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ABSTRACT
Power management through dynamic core, cache and fre-
quency adaptation is becoming a necessity in today’s power-
constrained many-core environments. Unfortunately, as core
count grows, the complexity of both the adaptation hard-
ware and the power management algorithms increases. In
this paper, we propose a two-tier hierarchical power manage-
ment methodology to exploit per-tile voltage regulators and
clustered last-level caches. In addition, we include a novel
thread migration layer that (i) analyzes threads running on
the tiled many-core processor for shared resource sensitivity
in tandem with core, cache and frequency adaptation, and
(ii) co-schedules threads per tile with compatible behavior.

1. INTRODUCTION
Industry-wide adoption of chip multiprocessors (CMPs) is

driven by the need to maintain the performance trend in a
power-efficient way on par with Moore’s law [17]. With con-
tinued emphasis on technology scaling for increased circuit
densities, controlling chip power consumption has become
a first-order design constraint. Due to the end of Dennard
scaling [6] (slowed supply voltage scaling), we may become so
power-constrained that we are no longer able to power on all
transistors at the same time — dark silicon [8]. Runtime fac-
tors such as thermal emergencies [2] and power capping [10]
further constrain the available chip power. Owing to all the
above factors, power budgeting on many-core systems has
received considerable attention recently.

Most existing power management schemes use a central-
ized approach to regulate power dissipation based on power
monitoring and performance characteristics. Unfortunately,
the complexity and overhead of centralized power manage-
ment increases in quadratic/logarithmic fashion with core
count [7]. We therefore propose a two-tier hierarchical
power manager for tile-based many-core architectures; each
tile consists of a small number of cores and a shared L2
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cache within a single voltage-frequency domain. The two-
tier power manager first distributes power across tiles, and
then across cores within a tile. The architecture also pro-
vides support for core, cache and frequency adaptations to
avoid core gating at moderate to stringent power budgets.

Tiled many-core processors pose an interesting challenge
when it comes to hardware adaptation and scheduling.
Changing frequency and reconfiguring the shared L2 cache
affects all threads running in the tile. It therefore be-
comes important to migrate threads, such that threads with
compatible behavior are co-scheduled onto the same tile.
Since the execution behavior varies over time, periodic re-
evaluation and dynamic thread migration is also required.
We therefore classify threads based on their sensitivity to
both cache and frequency dynamically at runtime. We pro-
pose DVFS and Cache-aware Thread Migration (DCTM ): a
scheduler running on top of the two-tier hierarchical power
manager to ensure an optimal co-schedule for all threads
running on the power-constrained tiled many-core processor
while accounting for the effects of hardware adaptation.

2. MOTIVATION

2.1 Limitations of a Centralized Approach
In the context of power management in many-core proces-

sors, prior works [5, 12, 16, 18] have relied on a central en-
tity to manage power using one or more micro-architectural
techniques to trade off performance at high to moderate
power budgets. At stringent power budgets, neither of power
management schemes like DVFS nor core adaptation nor
cache resizing in isolation can provide a viable solution. As
a result, prior work [13, 14] had to resort to core gating
at stringent power envelops. The Performance Monitoring
Unit (PMU) keeps track of a core’s activity and controls
the micro-architectural configuration in response to requests
made by the Global Power Manager (GPM); the GPM com-
bines information from all cores and performs the global
power/performance optimization, see Centralized Approach
in Figure 1. But as core count continues to grow, the cen-
tralized approach becomes inviable (quadratic/logarithmic
complexity). In future many-core processors [1], a central-
ized GPM (even with logarithmic complexity) would be a se-
vere bottleneck. Because a centralized power manager does
not scale favorably towards large many-core processors and
fine-grain hardware adaptations, we propose two-tier hier-
archical power management (see Section 3) — first contri-
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Figure 1: Generic tiled many-core architecture with
centralized (top) versus hierarchical (bottom) power
management.

bution in this paper.

2.2 Cache-aware Thread Migration (Cruise)
When threads are co-scheduled on a multi-core processor

with a shared last-level cache (LLC), conflicting thread be-
havior can lead to suboptimal performance. Jaleel et al. [11]
propose Cruise: a hardware/software co-designed scheduling
methodology that uses knowledge of the underlying LLC re-
placement policy and application cache utility information
to determine how best to co-schedule applications in multi-
core systems with a shared LLC. Cruise monitors the num-
ber of LLC accesses per kilo instructions (APKI) and miss
rate (MR) for each application. Application classification
based on these metrics along with co-scheduling rules then
optimize overall system performance1. Cruise assumes that
all cores run at the same clock frequency. In other words, it
does not take DVFS sensitivity into account. This is a limi-
tation as LLCT and (especially) LLCFR applications, being
mixed compute- and memory-bound, may be quite sensi-
tive to frequency. We overcome this limitation by proposing
DCTM (see Section 4) — second contribution in this paper.

3. TWO-TIER HIERARCHICAL POWER
MANAGEMENT

The Centralized approach (Section 2.1) is inappropriate
for large-scale many-core processors, for two reasons. First,
it assumes per-core DVFS adaptation which is infeasible for
many-core processors as it requires per-core on-chip voltage,
which would incur fairly high chip area overhead [3]. Sec-
ond, the runtime complexity and overhead of a Centralized
approach increases considerably with core count.

To address these two limitations, we group cores per tile
and add an intermediate layer for power management, the
Tile Power Manager (TPM); see Two-Tier Hierarchy Ap-
proach in Figure 1. Chip power is managed via a hier-
archical power manager with a GPM steering the per-tile
TPMs. This organization reduces the runtime overhead of
the power manager dramatically. We observe that the over-
head increases substantially with core count. However, when
considering a tiled architecture and a two-tier hierarchical
power manager, we are able to significantly reduce the run-
time overhead of the power manager. In other words, by
keeping the GPM relatively simple and passing more func-
tionality to the TPMs, we avoid GPM to be a bottleneck at
high core count. Moreover, as all TPMs can work in paral-
lel, the complexity of the two-tier approach equals O(G) +
O(TclogTc), with Tc denoting the number of physical cores
per tile, and G the complexity of the GPM (constant in our
case).

1
Due to lack of space, we are unable to describe the application clas-

sification — CCF, LLCT and LLCFR/LLCF — and scheduling rules.
Please refer to the Cruise paper [11].

4. DVFS AND CACHE-AWARE THREAD
MIGRATION

A tiled many-core processor architecture with hierarchical
power management, as we just established in the previous
section, poses a new challenge as threads running on the
same tile share the L2 cache (LLC) and a common clock
frequency. In other words, and in contrast to Cruise, threads
running on the same tile not only share the LLC but also
share a common clock frequency. Therefore, it is important
to take both cache size sensitivity and frequency sensitivity
into account when mapping threads to tiles, i.e., the thread
migration layer needs to be aware of the sensitivity to both
DVFS and LLC size.

4.1 DVFS and LLC Sensitivity Analysis
To understand an application’s sensitivity to clock fre-

quency and LLC size, we set up the following off-line analy-
sis. We run simulations with 55 SPEC CPU2006 applica-
tion traces for 750 million instructions to observe the perfor-
mance sensitivity with respect to both LLC and frequency
settings. Figure 2 plots application performance sensitiv-
ity to frequency changes, expressed as the ratio between its
performance reduction and the reduction in frequency that
was applied. Applications are clustered by their LLC-aware
classification type (following Cruise [11]), and plotted in as-
cending order of sensitivity within each cluster. We cate-
gorize applications into the following DVFS-aware classes,
according to their performance sensitivity to DVFS:

• High Sensitivity (HS, > 66%): These applications are
highly sensitive to DVFS. The performance of these
applications is severely affected when migrated to a
tile running at low frequency, whereas performance
improves significantly if they can be migrated to a
higher-frequency tile. These applications are generally
compute-bound.

• Moderate Sensitivity (MS, 35–66%): These applica-
tions are moderately affected by DVFS. Applications
with a mix of compute-bound and memory-bound op-
erations are grouped in this category.

• Low Sensitivity (LS, < 35%): These applications de-
grade slightly when running at a low DVFS setting. It
is therefore beneficial to reduce frequency as much as
possible to save power. These applications are typi-
cally memory-bound.

When co-scheduling applications, the application categoriza-
tion based on LLC usage (see Cruise, Section 2.2) needs to
work in tandem with the DVFS sensitivity categorization
as just described. Hence, combining the LLC and DVFS
classifications, we have 3×3 categories of applications. Not
all combinations occur in practice though, as there is some
correlation between LLC and DVFS behavior; for instance,
CCF applications are almost always compute-bound and
hence have high DVFS sensitivity (HS). Figure 2 identifies
five categories: LLCT with LS and MS, LLCFR with MS
and HS, and CCF with HS.

4.2 DCTM Scheduling Rules
DVFS and Cache-aware Thread Migration (DCTM) lever-

ages these classifications to steer scheduling of threads to
tiles. The power manager will then assign the appropriate
adaptation per tile (for frequency and LLC size) and per
core (for core configuration). Intuitively speaking, DCTM
maps threads with the same classification onto the same tile.
Tiles with only LS threads will naturally be configured to
run at low frequency (saving power without sacrificing per-
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Figure 2: Application classification based on LLC
and DVFS sensitivity.

formance much), while tiles with only HS threads preferably
use a larger fraction of the total power budget to run at a
higher frequency and boost overall system performance. In
contrast, mixing LS, MS and HS threads on a single tile leads
to a suboptimal situation: either the tile is set to run at low
frequency, penalizing performance for the HS threads; or it
runs at high frequency which accommodates the HS threads,
but wastes power as it does not improve performance of the
LS threads. We create the following scheduling rules for
DCTM:

1. Co-schedule LLCT-LS applications on the same tile.
2. Co-schedule LLCT-MS applications on the same tile.
3. Co-schedule CCF-HS applications on tiles with LLCT-

MS applications to account for performance impact
due to shared LLC contention.

4. Co-schedule the remaining LLCFR-MS and LLCFR-
HS applications on the remaining tiles. If possible, co-
schedule them with LLCFR-HS applications that are
in the CCF-HS category to avoid performance degra-
dation due to shared LLC contention.

4.3 Putting It All Together
The DCTM power manager runs at two time scales. The

coarse-grain timescale, at 20 ms in our setup, groups threads
to tiles using the DCTM scheduling rules as just described in
the previous section. One solution to classifying workloads
in terms of LLC and DVFS sensitivity may be to employ
sampling, i.e., by running a workload’s performance at dif-
ferent frequency settings and different LLC sizes for short
durations of time. The limitation is that it incurs signif-
icant overhead as we would need to monitor performance
for various combinations of LLC size and frequency setting.
Instead, we leverage the simple, yet effective analytical per-
formance models proposed in [12] to estimate the perfor-
mance impact of clock frequency and LLC size on overall
performance.

The fine-grain timescale, at 1 ms in our setup, distributes
power across tiles: the GPM distributes power across all
tiles, and within each tile, the TPM regulates the hardware
adaptations as per the allocated power. Our processor archi-
tecture allows three adaptations: core adaptation, LLC re-
sizing, and per-tile DVFS, as we will describe in more detail
in Section 5. The first fine-grained time slice (1 ms) assumes
no power capping, and runs each thread at the maximum
configuration (largest core configuration, largest LLC size,
highest frequency). We compute the performance of each
tile as a ratio of total system performance, i.e., per-tile MIPS
divided by chip-wide MIPS. The GPM distributes the total
available power budget across all tiles for the next time slice
per the MIPS ratios of the tiles in the previous slice, i.e., a
high-performance tile is given a larger fraction of the avail-
able power budget. The intuition is that compute-intensive
tiles need a larger fraction of the total power, boosting over-
all system performance. Once total power is distributed

Parameter Values

Core adaptations
ROB size 16 32 64 128
Reservation station entries 4 8 16 32
Load queue entries 6 12 24 48
Store queue entries 4 8 16 32

DVFS adaptations per-tile
Frequency (GHz) 0.8 1.0 1.2 —
Voltage (V) 0.7 0.75 0.8 —

Shared LLC adaptations per-tile
Cache ways 4 8 12 16
Capacity (KB) 512 1024 1536 2048

Table 1: Micro-architectural adaptations.

Component Parameters

Core configuration
Core type 4-way issue OOO, 128-entry ROB
Load/store queue 48 load entries, 32 store entries
L1-I cache 32 KB, 4-way, 3 cycle access time
L1-D cache 32 KB, 4-way, 3 cycle access time

Tile configuration
Tile size 4 cores
Core count 64, 128, 256
Tile count 16, 32, 64
L2 cache (per-tile) 2048 KB, 16-way, 10 cycle access time
L2 prefetcher stride-based, 8 independent streams
Coherence protocol directory-based MESI, distributed tags

Network on Chip mesh 16×1, 16×2, 16×4
32 GB/s/link

Main memory 8, 16, 32 controllers
80 ns latency, 128 GB/s total

Chip wide configuration
Frequency-Vdd 1.2 GHz @ 0.8 V
Technology 22 nm
TDP 100 W, 190 W, 350 W

Table 2: Tile-based many-core architecture.

across the tiles, the TPMs then decide on the optimal con-
figuration for the core, LLC and DVFS setting in each tile.
TPM steers adaptation using the performance/power mod-
els proposed in [12], with the goal of optimizing performance
within the available power budget.

5. EXPERIMENTAL SETUP

Performance simulator. We use the Sniper multi-core sim-
ulator [4], version 6.0, and added support for dynamically
changing core and cache parameters. The core adaptation
and DVFS transitions combined take 2 µs during which no
computations can be performed — a conservative approach.

Power consumption. McPAT version 1.0 is used to esti-
mate static and dynamic power consumption [15] for a 22 nm
technology. Power savings incurred by reconfiguration are
modeled by running McPAT with the modified target pa-
rameters (Table 1). Running McPAT along with the per-
formance simulation allows us to emulate the behavior of
hardware energy counters at simulated time slices of 1 ms.

Adaptive Micro-Architecture. To keep all the cores ac-
tive even at stringent power budgets, we incorporate core
micro-architectural adaptation, LLC adaptation and DVFS
adaptation simultaneously, thereby providing various oper-
ational points in our adaptive tiled many-core processor.
The adaptive core/tile configuration is expressed as a tuple
[core, ft, llct], denoting that the core is configured as core,
running at frequency ft and llct cache ways enabled for the
given tile t (see also Table 1).

Workloads. We run a 64-thread workload using SPEC
CPU2006 benchmarks; 29 programs in total, which along
with all reference inputs leads to 55 benchmarks with 9 ran-
dom. We replicate the workload by 2× and 4× for the 128-
core and 256-core setups, respectively. We run the simula-
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Figure 4: STP improve-
ment (percentage) for
DCTM and Cruise over
Hierarchical for the 256-
core setup.

tion for 200 ms to keep total simulation time within feasi-
ble limits. When a benchmark completes before this time,
it is restarted on the same core. We quantify weighted
speedup [19] or system throughput (STP) [9] which quan-
tifies the aggregate throughput achieved by all cores in the
system.

6. EVALUATION
We now evaluate DCTM on our power-constrained tiled

many-core architecture. Unless mentioned otherwise, results
are obtained using fine-grained hardware adaptation at 1 ms
intervals, while thread migration is performed at 20 ms in-
tervals. Each experiment fixes the available power budget
to a fraction of the chip’s nominal power consumption (see
TDP in Table 2). We quantify performance in terms of sys-
tem throughput (STP), which includes power management
overhead.

6.1 Hierarchical vs. Centralized Power Man-
agement

We first evaluate the scalability of two-tier hierarchical
power management versus a centralized approach. We con-
sider the following power management policies: (i) Central-
ized — centralized power management with per-core DVFS;
(ii) Hierarchical — our two-tier hierarchical power manager,
with random mapping, and per-tile DVFS; and (iii) DCTM
— our two-tier hierarchical power manager with DVFS and
LLC aware thread migration.

Figure 3 quantifies relative STP (normalized to the Cen-
tralized approach) for the SPEC CPU workload as a function
of core count at a 60% power budget. The Centralized ap-
proach is quite effective at 64 cores. The overhead of the
centralized power manager is limited, and the ability to ex-
ploit per-core DVFS yields a performance benefit over the
Hierarchical approach with per-tile DVFS. At larger core
counts however, the overhead of the centralized power man-
ager is not offset by the benefit from per-core DVFS, yielding
a performance benefit for the Hierarchical approach (by 7%
on average). The results also show that being able to mi-
grate threads such that compatible threads co-execute per
tile, as done using DCTM, yields a substantial performance
benefit over random thread assignment with Hierarchical.

6.2 Two-Tier Approach: Performance vs.
Power Budget

The application’s sensitivity to DVFS could provide bet-
ter performance than just considering LLC sensitivity. To
illustrate this, Figure 4 shows the STP improvement (as

percentage) of a 256-core setup at different power budgets
for Cruise and DCTM, relative to the Hierarchical perfor-
mance. Both Cruise and DCTM employ a two-tier hierar-
chical power manager. Figure 4 shows the STP improve-
ment (as a percentage) for the 256-core setup at different
power budgets for Cruise and DCTM, relative to Hierarchi-
cal. The bottomline is that DCTM outperforms Hierarchical
by 10.1% on average. DCTM outperforms DVFS-agnostic
Cruise by 6.7% on average. For average SPEC CPU, DCTM
shows an increasing trend at increasingly smaller power bud-
gets. The reason is that the workload includes a wide range
of applications with varying characteristics, which can be ef-
ficiently exploited using both DVFS and LLC sensitivities.

7. CONCLUSION
An integrated and scalable many-core power management

is clearly needed as we move towards increasingly tighter
power budgets. In this work, we leverage a two-tier hierar-
chical power manager due to its low overhead and high scal-
ability on a tiled many-core architecture with shared LLC
and per-tile DVFS at fine-grain time slices. We leverage
DVFS and cache-aware thread migration (DCTM) to en-
sure optimum per-tile co-scheduling of compatible threads
at runtime over the two-tier hierarchical power manager.
Based on our evaluations, we show that DCTM outperforms
Cruise [11] by 6.7% on average for the multi-program SPEC
CPU workload. Compared to a centralized power manager,
DCTM improves performance by 14.1% on average while
using 4× less on-chip voltage regulators.
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