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Abstract—High performance large scale graph analytics are essential to timely analyze
relationships in big data sets. Conventional processor architectures suffer from inefficient
resource usage and bad scaling on those workloads. To enable efficient and scalable graph
analysis, Intel® developed the Programmable Integrated Unified Memory Architecture (PIUMA) as
a part of the DARPA Hierarchical Identify Verify Exploit (HIVE) program. PIUMA consists of many
multi-threaded cores, fine-grained memory and network accesses, a globally shared address
space, powerful offload engines and a tightly integrated optical interconnection network. This
paper presents the PIUMA architecture, and documents our experience in designing and building
a prototype chip and its bring-up process. PIUMA silicon has successfully powered on
demonstrating key aspects of the architecture, some of which will be incorporated into future
Intel products.

CURRENT PRACTICES in data analytics and
artificial intelligence (AI) perform tasks such
as object classification on unending streams of
data. Computing infrastructure for classification is
predominantly oriented toward “dense” compute,
such as matrix computations. However, the next
step in both AI and data analytics is reasoning
about the relationships between these classified
objects, typically represented as a graph. De-
termining the relationships between entities in
a graph is the basis of graph analytics. Graph
analytics poses important challenges on existing
processor architectures due to its sparse structure.

∗ Corresponding author: wim.heirman@intel.com

This sparseness leads to scattered and irregular
memory accesses and communication, challeng-
ing the optimizations implemented for decades
that have gone into traditional dense compute
solutions. Consider the common case of pushing
data along the graph edges, see the example graph
in Figure 1. All vertices initially store a value
locally and then proceed to add their value to
all neighbors along outgoing edges. This basic
computation is ubiquitous in graph algorithms
such as PageRank. The resulting access stream
(Figure 1b) is irregular and has no locality, mak-
ing conventional prefetching and caching useless.

Traditionally, algorithmic analysis is based
on the principle that compute is precious and
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Figure 1. (a) A sparse graph with directed edges, (b)
Memory access patterns observed when moving data
along the edges of (a)

communications are free. Yet, today’s physics
of implementation shows mostly the opposite.
This is especially relevant for at-scale problems
in AI and high-performance computing (HPC),
which are showing this trend clearly, exhibiting
very low utilization on “classical” dense archi-
tectures. The combination of low performance
and very large graph sizes limits the practi-
cal use of graph analytics. Recognizing both
the increasing importance of this field, and the
need for vastly improved sparse computation
performance compared to traditional approaches,
DARPA launched their Hierarchical Identify Ver-
ify Exploit (HIVE) program to achieve at least
1000× Performance/Watt breakthrough on such
large problems before the end of 2022.

This paper introduces Intel’s response to this
challenge with its design called Intel® Pro-
grammable Integrated Unified Memory Architec-
ture (PIUMA). The PIUMA machine is designed
for graph analytics at massive scales. PIUMA
enables high-performance graph processing by
addressing limitations across the network, mem-
ory, and compute architectures that typically limit
performance on graph workloads.

1. Challenges

Graph algorithms face several major scalabil-
ity challenges on existing architectures, because
of their irregularity and sparsity.

1.1. Challenge 1: Cache and Bandwidth
Utilization

Graph analysis applications, when executed
on a conventional cache based processor with
prefetcher, typically waste a large fraction of
main memory bandwidth [7]. For every 64-byte
cache line fetched from memory, often just eight
bytes or less are used because many data loads
are sparse word-sized accesses with no spatial
locality. A typical pattern in graph applications is
a chain of indirect loads [10], similar to a pointer
chasing pattern: a vertex’s neighbors are stored
in a list, which are used to index the data array.
Since neighbor lists do not show regularity or
locality, accesses to the data array are intrinsically
sparse. Other memory access behaviors exhibit
increased locality (e.g., fetching the neighbor list
itself), leading to spatial (but no temporal) cache
line reuse. These lists are limited in size, causing
a high rate of useless prefetches that extend past
the end of the list.

As a result, the execution of graph applica-
tions suffers from inefficient cache and bandwidth
utilization: caches are thrashed with single-use
sparse accesses and useless prefetches, and most
of the 64 byte memory fetches contain only
one 8-byte useful data element. Over-provisioning
memory bandwidth and/or cache space to cope
with sparsity is inefficient in terms of power
consumption, chip area and I/O pin count. In-
stead, PIUMA uses limited caching and small
granularity memory accesses to efficiently deal
with the memory behavior of graph applications.

1.2. Challenge 2: Irregular Computation and
Memory Intensity

Further analysis of graph algorithms shows
additional problems in optimizing performance.
The computations are irregular: they exhibit
skewed compute time distributions, encounter fre-
quent control flow instructions, and perform many
memory accesses. The compute time for a vertex
in the PageRank example is proportional to the
number of outgoing edges (degree) of that vertex.
Graphs such as the one illustrated in Figure 1
have skewed degree distributions, and thus the
work per vertex has a high variance, leading to
significant load imbalance.

Analysis reveals that graph applications are
heavy on branches and memory operations [4].
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Furthermore, conditional branches are often data
dependent, e.g., checking the degree or cer-
tain properties of vertices, leading to irregu-
lar and therefore hard to predict branch out-
comes. Together with the high cache miss rates
caused by the sparse accesses, conventional per-
formance oriented out-of-order processors are
largely underutilized: data dependencies between
cache misses limit the amount of instruction-level
parallelism, while hard-to-predict data-dependent
branches restrict the amount of useful speculation
[5]. In PIUMA, this observation was the incentive
to use single issue in-order pipelines with many
threads to hide memory latency and avoid spec-
ulation.

1.3. Challenge 3: Fine- and Coarse-Grained
synchronization

Graph algorithms require frequent fine- and
coarse-grained synchronization. For example,
PageRank requires fine-grained synchronizations
(e.g., atomics) to prevent race conditions when
pushing values along edges. Synchronization in-
structions that resolve in the cache hierarchy
place a large stress on the cache coherency mech-
anisms for multi-socket systems, and all synchro-
nizations incur long round-trip latencies on multi-
node systems. Additionally, the sparse memory
accesses result in even more memory traffic for
synchronizations due to false sharing in the cache
coherency system.

Coarse-grained synchronizations (e.g.,
system-wide barriers and prefix scans) fence
the already-challenging computations in graph
algorithms. These synchronizations have diverse
uses including resource coordination, dynamic
load balancing, and the aggregation of partial
results. These synchronizations can dominate
execution time on large-scale systems due to high
network latencies and imbalanced computation.

1.4. Challenge 4: Massive Datasets
Current commercial graph databases exceed

20 TB as an in-memory representation. Such
large problems exceed the capabilities of even
a rack of computational nodes of any type
and would require a large-scale multi-node plat-
form to even house the graph’s working set.
When combined with the prior observations—
poor memory hierarchy utilization, high control

flow changes, frequent memory references, and
abundant synchronizations—any architecture that
targets graph workloads must focus on reducing
latency to access remote data, combined with
latency hiding techniques in the processing ele-
ments.

Although the analysis in this section fo-
cuses on CPUs, the same challenges apply for
GPUs: sparse accesses prevent memory coalesc-
ing, branches cause thread divergence and syn-
chronization limits thread progress. Nevertheless,
for small graphs, GPUs usually perform better
on graph algorithms than CPUs [9], because
they have more threads, which hides memory
latency, and much higher memory bandwidth,
brute-forcing the inefficient bandwidth utilization.
However, GPUs also have limited memory capac-
ity and scale-out capabilities, which means that
they are unable to process large, multi-TB graphs.
Furthermore, graphs are extremely sparse (≪1%
non-zeros), so densifying the adjacency matrix
for an efficient GPU execution leads to another
few orders of magnitude increase in memory
usage, restricting it to small graphs only. PIUMA
directly operates on sparse data (e.g., compressed
sparse row (CSR) format) which avoids the need
for densification.

2. Introducing PIUMA
The observations on graph analysis work-

loads guided the PIUMA design, targeting break-
through performance per Watt for graph analytics.
We discuss how each component of the PIUMA
architecture is designed to cope with the chal-
lenges imposed by graph workloads.

2.1. PIUMA Cores
The design of PIUMA cores builds on the

observations that most graph workloads have
abundant parallelism, are memory bound, and are
not compute intensive. These observations call for
many simple pipelines, with multi-threading to
hide memory latency. Figure 2 shows a block dia-
gram of the PIUMA archirecture. PIUMA multi-
threaded cores (MTC) are round-robin multi-
threaded in-order pipelines. At any moment, each
thread can only have one in-flight instruction (im-
plicitly making them stall-on-miss at the thread
level), which considerably simplifies the core de-
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Figure 2. High-level diagram of the PIUMA architecture

sign for better energy efficiency. Single-threaded
cores (STC) are used for single-thread perfor-
mance sensitive tasks, such as memory and thread
management (e.g., from the operating system).
These are in-order stall-on-use cores that are
able to exploit some instruction and memory-
level parallelism, while avoiding the high power
consumption of aggressive out-of-order pipelines.
Both core types implement the same custom
RISC instruction set which enables easy thread
migration.

Each core has a small data and instruction
cache (D$ and I$), and a large register file (RF)
with 32 registers per thread. Because of the low
locality in graph workloads, no higher cache
levels are included, avoiding useless chip area
and power consumption of large caches. Special
cache instructions are built into the instruction set
to support I$ and D$ software prefetches, inval-
idations, and write-backs. A MOESI-F protocol
[11] maintains coherency across all data-caches
on the die, and allows for migration of dirty
cache lines between data caches. For scalability,
caches are not coherent across the whole system.
It is the responsibility of the programmer to avoid
modifying shared data that are cached, or to flush
caches if required for correctness.

MTCs and STCs are grouped into blocks, each
of which has a large local scratchpad (SPAD) for
low latency storage. Programmers can manipulate
address bits to point to specific memory map
regions (scratchpad, main memory, configuration
registers, etc.). A cache bit determines whether
the memory access is cached. The runtime lan-
guage can choose to e.g., cache the execution
stack and not cache static data by default. There

are no hardware prefetchers to avoid useless data
fetches and to limit power consumption. Instead,
the offload engines described below can be used
to efficiently fetch large chunks of useful data.

2.2. Offload Engines
Although the MTCs hide much of the mem-

ory latency by supporting multiple concurrent
threads, their in-order design limits the number of
outstanding memory accesses to one per thread.
To increase memory-level parallelism and to free
more compute cycles to the cores, multiple mem-
ory offload engines are added to each block.
The offload engine performs memory operations
typically found in many graph applications in the
background, while the cores continue with their
computations.

The direct memory access (DMA) engine
performs operations such as (strided) copy and
scatter/gather. This engine has the capability to in-
terpret various compressed sparse representations
commonly used in neighbor lists (e.g., CSR) and
perform other data transformations (e.g., trans-
pose, basic arithmetic operations, etc.).

Indirect operations accelerate pointer chasing
(e.g., A[B[i]]). Conventionally, this is done in
three steps: an offset (B[i]) is loaded from
memory into a register, the load/store address is
computed by the core by shifting the loaded offset
and adding it to the base address (A), and finally
the load or store operation is performed on the
created address. ISA support for indirect loads
and stores [10] eliminates the need to bring the
offset to the core by performing these three steps
on the fly. This can save a round-trip to remote
memory when both the offset and data values
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reside at the same remote memory controller.

Queue engines are responsible for maintaining
queues allocated in shared memory, alleviating
the core from atomic inserts and removals. They
can be used for work stealing algorithms and
dynamically partitioning the workload. Collec-
tive engines implement efficient system-wide re-
ductions and barriers. Remote atomics perform
atomic operations at the memory controller or
scratchpad where the data is located, instead of
burdening the pipeline with first locking the data,
moving the data to the core, updating it, writing
back and unlocking. They enable efficient and
scalable synchronization, which is indispensable
for the high thread count in PIUMA.

The engines are directed by the PIUMA cores
using specific instructions. These instructions are
non-blocking, enabling the cores to perform other
work while the operation is done in the back-
ground. Custom polling and waiting instructions
are used to synchronize the threads and offloaded
computations.

2.3. Memory Organization

Sparse and irregular accesses to a large data
structure are typical for graph analysis appli-
cations. Therefore, accesses to remote memory
should be done with minimal overhead. PIUMA
implements a hardware distributed global address
space (DGAS), which enables each core to uni-
formly access memory across the full system
with one address range. Besides avoiding the
overhead of setting up communication for remote
accesses, a DGAS also greatly simplifies pro-
gramming, because there is no implementation
difference between accessing local and remote
memory. Address translation tables (ATT) contain
programmable rules to translate application mem-
ory addresses to physical locations, to arrange the
address space to the need of the application (e.g.,
address interleaved, block partitioned, etc.).

The memory controllers (one per block) are
redesigned to support native 8-byte accesses,
while supporting standard cache line accesses
as well. Fetching only the data that is actually
needed reduces memory bandwidth pressure and
utilizes the available bandwidth more efficiently.

2.4. Network
The network connecting the blocks is re-

sponsible for sending memory requests to re-
mote memory controllers. Similar to the mem-
ory controller, it is optimized for small 8-byte
messages. Furthermore, due to the high fraction
of remote accesses, network bandwidth exceeds
local DRAM bandwidth, which is different from
conventional architectures that assume higher lo-
cal traffic than remote traffic.

To obtain high bandwidth and low latency to
remote blocks, the network needs to have a high
radix and a low diameter. This is achieved with a
HyperX topology, a hierarchical network with all-
to-all connections on each level. To ensure power-
efficient, high-bandwidth communication, optical
links are used that are tightly integrated into the
PIUMA chip package. The hierarchical topology
and optical links enable PIUMA to efficiently
scale out to many nodes, maintaining easy and
fast remote access.

2.5. Comparison to other Graph Processors
The Cray Urika-GD graph processor [8] was

one of the first commercial graph-oriented big
data processors. Similar to PIUMA, it consisted
of multiple many-threaded cores with no large
caches and a memory-coherent network. It did
not support fine-grained 8-byte accesses, wasting
bandwidth on loading full cache lines. Further-
more, it had no offload memory engines, such as
the DMA, queue and remote atomics in PIUMA,
leading to more memory stalls in the pipelines.

The Emu architecture [3] is a recently pro-
posed architecture for big data analysis, includ-
ing graph analysis workloads. It features 8-
byte DRAM accesses and is completely cache-
less. Unique is its low-overhead thread migration
scheme, which enables moving threads to a core
near to the memory controller that owns the
required data instead of moving the data to the
current core. Moving threads to data is beneficial
if the overhead of moving the thread is compen-
sated by the amount of locally consumed data.
Therefore, optimizing data locality is crucial for
obtaining good performance on Emu, which is of-
ten hard to obtain for graph analysis applications.
In contrast, PIUMA does not rely on any locality.
Instead, it uses the offload engines to perform
complex system-wide memory operations in par-
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allel, and only moves the data that is eventually
needed to the core that requests it.

Song et al. [12] propose a graph processor
based on sparse matrix algebra, building on the
observation that many graph applications can
be represented as operations on sparse matrices.
Their architecture has overlaps with PIUMA,
such as the absence of caches, and fine-grained
communication and memory accesses. Graphi-
cionado [6] is a graph analysis accelerator, im-
plementing a vertex-centric compute paradigm.
While these accelerators are likely more energy
efficient for analyzing small graphs, PIUMA’s
goal is to provide a flexible instruction set ar-
chitecture, optimized for typical graph analysis
operations, and not to be limited to algorithms
that use sparse matrix algebra or vertex-centric
operations. Furthermore, none of these proposals
scale out to multi-TB graphs with trillions of
vertices.

3. Software stack
The PIUMA software stack includes all the

tools necessary for developers to write, compile,
execute, and debug codes. Unlike most accelera-
tors, the PIUMA hardware and its programming
stack do not impose upon the programmer a
restricted parallel programming model, derived
from hardware limitations. Instead, it offers flexi-
bility in leveraging host and accelerator resources,
and takes a layered approach. Each abstraction
layer offers a trade-off between programmer con-
trol and productivity, catering to a range of de-
veloper audiences.

Standalone x86 C/C++ workloads are usually
straightforward to port to the PIUMA software
stack, often simplifying the code in the pro-
cess by removing the need for complex locality-
improving datastructures.

3.1. PIUMA Software Development Kit
The PIUMA Software Development Kit

(SDK) provides developers with a fully featured
software stack composed of a set of familiar C
and C++ programming interfaces, toolchain, run-
time, driver, supporting libraries, and debugger.

The SDK tools and libraries make extensive
use of PIUMA hardware-backed features such
as atomics, queues, collectives, and DMAs. Ad-
ditionally, some of the hardware features are

automatically leveraged by the toolchain. For
example, code can be compiled to automatically
make use of PIUMA’s indirect-load [10] and
bitwise instructions or could directly use PIUMA-
specific compiler builtins to access custom RISC
ISA instructions.

Since the PIUMA accelerator is deployed
alongside a host, developers decide whether to
program PIUMA in standalone or hybrid mode.

In standalone mode, the full program is com-
piled to run natively on PIUMA. The LLVM-
based PIUMA toolchain contains the expected
suite of tools: a compiler, binary utilities (assem-
bler, linker, ELF tools, etc.), and support libraries
(libc, libcxx, libunwind, etc.) tailored for PIUMA.

PIUMA-native binaries can be launched as
POSIX-style processes through a convenience
launcher tool on the x86 Host. This launcher
relies on more general user-space libraries (Host
API) providing management, communication, and
debugging support on top of the PIUMA device
driver. On the accelerator’s side, the program is
handed off to the PIUMA runtime, which man-
ages hardware resources and program executions,
fulfilling the role of a light-weight operating
system.

In hybrid mode, the main program runs on x86
and coordinates the execution of tasks or kernels
with the PIUMA accelerator using the Host-API.
The Host-API covers basic functionalities such
as dynamically allocating memory, executing data
transfers in and out, as well as scheduling parallel
functions for execution.

3.2. Programming Interfaces
Most programmers will want to use one of the

supported parallel programming interfaces: a sin-
gle program, multiple data (SPMD) programming
model, OpenMP, or graph algorithms plugins for
Anaconda’s Metagraph.

The PIUMA SPMD programming model
bridges the gap between system-level program-
ming and application-level programming, imple-
menting enough of a runtime and OS-like func-
tionality to offer the user a familiar (shared-
memory) system view and parallel programming
approach (bulk-synchronous style). The PIUMA
SPMD layer is a good target for developers that
require low overheads and tight control, as it
allows the underlying runtime to scale well to
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a large number of threads. A PIUMA SPMD
program is a standard C program: the main()

function is the entry point and is executed se-
quentially. There, developers can use the pro-
vided SPMD API to execute user-defined func-
tions across the available hardware threads. The
SPMD programming layer API also provides a
thin library for: thread identification and system
geometry information to orchestrate parallel com-
putations, scratchpad and global memory alloca-
tions, point-to-point synchronization through the
use of atomics and hardware queues, and global
synchronization with hardware collectives.

The OpenMP layer is built on top of the
SPMD layer and provides developers with in-
creased productivity and a familiar programming
environment. Some of PIUMA’s hardware fea-
tures find a natural fit in standard OpenMP prag-
mas (atomics, reductions) while others require the
creation of new pragmas. For example, a pragma
can be applied to a specific section of code to
instruct the PIUMA compiler to accelerate code
with indirect access instructions.

For domain scientists mostly interested in
using off-the-shelf graph algorithms, we have
developed PIUMA plugins for Anaconda’s Meta-
graph Python library. This approach enables users
to leverage PIUMA hardware from a famil-
iar Python programming environment such as
Jupyter notebooks. When invoking graph algo-
rithms in the Metagraph framework, developers
can use annotations to request the use of a PI-
UMA implementation. The Metagraph dispatcher
then finds and executes the corresponding PI-
UMA plugin, which takes care of all the nec-
essary steps to transparently offload data and
compute from the host to the accelerator.

4. Hardware/Software Co-Design
Crucial for the pathfinding and development

of PIUMA was the hardware/software co-design
process. This process requires the involvement
of multiple multi-disciplinary teams: architects,
system software developers, workload analysis
teams, performance simulation and analysis teams
as well as FPGA emulation teams. In parallel with
the hardware design and compiler development,
we developed an architectural simulator for PI-
UMA, simulating the timing of all instructions
in the pipelines, engines, memory and network,

based on the hardware specifications.
The functional part of the simulator was cre-

ated by extending FSim [2] to handle the custom
RISC ISA as well as the functional emulation
of the offload engines and network collectives.
For performance modeling, Sniper [1] was used
to model both the stall-on-use single-threaded
(STC) cores as well as the stall-on-miss multi-
threaded (MTC) cores. We also extended the
memory model to handle scratchpads, selective
caching, and the HyperX topology of the network.
In addition to performance estimations of running
a workload on PIUMA, it provides an exten-
sive set of performance analysis reports, such as
Cycle per instruction (CPI) stacks and detailed
performance information on each memory struc-
ture and each instruction. This enabled workload
owners to quickly detect bottleneck causes, and
to use these insights to optimize the workload
for PIUMA and report hardware bottlenecks to
the hardware design team. The hardware team
then responded with an updated design, feeding
a continuous cycle of gradual improvements to
hardware and software. We validated the resulting
simulator against the PIUMA FPGA emulation
platform as well as against A0 silicon once that
became available.

5. PIUMA A0 silicon implementation
We designed and fabricated an A0 test chip

that implements the PIUMA architecture. This
chip was powered on and characterized in the
lab, and was healthy enough (with some software
mitigations in place) to run actual workloads. A
16-chip PIUMA node is also being constructed
to allow validation of the inter-chip network and
conduct scaling experiments.

5.1. A0 hardware design
We designed and built a 27.6B-transistor,

316mm2 prototype chip in 7nm FinFET CMOS.
The chip integrates eight PIUMA blocks (running
a total of 528 threads), 32MB of on-die scratch-
pad memory, and all off-chip interfaces (memory,
network, and a PCIe link to the host system).

Memory transactions are distributed over eight
narrow-channel on-die DDR5 controllers that
have been optimized for 8-byte native accesses
for efficient bandwidth utilization on sparse graph
data sets. Main memory is built from standard
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Technology TSMC 7nm FinFET
Interconnect 15 metal layers
Die transistors 27.6B
Die area 316 mm2

Block transistors 1.2B
Block area 9.3 mm2

Signals 705
Package 3275-pin BGA

Figure 3. Full-chip micrograph and characteristics

DDR5 memory chips in a custom SODIMM form
factor. Each of the eight on-die memory con-
trollers can be accessed in parallel at an aggregate
peak memory bandwidth of 35.2GB/s.

Four x8 high speed I/O links are divided into
32 channels for 1TB/s per direction of off-die
signalling. The 32 channels are configured into
a HyperX topology using the high-radix of the
die to provide a low-diameter network, reducing
network hops and resulting in both low latency
and low energy communication. The HyperX
topology seamlessly extends the on-die network
by using the same packet format and network
protocols, allowing for efficient system scaling. In
total, the processor’s HyperX network can scale
out to 131,072 dies using three network levels,
where nodes at each level are fully connected.

Figure 3 shows the layout of the chip. The
most critical resource was the edges of the chip
(shoreline) required to fit the memory controllers
and off-chip network interfaces. Much of the
internal area is taken up by routing of the on- and
off-die networks while the cores and memories
take up just 24%.

We have a healthy PIUMA A0 chip compared
to other chips of this scale on a brand new
architecture and a grounds up new design. Few
hardware bugs have been uncovered, although

some required software workarounds with signif-
icant performance impact.

5.2. Software bring-up
The software stack was fully enabled in the

last phase of the A0 power-on, running complete
workloads on the PIUMA bring-up boards. Be-
cause of the close co-design process, the software
stack was able to be hit the ground running. The
period between tape-out and power-on was used
to focus on preparing the software stack for exe-
cution on the A0 platform. This involved remov-
ing simulation tricks, such as magic instructions,
working around known errata and completing
the host-side development framework. This quick
software bring-up proved to be extremely valu-
able, as it enabled finding hardware and software
faults that arose because of rare and complex
interactions.

5.3. Learnings
A certain class of hardware errors only occur

under load, for instance, states triggered by buffer
back-pressure. These would typically only occur
during complex workload execution scenarios on
the actual hardware platform. We found that
FPGA emulation or functional simulation plat-
forms would initially not produce these execution
states, mainly because of the relative speed differ-
ence between what is inside and outside the sim-
ulation. For example, hardware DDR memory or
a Xeon host PCIe interface run at native speeds,
so an FPGA-emulated PIUMA core running at a
few tens MHz is unable to saturate these. To catch
such classes of errors earlier requires validation
methodology improvements.

The early software bring-up on the A0 plat-
form did present additional challenges. Enabling
a bespoke software stack on an A0 stepping of
a novel hardware architecture creates a combi-
nation of unknowns; neither the hardware nor
any software layers can be fully trusted. Errors
arising during full-stack workload runs can be
difficult and time consuming to reproduce and
root cause. In such an environment, the software
stack benefits from having several intermediate
layers that can be sounded out incrementally.
During the A0 software bring-up, several new
test suites were created with increasing level of
abstraction and complexity. This enabled us to
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test incrementally, build trust in each layer and
catch complex errors in a simpler environment.

6. Conclusions
PIUMA is a graph analysis oriented archi-

tecture developed by Intel in response to the
DARPA HIVE project. Based on the observation
that graph workloads are dominated by irregular
sparse accesses, it features many highly-threaded
simple cores to hide the latency of remote mem-
ory accesses. Combined with small access gran-
ularity to memory and network, and powerful of-
fload engines, PIUMA outperforms current high-
end processors for typical graph workloads. Fur-
thermore, it is designed to scale out efficiently
thanks to the high bandwidth network and shared
address space, increasing the performance gap
with current multi-node computers, which per-
form poorly on distributed graph applications.

We built an A0 test chip, powered it on in the
lab and were able to run workloads on it. The
effective hardware/software co-design process of
PIUMA guaranteed highly optimized hardware,
and ensured that system and development tools
were available by the time we had silicon in the
lab. Despite finding hardware bugs that required
software workarounds, we were able to assess
potential performance and energy efficiency tar-
gets that make PIUMA a highly capable graph
analytics platform.
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