to the high fraction of remote
accesses, network bandwidth exceeds local DRAM bandwidth,
which is different from conventional architectures that assume
higher local traffic than remote traffic.

To obtain high bandwidth and low latency to remote blocks,
the network needs to have a high radix and a low diameter.
This is achieved with a HyperX topology [7], with all-to-
all connections on each level. Links on the highest levels
are optical to ensure power-efficient, high-bandwidth commu-
nication. The hierarchical topology and optical links enable
PIUMA to efficiently scale out to many nodes, maintaining
easy and fast remote access.

E. Comparison to other Graph Processors

The Cray Urika-GD graph processor [8] was one of the
first commercial graph-oriented big data processors. Similar
to PIUMA, it consists of multiple many-threaded cores with
no large caches and a memory-coherent network. It does not
support fine-grained 8 byte accesses, wasting bandwidth on
loading full cache lines. Furthermore, it has no offload memory
engines, such as the DMA, QMA and remote atomics as
in PIUMA, leading to more memory stalls in the pipelines.
As we will show in the results section, 8 byte accesses and
offload memory engines are important contributors to PUMA’s
performance and energy efficiency.

The Emu architecture [9] is a recently proposed architecture
for big data analysis, including graph analysis workloads.
Similar to PIUMA and Urika-GD, it consists of many small
cores with many hardware threads per core to hide memory
latency. It also features 8 byte DRAM accesses and is com-
pletely cacheless. Unique is its low-overhead thread migration
scheme, which enables moving threads to a core near to the
memory controller that owns the required data instead of
moving the data to the current core. Moving threads to data is
beneficial if the overhead of moving the thread is compensated
by the amount of locally consumed data. Young et al. [10]
report that migrating a thread involves moving 200 bytes,
which means that at least 25 local 8 byte accesses are needed
to compensate for the thread migration. Therefore, optimizing
data locality is crucial for obtaining good performance on
Emu [10], which is often hard to obtain for graph analysis
applications. In contrast, PIUMA does not rely on any locality.
Instead, it uses the offload engines to perform complex system-
wide memory operations in parallel, and only moves the data
that is eventually needed to the core that requests it. For
example, a DMA gather will not move the memory stored
indices or addresses of the data elements to gather to the
requesting core, only the requested elements from the data
array.

Song et al. [11] propose a graph processor based on
sparse matrix algebra, building on the observation that many
graph applications can be represented as operations on sparse
matrices. Their architecture has overlaps with PIUMA, such
as the absence of caches, and fine-grained communication
and memory accesses. Graphicionado [12] is a graph analysis
accelerator, implementing a vertex-centric compute paradigm.
While these accelerators are likely more energy efficient for
analyzing small graphs, PIUMA’s goal is to provide a flexible
instruction set architecture, optimized for typical graph analy-
sis operations, and is not limited to algorithms that use sparse
matrix algebra or vertex-centric operations. Furthermore, none
of these proposals scale out to multi-TB graphs with trillions
of vertices.

IV. HARDWARE/SOFTWARE CO-DESIGN

Crucial for the pathfinding and development of PIUMA was
the hardware/software co-design process. This process requires
the involvement of multiple multi-disciplinary teams: archi-
tects, system software developers, workload analysis teams,
and performance simulation and analysis teams.
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We developed a C/C++ compiler based on LLVM that
supports the RISC ISA of PIUMA, including basic library
functions. PIUMA specific operations, such as the offload
engines and remote atomics, are accessible using intrinsics.
Additionally, we constructed a runtime environment that im-
plements basic memory and thread management, supporting
common programming models, such as gather-apply-scatter,
task-based and SPMD-style parallelism.

In parallel, we developed an architectural simulator for
PIUMA, simulating the timing of all instructions in the
pipelines, engines, memory and network, based on the hard-
ware specifications. Next to performance estimations of run-
ning a workload on PIUMA, it provides an extensive set of
performance analysis reports, such as CPI stacks and detailed
performance information on each memory structure and each
instruction. This enables workload owners to quickly detect
bottleneck causes, and to use these insights to optimize the
workload for PIUMA and report hardware bottlenecks to the
hardware design team. The hardware team then responds with
an updated design, feeding a continuous cycle of gradual
improvements to hardware and software.

V. PERFORMANCE RESULTS

We implemented a variety of graph analysis applications for
PIUMA and evaluated their performance using our detailed
timing simulator. The applications are selected from a list of
high priority workloads suggested by DARPA for the HIVE
project, as well as common sparse applications. We compare
the estimated PIUMA performance with timing measurements
of the same applications on a high-end Intel Xeon server (Intel
Xeon Gold 6140), containing 4 sockets of 18 cores each. Initial
power estimates show that a PIUMA node, containing 256
PIUMA blocks, consumes about the same amount of power
as the Xeon server. Therefore, a performance comparison
between 1 PIUMA node and the Xeon server is also an energy
efficiency comparison.

Because most applications are basic kernels, the baseline
Xeon implementations are hand-crafted and optimized, avoid-
ing potential library overhead. The PIUMA implementations
are also written from scratch. For Xeon, graph applications
do not scale well beyond a single node, with even worse
performance for small node counts, due to the overhead of
the fine-grained communication [13]. For PIUMA, the appli-
cation code does not need to change for multinode execution,
thanks to the system-wide shared memory. Our simulator can
practically simulate systems up to a few dozen blocks, we
use an analytical model to extrapolate performance for larger
systems. The analytical model takes into account increased
network latencies and network bandwidth restrictions as the
system scales out.

PIUMA specifically targets scale-out and tera-to-peta-scale
workloads, which is why we do not compare against GPUs
and other graph accelerators, because these do not support
such large workloads.

A. SpMV analysis
To provide insight into how the PIUMA design choices

have an impact on performance, we first perform a detailed

TABLE I
SINGLE NODE PIUMA SPEEDUP FOR SPMV VERSIONS.

Base Selective caching With DMA
Versus Xeon 10.0× 19.8× 29.2×
Versus Base 1× 2.0× 2.9×

analysis for sparse matrix dense vector multiplication (SpMV).
The basic operation of SpMV is very similar to that of the
PageRank algorithm: a multiply-accumulate of sparse matrix
elements (the (weighted) graph edges) and a dense vector (the
pagerank values). We implement multiple PIUMA versions for
SpMV, gradually adding more PIUMA specific operations, to
show the impact of each optimization individually. We apply
SpMV on an RMAT-30 synthetic matrix, stored in compressed
sparse row (CSR) format, both on Xeon and PIUMA. Table I
shows the speedup of each of the implementations versus
Xeon.

The first PIUMA version is a straightforward implemen-
tation of SpMV, with each thread calculating one or more
elements of the result vector. The rows are partitioned across
the threads based on the number of non-zeros for a balanced
execution. It does not make use of DMA operations, and all ac-
cesses are non-cached 8-byte, which is the default for PIUMA
(except for thread local stack accesses, these are cached by
default). This basic implementation already outperforms Xeon
by a factor 10 through using a higher thread count and 8 byte
memory accesses, avoiding memory bandwidth saturation.

The next implementation uses selective caching: accesses
to the matrix values are cached, while the sparse accesses
to the vector bypass caches. In the compressed sparse row
(CSR) representation of a sparse matrix, all non-zero elements
on a row are stored consecutively and accessed sequentially,
resulting in spatial locality. The dense vector, on the other
hand, is accessed sparsely, because only a few of its elements
are needed for the multiply-accumulate, i.e., the indices of
the non-zeros in the row of the matrix. So we cache the
accesses to the matrix, while the vector accesses remain
uncached 8 byte accesses. This leads to another 2× speedup.
We also simulated caching all accesses, which led to lower
performance compared to the base version. Caching the sparse
accesses to the vector causes an increase in memory traffic,
because 64 bytes are fetched for every access. The extra traffic
saturates the bandwidth, leading to lower overall performance.
This experiment shows why uncached 8-byte accesses are
required to achieve higher performance and better efficiency
for sparse graph applications.

Lastly, we use a DMA gather operation to fetch the elements
of the dense vector that are needed for the current row from
memory, and put them on local scratchpad. The multiply-
accumulate reduction is then done by the core, fetching the
matrix elements from cache and the vector elements from
scratchpad. Not only does this significantly reduce the number
of load instructions, it also reduces data movement: the index
list does not need to be transferred to the requesting core,
only the final gathered vector elements. While data is gathered,
the thread is stalled, allowing other threads that have already
fetched their data to compute a result vector element. Using the
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TABLE II
PIUMA SPEEDUP VERSUS ONE 4-SOCKET XEON NODE.

Application 1 node 16 nodes
Application Classification 6.9× 111×
Random Walks 279× 2,606×
Graph Search 34× 544×
Louvain Community 41× 555×
TIES Sampler 93× 419×
Graph2Vec 42× 178×
Graph Sage 3.1× 46×
Graph Wave 8.0× 125×
Parallel Decoding FST 6.8× 109×
Geolocation 15× 243×
SpMV 29× 467×
SpMSpV 111× 1,387×
Breadth-first Search 7.5× 117×

DMA gather offload improves performance by 47%, leading
to a total 29× speedup versus Xeon. This implementation uses
more than 95% of the available memory bandwidth, while not
wasting bandwidth on useless and sparse accesses.

B. All applications

Table II shows the speedup of a single PIUMA node versus
the Xeon server for all evaluated applications. It also shows
the speedup of a PIUMA system with 16 nodes, which is the
first proof-of-concept system that will be built for the HIVE
project. The base is still the single node Xeon performance,
we expect that the performance of a 16-node Xeon will not be
much higher than that of a single node for graph applications.

Single node PUMA performance exceeds Xeon performance
by one to two orders of magnitude. The performance benefit
of low-compute low-locality applications, such as Random
Walks, is the highest, while more compute-intensive appli-
cations, such as Application Classification, benefit less, but
still outperform Xeon. The main reasons are the much higher
thread count support (144 threads for Xeon, more than 16K
threads for PIUMA), enabling threads to progress while others
are stalled on memory operations, efficient small size local
and remote memory operations, and powerful offload engines
that allow for more memory/compute overlap. The speedups
for 16 nodes show that PIUMA scales out well. Scaling is
not perfectly linear, due to the larger latencies and band-
width restrictions, but it significantly outperforms conventional
multinode Xeon configurations.

VI. CONCLUSION

PIUMA is a graph analysis oriented architecture developed
by Intel in response to the DARPA HIVE project. Based on the
observation that graph workloads are dominated by irregular
sparse accesses, it features many highly-threaded simple cores
to hide the latency of remote memory accesses. Combined with
small access granularity to memory and network, and powerful
offload engines, PIUMA outperforms current high-end proces-
sors for typical graph workloads. Furthermore, it is designed
to scale out efficiently thanks to the high bandwidth network
and shared address space, increasing the performance gap

with current multinode computers, which perform poorly on
distributed graph applications. The effective hardware/software
co-design process of PIUMA guarantees highly optimized
hardware, and ensures that system and development tools are
available by the time PIUMA will be released.
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