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Abstract—High performance large scale graph analytics are
essential to timely analyze relationships in big data sets. Con-
ventional processor architectures suffer from inefficient resource
usage and bad scaling on those workloads. To enable efficient
and scalable graph analysis, Intel® developed the Programmable
Integrated Unified Memory Architecture (PIUMA) as a part
of the DARPA Hierarchical Identify Verify Exploit (HIVE)
program. PIUMA consists of many multi-threaded cores, fine-
grained memory and network accesses, a globally shared address
space, powerful offload engines and a tightly integrated optical
interconnection network. By utilizing co-packaged optical silicon
photonics and extending the on-chip mesh protocol directly to the
optical fabric, all PIUMA chips in a system are glued together
in a large virtual die which allows for extremely low socket-
to-socket latencies even as the system scales to thousands of
sockets. Performance estimations project that a PIUMA node will
outperform a conventional compute node by one to two orders
of magnitude. Furthermore, PIUMA continues to scale across
multiple nodes, which is a challenge in conventional multi-node
setups.

This paper presents the PIUMA architecture, and documents
our experience in designing and building a prototype chip and
its bring-up process. We summarize the methodology for our co-
design of the architecture together with the software stack using
simulation tools and FPGA emulation. These tools provided early
performance estimations of realistic applications and allowed us
to implement many optimizations across the hardware, compilers,
libraries and applications. We built the PIUMA chip as a 316mm2

7nm FinFET CMOS die and constructed a 16-node system.
PIUMA silicon has successfully powered on demonstrating key
aspects of the architecture, some of which will be incorporated
into future Intel products.

I. INTRODUCTION

Current practices in data analytics and artificial intelligence
(AI) perform tasks such as object classification on unending
streams of data. Computing infrastructure for classification
is predominantly oriented toward “dense” compute, such as
matrix computations. The continuing exponential growth in
generated data [8] has shifted compute to offload to graph-
ics processors (GPUs) and other focused accelerators across
multiple domains that are dense-compute dominated.

However, the next step in both AI and data analytics is
reasoning about the relationships between these classified
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Fig. 1. (a) A sparse graph with directed edges, (b) Memory access patterns
observed when moving data along the edges of (a)

objects, typically represented as a graph. Determining the
relationships between entities in a graph is the basis of graph
analytics [24]. Graph analytics poses important challenges
on existing processor architectures due to its sparse struc-
ture. This sparseness leads to scattered and irregular memory
accesses and communication, challenging the optimizations
implemented for decades that have gone into traditional dense
compute solutions. Consider the common case of pushing data
along the graph edges, see the example graph in Figure 1.
All vertices initially store a value locally and then proceed to
add their value to all neighbors along outgoing edges. This
basic computation is ubiquitous in graph algorithms such as
PageRank [26]. The resulting access stream (Figure 1b) is
irregular and has no locality, making conventional prefetching
and caching useless.

Traditionally, algorithmic analysis, with its Random Access
Machine model and big O notation, is based on the principle
that compute is precious and communications are free. Yet,
today’s physics of implementation shows mostly the opposite.
This is especially relevant for at-scale problems in AI and
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Fig. 2. Cache line utilization for graph workloads shows a combination of
useless prefetches (0B used), sparse accesses (8B), and streaming data (64B)

high-performance computing (HPC), which are showing this
trend clearly, exhibiting very low utilization on “classical”
dense architectures. The combination of low performance and
very large graph sizes limits the practical use of graph analyt-
ics. Recognizing both the increasing importance of this field,
and the need for vastly improved sparse computation perfor-
mance compared to traditional approaches, DARPA launched
their Hierarchical Identify Verify Exploit (HIVE) program to
achieve at least 1000× Performance/Watt breakthrough on
such large problems before the end of 2022 [28].

This paper introduces Intel’s response to this challenge
with its design called Intel® Programmable Integrated Unified
Memory Architecture (PIUMA). The PIUMA machine is
designed for graph analytics at massive scales. PIUMA enables
high-performance graph processing by addressing limitations
across the network, memory, and compute architectures that
typically limit performance on graph workloads.

II. CHALLENGES

Graph algorithms face several major scalability challenges
on existing architectures, because of their irregularity and
sparsity.

A. Challenge 1: Cache and Bandwidth Utilization

Graph analysis applications, when executed on a conven-
tional cache based processor with prefetcher, typically waste
a large fraction of main memory bandwidth [16]. For every 64-
byte cache line fetched from memory, often just eight bytes
or less are used because many data loads are sparse word-
sized accesses with no spatial locality. A typical pattern in
graph applications is a chain of indirect loads [25], similar
to a pointer chasing pattern: a vertex’s neighbors are stored
in a list, which are used to index the data array. Since
neighbor lists do not show regularity or locality, accesses to
the data array are intrinsically sparse. Other memory access
behaviors exhibit increased locality (e.g., fetching the neighbor
list itself), leading to spatial (but no temporal) cache line reuse.
These lists are limited in size, causing a high rate of useless
prefetches that extend past the end of the list.

Figure 2 shows the cache line utilization for a variety of
graph analysis applications when executed on a conventional

cache based processor with prefetcher. For every 64-byte cache
line fetched from memory, the graph shows how many bytes
are actually used by the processor. For most cache lines, either
0, 8, or the full 64 bytes are used. The zero usage fraction
stems from cache lines that were prefetched but never used.
Cache lines with 8 or fewer bytes used are caused by sparse
accesses with no spatial locality.

As a result, the execution of graph applications suffers from
inefficient cache and bandwidth utilization: caches are thrashed
with single-use sparse accesses and useless prefetches, and
most of the 64 byte memory fetches contain only one 8-byte
useful data element. Over-provisioning memory bandwidth
and/or cache space to cope with sparsity is inefficient in terms
of power consumption, chip area and I/O pin count. Instead,
PIUMA uses limited caching and small granularity memory
accesses to efficiently deal with the memory behavior of graph
applications.

B. Challenge 2: Irregular Computation and Memory Intensity

Further analysis of graph algorithms shows additional prob-
lems in optimizing performance. The computations are irregu-
lar: they exhibit skewed compute time distributions, encounter
frequent control flow instructions, and perform many memory
accesses. The compute time for a vertex in the PageRank
example is proportional to the number of outgoing edges
(degree) of that vertex. Graphs such as the one illustrated
in Figure 1 have skewed degree distributions, and thus the
work per vertex has a high variance, leading to significant
load imbalance.

Analysis reveals that graph applications are heavy on
branches and memory operations [11]. Furthermore, condi-
tional branches are often data dependent, e.g., checking the
degree or certain properties of vertices, leading to irregular
and therefore hard to predict branch outcomes. Together with
the high cache miss rates caused by the sparse accesses,
conventional performance oriented out-of-order processors are
largely underutilized: data dependencies between cache misses
limit the amount of instruction-level parallelism, while hard-
to-predict data-dependent branches restrict the amount of
useful speculation [12]. In PIUMA, this observation was the
incentive to use single issue in-order pipelines with many
threads to hide memory latency and avoid speculation.

C. Challenge 3: Fine- and Coarse-Grained synchronization

Graph algorithms require frequent fine- and coarse-grained
synchronization. For example, PageRank requires fine-grained
synchronizations (e.g., atomics) to prevent race conditions
when pushing values along edges. Synchronization instruc-
tions that resolve in the cache hierarchy place a large stress on
the cache coherency mechanisms for multi-socket systems, and
all synchronizations incur long round-trip latencies on multi-
node systems. Additionally, the sparse memory accesses result
in even more memory traffic for synchronizations due to false
sharing in the cache coherency system.

Coarse-grained synchronizations (e.g., system-wide barriers
and prefix scans) fence the already-challenging computations
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in graph algorithms. These synchronizations have diverse uses
including resource coordination, dynamic load balancing, and
the aggregation of partial results. These synchronizations can
dominate execution time on large-scale systems due to high
network latencies and imbalanced computation.

D. Challenge 4: Massive Datasets

Current commercial graph databases exceed 20 TB as an
in-memory representation. Such large problems exceed the
capabilities of even a rack of computational nodes of any
type and would require a large-scale multi-node platform to
even house the graph’s working set. When combined with
the prior observations—poor memory hierarchy utilization,
high control flow changes, frequent memory references, and
abundant synchronizations—any architecture that targets graph
workloads must focus on reducing latency to access remote
data, combined with latency hiding techniques in the process-
ing elements.

Although the analysis in this section focuses on CPUs,
the same challenges apply for GPUs: sparse accesses prevent
memory coalescing, branches cause thread divergence and
synchronization limits thread progress. Nevertheless, for small
graphs, GPUs usually perform better on graph algorithms than
CPUs for small graphs [19] because they have more threads,
which hides memory latency, and much higher memory
bandwidth, brute-forcing the inefficient bandwidth utilization.
However, GPUs also have limited memory capacity and scale-
out capabilities, which means that they are unable to process
large, multi-TB graphs. Furthermore, graphs are extremely
sparse (≪1% non-zeros) [7], so the typical GPU trick to
densify the adjacency matrix for an efficient GPU execution
leads to another few orders of magnitude increase in memory
usage, restricting it to small graphs only [4]. PIUMA directly
operates on sparse data (e.g., compressed sparse row (CSR)
format) which avoids the need for densification.

III. INTRODUCING PIUMA
The observations on graph analysis workloads guided the

PIUMA design, targeting breakthrough performance per Watt
for graph analytics. We discuss how each component of the
PIUMA architecture is designed to cope with the challenges
imposed by graph workloads.

A. PIUMA Cores

The design of PIUMA cores builds on the observations that
most graph workloads have abundant parallelism, are memory
bound, and are not compute intensive. These observations
call for many simple pipelines, with multi-threading to hide
memory latency. Figure 3 shows a block diagram of the
PIUMA archirecture. PIUMA multi-threaded cores (MTC) are
round-robin multi-threaded in-order pipelines [29]. At any
moment, each thread can only have one in-flight instruction
(implicitly making them stall-on-miss at the thread level),
which considerably simplifies the core design for better energy
efficiency. Single-threaded cores (STC) are used for single-
thread performance sensitive tasks, such as memory and

thread management (e.g., from the operating system). These
are in-order stall-on-use cores that are able to exploit some
instruction and memory-level parallelism, while avoiding the
high power consumption of aggressive out-of-order pipelines.
Both core types implement the same custom RISC instruction
set which enables easy thread migration.

Each core has a small data and instruction cache (D$ and
I$), and a large register file (RF) with 32 registers per thread.
Because of the low locality in graph workloads, no higher
cache levels are included, avoiding useless chip area and power
consumption of large caches. Special cache instructions are
built into the ISA to support I$ and D$ software prefetches,
invalidations, and write-backs. A MOESI-F protocol [27]
maintains coherency across all data-caches on the die, and
allows for migration of dirty cache lines between data caches.
For scalability, caches are not coherent across the whole
system. It is the responsibility of the programmer to avoid
modifying shared data that are cached, or to flush caches if
required for correctness.

MTCs and STCs are grouped into blocks, each of which
has a large local scratchpad (SPAD) for low latency storage.
Programmers can manipulate address bits to point to specific
memory map regions (scratchpad, main memory, configuration
registers, etc.). A cache bit determines whether the memory
access is cached. The runtime language can choose to e.g.,
cache the execution stack and not cache static data by default.
There are no hardware prefetchers to avoid useless data fetches
and to limit power consumption. Instead, the offload engines
described below can be used to efficiently fetch large chunks
of useful data.

B. Offload Engines

Although the MTCs hide much of the memory latency by
supporting multiple concurrent threads, their in-order design
limits the number of outstanding memory accesses to one per
thread. To increase memory-level parallelism and to free more
compute cycles to the cores, multiple memory offload engines
are added to each block. The offload engine performs memory
operations typically found in many graph applications in the
background, while the cores continue with their computations.

The direct memory access (DMA) engine performs opera-
tions such as (strided) copy, scatter/gather. This engine has the
capability to interpret various compressed sparse representa-
tions commonly used in neighbor lists (e.g., CSR) and perform
other data transformations (e.g., transpose, basic arithmetic
operations, etc.).

Indirect operations accelerate pointer chasing (e.g.,
A[B[i]]). Conventionally, this is done in three steps: an offset
B[i] is loaded from memory into a register, the load/store
address is computed by the core by shifting the loaded offset
and adding it to the base address A, and finally the load or store
operation is performed on the created address. ISA support for
indirect loads and stores [25] eliminates the need to bring the
offset to the core by performing these three steps on the fly. We
add a special network message type to support indirect loads,
containing an index address &B[i], base address value A and

3



DRAM DRAM

DRAM DRAM

SPAD

M
T

C

M
T

C

S
T

C

S
T

C

BLOCK 
OFFLOAD

RF

D$

I$

RF

C
O

R
E

 
O

F
F

L
O

A
D

D$

I$

C
O

R
E

 
O

F
F

L
O

A
D

SPAD BLOCK 
OFFLOAD

SPAD BLOCK 
OFFLOADSPAD BLOCK 

OFFLOAD

SINGLE-THREAD 
CORE

MULTI-THREAD 
CORE

M
T

C

M
T

C

M
T

C

M
T

C

M
T

C

M
T

C

S
T

C

S
T

C

M
T

C

M
T

C

M
T

C

M
T

C

M
T

C

M
T

C

S
T

C

S
T

C

M
T

C

M
T

C

M
T

C

M
T

C

M
T

C

M
T

C

S
T

C

S
T

C

M
T

C

M
T

C

M
T

C

M
T

C

Fig. 3. High-level diagram of the PIUMA architecture

the operation to compute the final load target (e.g., A+8*B[i]
for a 64-bit index). When the index and data values are located
on the same memory controller, the round-trip that would
normally send B[i] back to the core to calculate &A[B[i]] is
completely avoided. When the A and B arrays reside at different
memory controllers, the intermediate address is sent directly
from one memory controller to the next one, so we require
three instead of four network traversals.

Queue engines are responsible for maintaining queues al-
located in shared memory, alleviating the core from atomic
inserts and removals. They can be used for work stealing
algorithms and dynamically partitioning the workload. Collec-
tive engines implement efficient system-wide reductions and
barriers. Remote atomics perform atomic operations at the
memory controller or scratchpad where the data is located,
instead of burdening the pipeline with first locking the data,
moving the data to the core, updating it, writing back and
unlocking. They enable efficient and scalable synchronization,
which is indispensable for the high thread count in PIUMA.

The engines are directed by the PIUMA cores using specific
instructions. These instructions are non-blocking, enabling the
cores to perform other work while the operation is done in the
background. Custom polling and waiting instructions are used
to synchronize the threads and offloaded computations.

C. Memory Organization

Sparse and irregular accesses to a large data structure are
typical for graph analysis applications. Therefore, accesses
to remote memory should be done with minimal overhead.
PIUMA implements a hardware distributed global address
space (DGAS), which enables each core to uniformly access
memory across the full system with one address range. Besides
avoiding the overhead of setting up communication for remote
accesses, a DGAS also greatly simplifies programming, be-
cause there is no implementation difference between accessing
local and remote memory. Address translation tables (ATT)
contain programmable rules to translate application memory
addresses to physical locations, to arrange the address space

to the need of the application (e.g., address interleaved, block
partitioned, etc.).

The memory controllers (one per block) are redesigned
to support native 8-byte accesses, while supporting standard
cache line accesses as well. Fetching only the data that
is actually needed reduces memory bandwidth pressure and
utilizes the available bandwidth more efficiently.

D. Network

The network connecting the blocks is responsible for send-
ing memory requests to remote memory controllers. Similar
to the memory controller, it is optimized for small 8-byte
messages. Furthermore, due to the high fraction of remote
accesses, network bandwidth exceeds local DRAM bandwidth,
which is different from conventional architectures that assume
higher local traffic than remote traffic.

To obtain high bandwidth and low latency to remote blocks,
the network needs to have a high radix and a low diameter.
This is achieved with a HyperX topology [2], a hierarchical
network with all-to-all connections on each level. To ensure
power-efficient, high-bandwidth communication, optical links
are used that are tightly integrated into the PIUMA chip
package. The hierarchical topology and optical links enable
PIUMA to efficiently scale out to many nodes, maintaining
easy and fast remote access.

E. Comparison to other Graph Processors

The Cray Urika-GD graph processor [18] was one of the
first commercial graph-oriented big data processors. Similar
to PIUMA, it consisted of multiple many-threaded cores
with no large caches and a memory-coherent network. It did
not support fine-grained 8-byte accesses, wasting bandwidth
on loading full cache lines. Furthermore, it had no offload
memory engines, such as the DMA, queue and remote atomics
in PIUMA, leading to more memory stalls in the pipelines.

The Emu architecture [9] is a recently proposed architecture
for big data analysis, including graph analysis workloads.
Similar to PIUMA and Urika-GD, it consists of many small
cores with many hardware threads per core to hide memory

4



latency. It also features 8-byte DRAM accesses and is com-
pletely cacheless. Unique is its low-overhead thread migration
scheme, which enables moving threads to a core near to the
memory controller that owns the required data instead of
moving the data to the current core. Moving threads to data is
beneficial if the overhead of moving the thread is compensated
by the amount of locally consumed data. Young et al. [33]
report that migrating a thread involves moving 200 bytes,
which means that at least 25 local 8-byte accesses are needed
to compensate for the thread migration. Therefore, optimizing
data locality is crucial for obtaining good performance on
Emu [33], which is often hard to obtain for graph analysis
applications. In contrast, PIUMA does not rely on any locality.
Instead, it uses the offload engines to perform complex system-
wide memory operations in parallel, and only moves the data
that is eventually needed to the core that requests it. For
example, a DMA gather will not move the memory stored
indices or addresses of the data elements to gather to the
requesting core, only the requested elements from the data
array are moved.

Song et al. [30] propose a graph processor based on
sparse matrix algebra, building on the observation that many
graph applications can be represented as operations on sparse
matrices. Their architecture has overlaps with PIUMA, such
as the absence of caches, and fine-grained communication
and memory accesses. Graphicionado [14] is a graph analysis
accelerator, implementing a vertex-centric compute paradigm.
While these accelerators are likely more energy efficient
for analyzing small graphs, PIUMA’s goal is to provide
a flexible instruction set architecture, optimized for typical
graph analysis operations, and not to be limited to algorithms
that use sparse matrix algebra or vertex-centric operations.
Furthermore, none of these proposals scale out to multi-TB
graphs with trillions of vertices.

IV. SOFTWARE STACK

The PIUMA software stack includes all the tools neces-
sary for developers to write, compile, execute, and debug
codes. Unlike most accelerators, the PIUMA hardware and
its programming stack do not impose upon the programmer a
restricted parallel programming model, derived from hardware
limitations. Instead, the software stack offers flexibility in
leveraging host and accelerator resources, and takes a layered
programming abstraction approach. Each abstraction layer of-
fers a trade-off between programmer control and productivity,
catering to a range of developer audiences.

Standalone x86 C/C++ workloads are usually straightfor-
ward to port to the PIUMA software stack, often simplifying
the code in the process by removing the need for complex
locality-improving datastructures.

The following sections highlight the PIUMA software devel-
opment kit and three programming interfaces to target PIUMA:
a C-based single program, multiple data (SPMD) programming
model, a PIUMA implementation of OpenMP, and plugins for
Anaconda’s Metagraph framework in Python.

Fig. 4. High-level diagram of the PIUMA software stack

A. PIUMA Software Development Kit

The PIUMA Software Development Kit (SDK) provides
developers with a fully featured software stack composed of a
set of familiar C and C++ programming interfaces, toolchain,
runtime, driver, supporting libraries, and debugger. Figure 4
shows the general organization of the software stack, spanning
host and accelerator.

The SDK tools and libraries make extensive use of PIUMA
hardware-backed features such as atomics, queues, collectives,
and DMAs. Additionally, some of the hardware features are
automatically leveraged by the toolchain. For example, code
can be compiled to automatically make use of PIUMA’s
indirect-load [25] and bitwise instructions. Developers can
also directly use PIUMA-specific compiler builtins to access
custom RISC ISA instructions.

Since the PIUMA accelerator is deployed alongside a host,
developers decide whether to program PIUMA in standalone
or hybrid mode. In standalone mode, the full program is com-
piled to run natively on PIUMA. The LLVM-based PIUMA
toolchain contains the expected suite of tools: a compiler,
binary utilities (assembler, linker, ELF tools, etc.), and support
libraries (libc, libcxx, libunwind, etc.) tailored for PIUMA.

PIUMA-native binaries can be launched as POSIX-style
processes through a convenience launcher tool on the x86
Host. This launcher relies on more general user-space libraries
(Host API) providing management, communication, and de-
bugging support on top of the PIUMA device driver. On the
accelerator’s side, the program is handed off to the PIUMA
runtime, which manages hardware resources and program ex-
ecutions, fulfilling the role of a light-weight operating system.

In hybrid mode, the main program runs on x86 and co-
ordinates the execution of tasks or kernels with the PIUMA
accelerator using the Host-API. The Host-API covers basic
functionalities such as dynamically allocating memory, exe-
cuting data transfers in and out, as well as scheduling parallel
functions for execution.

B. Programming Interfaces

Most programmers will want to use one of the supported
parallel programming interfaces: a single program, multiple
data (SPMD) programming model, OpenMP, or graph algo-
rithms plugins for Anaconda’s Metagraph.

The PIUMA SPMD programming model bridges the gap
between system-level programming and application-level pro-
gramming, implementing enough of a runtime and OS-like
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functionality to offer the user a familiar (shared-memory)
system view and parallel programming approach (bulk-
synchronous style). The PIUMA SPMD layer is a good target
for developers that require low overheads and tight control, as
it allows the underlying runtime to scale well to a large number
of threads. A PIUMA SPMD program is a standard C program:
the main() function is the entry point and is executed sequen-
tially. There, developers can use the provided SPMD API to
execute user-defined functions across the available hardware
threads. The SPMD programming layer API also provides
a thin library for: thread identification and system geometry
information to orchestrate parallel computations, scratchpad
and global memory allocations, point-to-point synchronization
through the use of atomics and hardware queues, and global
synchronization with hardware collectives.

The OpenMP layer provides developers with increased
productivity and a familiar programming environment. Some
of PIUMA’s hardware features find a natural fit in standard
OpenMP pragmas (atomics, reductions) while others require
the creation of new pragmas. For example, a pragma can be
applied to a specific section of code to instruct the PIUMA
compiler to accelerate code with indirect access instructions.

For domain scientists mostly interested in using off-the-
shelf graph algorithms, we have developed PIUMA plugins for
Anaconda’s Metagraph Python library. This approach enables
domain scientists to leverage PIUMA hardware from a familiar
Python programming environment such as Jupyter notebooks.
When invoking graph algorithms in the Metagraph framework,
developers can use annotations to request the use of a PIUMA
implementation. The Metagraph dispatcher then finds and
executes the corresponding PIUMA plugin, which takes care
of all the necessary steps to transparently offload data and
compute from the host to the accelerator.

V. SIMULATION INFRASTRUCTURE

Crucial for the pathfinding and development of PIUMA was
the hardware/software co-design process. This process requires
the involvement of multiple multi-disciplinary teams: archi-
tects, system software developers, workload analysis teams,
performance simulation and analysis teams, as well as FPGA
emulation teams. In parallel with the hardware design and
compiler development, we developed an architectural simula-
tor for PIUMA, simulating the timing of all instructions in
the pipelines, engines, memory and network, based on the
hardware specifications.

The functional part of the simulator was created by ex-
tending FSim [6] to handle the custom RISC ISA as well as
the functional emulation of the offload engines and network
collectives. For performance modeling, Sniper [5] was used
to model the PIUMA cores, memory subsystem and inter-
connection network. In addition to performance estimations
of running a workload on PIUMA, it provides an extensive
set of performance analysis reports, such as Cycle per in-
struction (CPI) stacks and detailed performance information
on each memory structure and each instruction. This enables
workload owners to quickly detect bottleneck causes, and to

use these insights to optimize the workload for PIUMA and
report hardware bottlenecks to the hardware design team. The
hardware team then responds with an updated design, feeding
a continuous cycle of gradual improvements to hardware and
software. We validated the resulting simulator against the
PIUMA FPGA emulation platform as well as against A0
silicon once that became available.

A. Functional Simulator (FSim)

FSim is a fast functional simulator developed by Intel [6]
for the Open Community Runtime project [22]. As part of
the PIUMA co-design, we massively overhauled the FSim
framework to enable quick software development, analysis
and RTL validation for data center scale systems. FSim
is a distributed full-system functional simulation framework
capable of simulating thousands of cores using a large cluster
of machines. FSim can simulate each core in the single to
double-digit millions of instructions per second (MIPS) range
of performance (depending on the workload’s compute-to-
communicate ratio) given a large enough compute cluster.
It can operate in standalone mode, where it runs pre-loaded
compiled binaries for the supported ISA based on an LLVM
toolchain. It can also operate in an offload mode, where it
can interface with other simulators such as QEMU [3] to
model a host-device system (where QEMU emulates an x86
host and FSim simulates PIUMA), Synopsys VCS [1] for
performing RTL design verification, etc. FSim captures an
extensive set of spatial statistics (instruction histogram, event
counters, communication patterns, etc.) in support of workload
characterization.

B. Performance Simulator (Sniper)

Sniper is a next generation parallel, high-speed and accurate
x86 simulator which can be easily extended to simulate
new architectures [5]. This multi-core simulator uses the Pin
dynamic instrumentation tool [20] as a functional front-end
and has performance models for several core types and cache
hierarchies. Sniper allows for fast and accurate simulation of
large (hundreds of cores) multiprocessors, and for trading off
simulation speed for accuracy to allow a range of flexible
simulation options when exploring different homogeneous
and heterogeneous multi-core architectures. Because Sniper is
a functional-first simulator (with timing feedback to enable
accurate multi-core simulation), it is relatively easy to retarget
to non-x86 instruction-set architectures. In fact, a RISC-V
based version has recently been made available publicly [21].

We built a timing simulator model for the PIUMA ar-
chitecture, using FSim as the functional frontend to handle
the custom RISC ISA as well as the functional emulation
of the offload engines and network collectives. The in-order
mode of Sniper’s instruction-window centric core model was
extended to model both the stall-on-use single-threaded (STC)
cores as well as the stall-on-miss multi-threaded (MTC) cores.
We also extended the memory model to handle scratchpads,
selective caching, and the HyperX topology of the network.
We validated the resulting simulator against the PIUMA FPGA
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Fig. 5. Simulated execution profile of Application Classification for RMAT-
18 on 8 PIUMA blocks

emulation platform as well as against A0 silicon once that
became available.

By building on an established timing simulator, all of its
performance analysis tools were easily made available for
PIUMA as well. In particular, CPI stacks [15] and instruction-
level statistics [17] were essential for application, compiler
and library developers to help them understand an unfamiliar
architecture with often surprising performance effects, and
for the architects to gain insight into, and solve, micro-
architectural bottlenecks. Figure 5 shows an example CPI
stack of the Application Classification workload, which clearly
illustrates the different application phases and how some
are compute versus memory bound. Together, these tools
allowed the PIUMA team to do extensive co-design of the
full hardware and software stack.

C. Multi-Node Simulation

In addition to simulating a single PIUMA chip (eight blocks
running a total of 528 threads), we wanted to validate our
analytical multi-chip scaling models against simulation results
as much as possible. Because our PIUMA simulator is built
from loosely coupled functional and timing components, it was
possible to run these on different host machines to increase
the maximum size of the machine we could model. Moreover,
FSim was already built as an MPI program so it is able to be
run in a distributed mode natively.

The functional simulator has to deal with the massive thread
count and memory requirements of a workload, therefore,
this part runs on multiple hosts using MPI communication.
Simulated compute and memory are distributed across multiple
hosts to maximize simulator performance. Each execution
thread in FSim sends a dynamic instruction stream over an
inter-process communication channel (TCP socket) to the
timing model (Sniper). The timing model itself has lower
memory requirements since it only needs to store timing-
relevant microachitectural state (which in case of PIUMA
is relatively limited because of small caches, absence of
speculation, etc.), yet requires fine-grained synchronization
between different threads (cores and memory communicate
with each other at nanosecond time scales). Therefore, the
timing model runs as one multi-threaded application on a

Fig. 6. MOESI-F coherency protocol state diagram

single host to avoid the large synchronization bottleneck that
would be incurred if the timing simulation was to be spread
across multiple machines. With this setup, we were able to
run simulations of architectures up to 256 PIUMA blocks (32
chips running 16,896 threads).

D. FPGA Emulation

We also made extensive use of FPGA emulation to ver-
ify the RTL design. The PIUMA FPGA platform has been
deployed in parallel to workloads, simulators and hardware
development efforts for both functional validation and perfor-
mance correlation. The FPGA model was always generated
from the latest RTL repository, contained all hardware hierar-
chies and included third party IP. For correctness verification,
we ran multiple tests from tiny codes to large workloads to
make sure the FPGA bitstreams are working and are in sync
with the concurrent developments of the RTL and simulators.
This allowed the RTL teams to fix over 50 critical bugs
before tape-out. With this co-design approach we evaluated
performance progression and regressions between software
and hardware.

VI. PIUMA PROTOTYPE IMPLEMENTATION

We designed and fabricated an A0 test chip that implements
the PIUMA architecture. This chip was powered on and
characterized in the lab, and was healthy enough (with some
software mitigations in place) to run actual workloads. We also
demonstrated optical connectivity between a pair of PIUMA
chips. Finally, a 16-chip PIUMA node was constructed to
allow validation of the inter-chip network and conduct scaling
experiments.

A. A0 hardware design

We designed and built a 27.6B-transistor, 316mm2 prototype
chip in 7nm FinFET CMOS [31]. The chip integrates eight
PIUMA blocks (running a total of 528 threads), 32MB of on-
die scratchpad memory, and all off-chip interfaces (memory,
network, and a PCIe link to the host system).

A MOESI-F protocol [27] maintains coherency across all
data caches on the die. The state diagram (see Figure 6) allows

7



Technology TSMC 7nm FinFET
Interconnect 15 metal layers
Die transistors 27.6B
Die area 316 mm2

Block transistors 1.2B
Block area 9.3 mm2

Signals 705
Package 3275-pin BGA

Fig. 7. Full-chip micrograph and characteristics

for migration of dirty cache lines between data caches and
ensures that the data will not be evicted from the coherent
domain until no sharers exist. A die-level shadow tag is used
to track the current state of all cache lines.

Memory transactions are distributed over eight narrow-
channel on-die DDR5 controllers that have been optimized
for 8-byte native accesses for efficient bandwidth utilization
on sparse graph data sets. Main memory is built from standard
DDR5 memory chips in a custom SODIMM form factor
that connects each memory chip directly to its own memory
controller using a dedicated command/address bus. Each of the
eight on-die memory controllers can be accessed in parallel at
an aggregate peak memory bandwidth of 35.2GB/s.

A 10-port virtual cut-through router used to create the on-die
network employs a credit-based flow control protocol. Router
ports are packet-switched, have 25-byte data links, and can
operate at 1 GHz. Optimized for graph analysis, packets sizes
are 1, 2, or 4 flow control units resulting in a maximum data
payload sizes of 8-byte, 16-byte, or 64-byte, respectively. No-
load router latency is 4 clock cycles, including link traversal.
The on-die network uses a 2-dimensional mesh to connect
routers. An XY dimension ordered routing algorithm is loosely
followed and individual router links offer 64 GB/s interconnect
bandwidth, enabling the on-die network to support 1 TB/s of
bisectional bandwidth.

Four x8 high speed I/O links are divided into 32 channels
for 1 TB/s per direction of off-die signaling. A PCIe Gen 4
x8 controller within each die delivers 16GB/s of additional
bandwidth and provides an endpoint device to a conventional
x86 host system.

TABLE I
PIUMA SYSTEM HIERARCHY

Block 66 hardware compute threads; 192KB instruction+data cache;
4MB scratchpad SRAM; uncore engines

Socket 8 blocks; 32 optical I/O ports at 32 GB/s/dir each; 32GB
custom DDR5-4400 DRAM; PCIe G4 x8

Node 16 sockets in an Open Compute Project (OCP) sled form
factor, 0.5 TB DRAM, 16 TB/s/dir optical bandwidth

TABLE II
CONFIGURATIONS AND BANDWIDTHS ACROSS PIUMA SYSTEM SIZES FOR

HYPERX TOPOLOGIES

Nodes HyperX Levels Configuration Ports/node pair Uni-directional
bisection b/w (TB/s)n0 n1 n2 m0 m1 m2

2 1 2 128 1
4 1 4 64 2
8 1 8 32 4
16 1 16 16 8
32 1 32 8 16
64 1 64 4 32

128 1 128 2 64
256 1 256 1 128
512 2 32 16 4 8 128

1,024 2 32 32 4 4 256
2,048 2 64 32 2 4 512
4,096 2 64 64 2 2 1,024
8,192 2 128 64 1 2 2,048
16,384 2 128 128 1 1 4,096
32,768 3 32 32 32 2 2 2 4,096
65,536 3 64 32 32 2 2 2 8,192

131,072 3 64 64 32 2 1 2 16,384

Figure 7 shows the layout of the chip. The most critical
resource was the edges of the chip (shoreline) required to fit
the memory controllers and off-chip network interfaces. Much
of the internal area is taken up by routing of the on- and off-die
networks while the cores and memories take up just 24%.

B. Inter-chip network

To address the need to scale from small to extremely
large (1-10 PB DRAM) machines, while being hypersensitive
to latency in scaling performance, PIUMA fused traditional
network switch logic into the compute logic to make a disag-
gregated switch fabric in a HyperX topology [2] that makes
a glueless connection system between all PIUMA sockets.
Utilizing the latest co-packaged optical (CPO) technology,
PIUMA converts the on-die mesh protocol directly to the
optical fabric and back to seamlessly glue together all PIUMA
chips in a system in a large virtual die [13]. All routing is
done by the global address associated to each resource in the
system—no protocol such as Ethernet or CXL is required.

All PIUMA socket-to-socket optical I/O (OIO) links utilize
co-packaged optical (CPO) silicon photonics chiplets to over-
come the limitations of electrical signaling, board design, and
routing complexity. These chiplets connect via the Advanced
Interface Bus (AIB) 1.0 protocol over Intel’s embedded multi-
die interconnect bridge (EMIB). A custom IP block encapsu-
lates the PIUMA mesh protocol over EMIB, AIB, and OIO
interfaces.

The PIUMA system fabric topology is differentiated by the
connectivity of the sockets. A node is a group of 16 sockets
with all-to-all OIO connectivity, providing 512GB of DRAM,
16 TB/s/dir over 512 OIO ports, and >8k hardware threads,
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Fig. 8. Block diagram of a single PIUMA socket with latency costs

see Table I. In this specific configuration, 15 OIO ports per
socket support intra-node connections with a single OIO link
(32 GB/s/dir) traversal at <50ns creating direct compute die
mesh-to-mesh traffic without intervening protocols or trans-
lations. As the system scales to the node level and beyond,
the remaining 17 OIO links per PIUMA socket enable a
HyperX topology (see Table II). This connectivity approach
allows PIUMA to scale to two million sockets per system
and maintains an increasing rate of interconnect bisection
bandwidth accordingly.

To provide an example of the worst-case one-way latency
within a node, assuming 16 sockets all-to-all connected, the
worst-case latency is determined by the longest on-die route.
For this example, the source socket routing block 0 to block 7’s
OIO port, and the destination socket routing block 0’s OIO
port to block 7 is the worst-case latency, as shown in Figure 8
by using the maximum (five) mesh hops per socket. A majority
of the worst-case latency is spent on the socket’s mesh network
at both the source and destination: 68ns in on-die routing.
The encoding latency for AIB is ∼72% of the OIO time in
the current unoptimized first prototype implementation. Early
analysis for optimized timings indicates that one-way latencies
can be best-case <17ns and worst-case <45ns.

C. A0 power-on

PIUMA A0 power-on was done in four phases. The first
phase was to validate the platform with the PIUMA A0 chip
installed. The second phase was to bring the chip out of
reset and verify clocking using built in monitor circuitry. The
third phase was focused on validating the functionality of
the different IP blocks. The fourth phase focused on running
functional test contents for the PIUMA chip. It took less than
six weeks to start a PIUMA functional part from the arrival
of the first silicon.

We have a healthy PIUMA A0 chip compared to other
chips of this scale on a brand new architecture and a grounds
up new design. Few hardware bugs have been uncovered,
although some required software workarounds with significant
performance impact.

Power consumption: When operating under typical con-
ditions, 0.8 V and 1 GHz, power consumption for a single

Fig. 9. Maximum frequency (Fmax) and power versus VCC, and measured
full-chip power breakdowns

Fig. 10. (a) PIUMA socket with 32 optical links; (b) two-socket debug setup;
(c) socket mezzanine with DRAM and optical fibers

PIUMA A0 die is measured to be 31 W at 40°C. Maxi-
mum frequencies versus supply voltage (VCC), as well as a
breakdown of power consumption by IP block, are plotted in
Figure 9.

Integration: The PIUMA prototype silicon was packaged
together with the EMIB bridges and optical transceivers, and
optical fibers were attached to connect multiple sockets, see
Figure 10. Measured silicon demonstrates a best-case latency
of <46ns per connection mesh-stop to mesh-stop through the
optical fabric. The largest hardware built was one PIUMA
node, see Figure 11 for a picture taken during the buildout.
The node contains one x86 Xeon host processor connected
via PCIe to 16 of PIUMA’s A0 chips. The PIUMA chips are
fully connected via optical fiber using the lowest level of the
HyperX topology and a bisectional bandwidth of 16 TB/s.

D. Software bring-up

The software stack was fully enabled in the last phase of
the A0 power-on, running complete workloads on the PIUMA
bring-up boards. Because of the close co-design process, the
software stack was able to be hit the ground running. The
period between tape-out and power-on was used to focus on
preparing the software stack for execution on the A0 platform.
This involved removing simulation tricks, such as magic
instructions, working around known errata and completing the
host-side development framework. This quick software bring-
up proved to be extremely valuable, as it enabled finding
hardware and software faults that arose because of rare and
complex interactions.

E. Learnings

While having a full performance simulation setup available
early in the design process was very valuable and allowed for
co-design of hardware and software, scheduling constraints
meant that the A0 prototype does not always match the
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Fig. 11. Partial buildout of the 16-chip PIUMA node

architecture as designed using simulation. For instance, to
make the tape-out deadline some architectural features and
performance optimizations could not be implemented in time,
while components provided by external vendors would be
late requiring us to fall back to a previous generation with
lower performance. This means that while the original PIUMA
design was very well balanced, the actual hardware has some
constraints that could have been designed around—had we
had perfect foresight of the program schedule and all of its
dependencies.

A certain class of hardware errors were found that only
occur under load, for instance, states triggered by buffer back-
pressure. These would typically only occur during complex
workload execution scenarios on the actual hardware platform.
We found that FPGA emulation or functional simulation
platforms would initially not produce these execution states,
mainly because of the relative speed difference between what
is inside and outside the simulation. For example, hardware
DDR memory or a Xeon host PCIe interface run at native
speeds, so an FPGA-emulated PIUMA core running at a
few tens of MHz is unable to saturate these. An improved
validation methodology could help catch these classes of errors
earlier.

The early software bring-up on the A0 platform did present
additional challenges. Enabling a bespoke software stack on
an A0 stepping of a novel hardware architecture creates
a combination of unknowns; neither the hardware nor any
software layers can be fully trusted. Errors arising during full-
stack workload runs can be difficult and time consuming to
reproduce and root cause. In such an environment, the software
stack benefits from having several intermediate layers that
can be sounded out incrementally. During the A0 software
bring-up, several new test suites were created with increasing
level of abstraction and complexity. This enabled us to test
incrementally, build trust in each layer and catch complex
errors in a simpler environment.

VII. PERFORMANCE ANALYSIS

During the execution of the DARPA HIVE program, we
built three testing environments (simulation, FPGA emulation

and A0 silicon) as discussed in Section V. We evaluated the
functional and performance characteristics of graph applica-
tions from the DARPA HIVE use-cases and sparse kernels that
are common in these applications. The applications and the
kernels were developed using the PIUMA SDK discussed in
Section IV. In this section, we provide a summary of achieved
results on PIUMA A0 silicon. For simulation results, we refer
to [10] which introduces the multi-node simulation model and
shows how PIUMA performance scales to thousands of nodes.
For consistency, we decided to focus this paper on hardware
measurements only and exclude early simulation results since
both the hardware design and some of the application codes
have changed—unfortunately, due to the project ending and
critical staff taking on other responsibilities, we could not
rerun either the simulations nor obtain additional hardware
measurements.

During the bring-up of the A0 silicon we used a lightweight
simplified runtime, with partial support of the PIUMA soft-
ware interface, to assess the system’s functionality and perfor-
mance. Using a simplified runtime proved useful to quickly
prototype workarounds for hardware issues that were being
discovered and fixed. We analyzed the remote and local access
latency, bandwidth to memory and scratchpad, and bandwidth
achievable using DMAs using appropriate microkernels (e.g.,
STREAM benchmark and pointer chasing). Eventually we
found that it was possible to port applications written for
the full PIUMA SDK to the simplified runtime with minor
changes, at the cost of not being able to use more advanced
hardware functionality. The following results were collected
using the simplified runtime.

We show the performance analysis of 11 DARPA workloads
(see Table III) run on A0 silicon. Due to hardware bugs in
the memory subsystem under load we had to disable caching
of modified data to ensure reliable operation—with caching
enabled, performance improved Louvain 2.45×, Bayesian In-
ference 1.16×, and Topic Modeling 3.87× over the numbers
presented below at the expense of only some runs completing
successfully. After disabling caches, we ran each workload
800 times and noticed no hardware exceptions. Figure 12(a)
shows the strong scaling of the 11 DARPA workloads on the
A0 silicon. The y axis shows the speedup obtained using 8 vs.
1 PIUMA blocks. The GeoMean of the speedup in this case
is 7.2×—a 90% scaling efficiency.

We also compared the performance of these 11 workloads
with that of a run on a single-socket 60-core Intel Xeon
Platinum 8490H Sapphire Rapids (SPR) [23] machine running
two threads per core at 2.5 GHz, with 115 MB of last-level
cache (LLC) capacity and 244 GB/s main memory (DDR5)
bandwidth. The inputs are large enough to ensure the data does
not fit in the LLC on SPR (PIUMA performance is insensitive
to graph size since—apart from code and local variables—
nothing is cached anyway). Performance was measured as
throughput, in number of operations per second using a metric
defined by each workload (e.g., edge traversals per second).
To make the comparison fair, we normalize the results by
available bandwidth (244 GB/s for SPR vs. 35 GB/s for
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TABLE III
DARPA WORKLOADS, THEIR CHARACTERISTICS, AND INPUTS USED TO RUN THE WORKLOADS

Workload Description Limiting Factor on Xeon SPR input PIUMA input

Random Walks Random walk in a RMAT graph Latency RMAT24 RMAT18
BFS Graph 500 (breadth first search) on RMAT graph Bandwidth RMAT24 RMAT18
SpMV Sparse matrix times dense vector on RMAT graph Bandwidth RMAT24 RMAT18
Sort Sorting int64 input Bandwidth 4.3 G 60 K
Hash Tables Hash table lookup Latency 3.6 G 1 M
SpGEMM Sparse matrix times sparse matrix on RMAT graph Bandwidth RMAT18 RMAT14
Louvain Louvain community detection algorithm Bandwidth RMAT24 Pokec
Graph Search Random walk with more involved computation to select the next neigbor to visit Latency RMAT24 RMAT18
Sinkhorn Word movers distance [32], sparse selection of dense dense matrix multiplication Bandwidth RMAT20 DBPEDIA-100M
Bayesian Inference Several kernels, Math functions, frequent barriers, Monte Carlo Mostly Bandwidth J1M J100K
Topic Modeling Latent Dirichlet Allocation, Expectation Maximization, fitting posterior probabilities Latency, limited parallelism D8M8 D8M8

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

R
an

do
m

W
al

ks
B
FS

Sp
M

V
So

rt
H

as
h

Sp
G

EM
M

Lo
uv

ai
n

G
ra

ph
Se

ar
ch

Si
nk

ho
rn

B
ay

es
ia

nI
nf

er
en

ce

To
pi

c 
M

od
el

in
g

S
p
e
e
d

u
p

 
 (

8
 v

s.
 1

 P
IU

M
A

 b
lo

ck
s)

0.0

1.0

2.0

3.0

4.0

R
an

do
m

W
al

ks
B
FS

Sp
M

V
So

rt
H

as
h

Sp
G

EM
M

Lo
uv

ai
n

G
ra

ph
Se

ar
ch

Si
nk

ho
rn

B
ay

es
ia

nI
nf

er
en

ce

To
pi

c 
M

od
el

in
g

S
p
e
e
d

u
p

 
 (

1
 P

IU
M

A
 d

ie
 v

s.
 S

P
R

)

Fig. 12. (a) Strong scaling of DARPA workloads on A0 silicon (b) Bandwidth-
normalized comparison between Intel Xeon and PIUMA

PIUMA). The power consumption has roughly the same ratio
(350 W for one socket of SPR vs. 37 W for PIUMA) so to a
first order, the energy efficiency of PIUMA relative to SPR is
similar to its relative performance.

These workloads were not optimized with specialized SPR
features (e.g., AMX, DSA, etc.), since most of them are either
latency-bound or bandwidth-bound. However, we used the
latest compilers and best-known compiler optimization flags to
compile the code on SPR. At the same time, PIUMA perfor-
mance was hampered by the fact that we had to disable caches.
Figure 12(b) shows the performance comparison between SPR
and the A0 silicon. For the bandwidth-bound workloads, we
can see PIUMA is able to keep up with SPR. PIUMA’s worst
result is for Bayesian Inference, where the input data we
had was only slightly larger than the SPR LLC and thus,
did benefit from caching. For the latency bound and mixed
resource bound workloads, we see a significant speedup of
PIUMA over SPR, up to 4.0× for Topic Modeling. This occurs
even though SPR clocks at a 2.5× higher frequency, and
applications may benefit from some automatic vectorizations,
caching, and prefetching. Still, due to instruction dependencies
and a limited number of hardware threads, SPR is not able
to saturate its memory bandwidth for these workloads. This
shows PIUMA’s strenght of employing massive thread-level
parallelism to deal with latency-bound applications and hide
latency for random accesses better than a standard Xeon. In
summary, the performance we observed on the A0 silicon is
aligned with our expectations of an early silicon prototype.
Performance is competitive with the latest Intel Xeon server

processors, and should handily outperform it on a per-node
basis in both absolute performance and energy efficiency as-
suming we fixed the bugs in PIUMA A0’s memory subsystem.

VIII. CONCLUSIONS

PIUMA is a graph analysis oriented architecture developed
by Intel in response to the DARPA HIVE project. Based on the
observation that graph workloads are dominated by irregular
sparse accesses, it features many highly-threaded simple cores
to hide the latency of remote memory accesses. Combined
with small access granularity to memory and network, and
powerful offload engines, PIUMA outperforms current high-
end processors for typical graph workloads. Furthermore, it is
designed to scale out efficiently thanks to the high bandwidth
network and shared address space, increasing the performance
gap with current multi-node computers, which perform poorly
on distributed graph applications.

We built an A0 test chip, powered it on in the lab and were
able to run workloads on it. The effective hardware/software
co-design process of PIUMA guaranteed highly optimized
hardware, and ensured that system and development tools were
available by the time we had silicon in the lab. Despite finding
hardware bugs that requiring software workarounds, we were
able to validate our performance and energy efficiency targets
that make PIUMA a highly capable graph analytics platform.
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