
Sniper: Simulation-Based Instruction-Level Statistics
for Optimizing Software on Future Architectures

Wim Heirman Alexander Isaev

Intel Corporation

Ibrahim Hur

ABSTRACT
In this paper we address the problem of optimizing applica-
tions for future hardware platforms. By using simulation—
traditionally a tool for hardware architects—applications,
libraries and compilers can be optimized before hardware is
available, allowing new machines to start doing useful sci-
entific work more quickly. However, traditional processor
simulators are not very user-friendly and are, due to their
extreme level of detail, too slow to run applications with
large input sets or allow for interactive use. In contrast,
the Sniper many-core simulator uses higher abstraction level
models, trading off some accuracy for a much higher simu-
lation speed. By adding instrumentation into the simulator
that can annotate performance information at fine granular-
ity, down to individual instructions, it becomes a valuable
tool for software optimization on future architectures.

1. SHIFT-LEFT OF SOFTWARE
DEVELOPMENT

Performance projections of future systems are crucial for
both software developers and processor architects. Devel-
opers of applications, runtime libraries and compilers need
predictions for tuning their software before the actual sys-
tems are available, and architects need them for architecture
exploration and design optimization. Simulation is one of
the most commonly used methods for performance predic-
tion, and developing detailed simulators constitutes a major
part of processor design. Traditionally, simulators were only
used in the exploration and design phases of product devel-
opment. This means software development and optimization
have to wait until (prototype) hardware becomes available,
see Figure 1(a). This puts the software development effort
on the critical path towards bringing products to market
(from the point of view of the vendor), or delays the point
at which new machines can start running optimized science
codes (for the HPC user).

(a) Traditional flow

Exploration Design
Manufacture

& Test
Software $$

(b) Enabling early software development

Software

Exploration Design
Manufacture

& Test
$$

Figure 1: Shift-left of software development enables
quicker time-to-market.

Recently, much effort has been put into enabling software de-
velopers to start work early; at least before final hardware
is available, and ideally to make application optimization
part of the hardware exploration process—enabling a true
co-design of hardware and software where both can be op-
timized in combination (Figure 1, b). The lack of available
hardware requires early software development and optimiza-
tion to be done using some form of performance simulation.
Creating detailed, usually cycle-accurate simulators is part
of the hardware development and validation effort. How-
ever, most detailed simulators, while very accurate, are too
slow to simulate meaningful parts of applications—especially
in the context of many-core systems with large caches. In-
stead, these simulators typically run short traces of code
and require great care and often manual effort to both se-
lect these traces and provide adequate warmup of structures
with long-living state such as caches and branch predictors.

2. HIGH-LEVEL SIMULATION
By trading off some accuracy for the ability to run larger
parts of the application, higher abstraction level simulation
can play a valuable role in both software tuning and archi-
tecture exploration. Simulation speed can be increased by
not modeling some hardware components that are known
to be a bottleneck (e.g., instruction caches in many HPC
codes), or by moving away from structural models that try
to model exactly what each hardware component is doing
and instead using analytical models such as interval simu-
lation [4] or instruction-window centric models [2] for the
processor core, or queuing theory for on-chip networks.

Sniper [1] is an x86 many-core simulator that combines many
of these techniques, in addition to being built on a parallel
simulation framework which can make use of modern multi-
core hardware. These properties result in an acceptable

long-latency load

long-latency loadi i i

i i i i i i i

time

stall

d

dependent ins.

cpi.base cpi.basecpi.memory

d d d d d

Figure 2: Overlapped execution of cache misses and
independent instructions on out-of-order processors.

accuracy (around 20% average absolute error compared to
Nehalem hardware) but much improved simulation speed
(around 1 MIPS, which is around 1000× faster than typi-
cal industrial detailed simulators). This brings interactive
(overnight) runs of representative parts of an application
within reach, greatly speeding up the optimization cycle.

3. ACCURATE PERFORMANCE METRICS
On real hardware, many performance counters are available
that can give valuable insight into how codes are behaving.
Cache miss rates are especially valuable, as these often in-
dicate long pauses in the execution of instructions by the
processor leading to low performance (typically expressed
in instructions per clock cycle, IPC). In the simulator, the
behavior of structures such as caches is modeled in detail so
extracting statistics such as hit rates is trivial.

However, the use of miss rates as indicators for application
performance can be misleading, as indicated in Figure 2
which plots the execution timeline of a typical section of
code when running on modern hardware. Load operations
that miss in the processor caches usually take many tens
or even hundreds of clock cycles, whereas loads that hit in
cache or compute instructions take only a handful of cycles.
One could therefore assume that the length of time taken to
execute a section of code is proportional to the number of
instructions, increased by the number of cache misses mul-
tiplied by the typical latency of a cache miss. But this does
not take into account the fact that out-of-order processors
can continue executing independent instructions, including
potentially other long-latency loads, while waiting for the
original cache miss to be serviced.

To alleviate this problem, hardware architects often employ
the concept of the CPI stack [3]. This is a stacked bar graph
which breaks up an application’s execution time into a num-
ber of components, and is normalized to cycles per instruc-
tion (for a CPI stack) or to the total number of clock cycles
(for a cycle stack). Each component in the stack denotes
the penalty caused by a different hardware component, tak-
ing into account the fact that many miss events may over-
lap. In the case of the execution shown in Figure 2, all time
spent executing compute instructions is accounted for in the
base component (denoting the execution time assuming the
processor would be capable of reaching its maximum per-
formance all the time) while only the stall time, when no
instructions other than the cache misses are in progress,
is accounted for in the memory penalty component. This
way, each clock cycle of execution is assigned to that hard-
ware component that was on the critical path of execution.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7

P
e

rc
e

n
t

o
f

ti
m

e

Thread number

SPLASH-2 - FFT

dispatch_width
depend-int
depend-fp
branch
ifetch
mem-l1d
mem-l1_neighbor
mem-l2
mem-l2_neighbor
mem-l3
mem-off_socket
mem-dram
sync-crit_sect
sync-barrier

Figure 3: Normalized cycle stacks for each core ex-
ecuting the fft benchmark when running the small
input set on eight cores.

Solving a given stall that is visible on the cycle stack will
therefore be guaranteed to lead to increased performance. In
contrast, ignoring the fact that much of the cache miss la-
tency is overlapped would overestimate its effect, potentially
leading programmers to spend time to reduce cache misses
or other miss events that are not performance critical.

While it is only very recently becoming possible to measure
CPI stack components using hardware performance coun-
ters [6], they are natively supported in the Sniper simula-
tor [5]. Figure 3 plots an example CPI stack obtained from
running an FFT workload on a simulated dual-socket, eight-
core Nehalem machine (with one software thread pinned to
each core), and illustrates some interesting performance ef-
fects. Comparing the behavior of threads 0—3 with that of
threads 4—7, one can see that the first four threads spend
around 20% of their time in the sync-barrier component,
denoting they were stalled in a software barrier. This be-
havior may be surprising as all threads perform the same
amount of work. Looking at the other components, it be-
comes clear that the difference in execution speed can be
explained by non-uniform memory access (NUMA) behav-
ior as all cores operate on data that is available in the first
socket’s level-3 cache to which the first four cores have faster
access: cores 0—3 have some amount of mem-l3 and only lit-
tle mem-off socket time denoting mostly local L3 accesses,
while cores 4—7 have a significant mem-off socket penalty.

4. FINE-GRAINED STATISTICS
To increase insight into the behavior of different parts of the
code, we extended an internal version of Sniper to collect
hardware events and timing effects at a per-instruction gran-
ularity. As in the whole-program case, comparable statis-
tics can in some cases be obtained on existing systems us-
ing hardware performance counters, but these suffer from a
number of drawbacks: many hardware counters have inac-
curacies such as double-counting under certain conditions,
skidding (meaning that events are not always associated
with the correct instruction), sampling errors (instruction
pointers are typically only sampled when a counter over-
flows), or a lack of insight into how hardware events con-
tribute to execution time. In contrast, our instruction-level
statistics are based on the concept of cycle stacks and can
assign an execution time cost to each individual instruction.
Event counts are added as well to aid in understanding what
hardware component causes the time penalty.

eip instruction cycles ops mask dram

--

4050b vpcmpd k2{k1}, zmm5, zmm4, 0x2 1.03%

40510 vmovupd zmm8, zmmword ptr [r11+r10*1] 3.51%

40517 vaddpd zmm7, zmmword ptr [r11+r14*1] 7.24% 8.0 6.93

4051e vfmadd231pd zmm8{k2}, zmm7, zmm6 1.84% 12.6 21%

40524 vmovupd zmmword ptr [r11+r10*1]{k2}, zmm8 1.03%

Figure 4: Per-instruction statistics.

Figure 4 provides an example for a snippet of AVX-512 code.
The third instruction (vaddpd) goes out to DRAM (it per-
forms 6.93 DRAM accesses per 1,000 executions) and hence
has a high performance impact (it is responsible for 7.24%
of total execution time). For HPC workloads it is often im-
portant to distinguish instructions that contribute to use-
ful work (floating point operations) from those that man-
age data and control flow (loads and stores, address and
loop index calculations, comparisons and branches, etc.).
To this end the ops column plots the number of FP op-
erations executed by each instruction, taking into account
masked elements: the fourth instruction (vfmadd231pd) is a
fused multiply-add which performs two operations on each
of eight vector elements, but on average 21% of the elements
are masked off leading to a useful operation count for this
instruction of 12.6 double-precision operations on average.

5. DATA-CENTRIC STATISTICS
Large data-parallel workloads are often limited by cache ca-
pacity and memory bandwidth. While gaining insight into
which instructions cause cache misses can help in tracking
down those data structures that are responsible for poor
cache use, often it can be more insightful to be able to look
at individual data structures directly. To this end, Sniper
can collect cache statistics on a per data structure basis.
In a simulator, implementing such functionality is relatively
straightforward: application calls to malloc and other mem-
ory allocation library functions are intercepted, and the ad-
dress ranges for each data type (determined by the call stack
leading up to the malloc call) are recorded. Each memory
access made by the core can then be tagged with its alloca-
tion site and cache statistics are accumulated per site.

An example can be seen in Figure 5. Two allocation sites
are detected in the fft benchmark, corresponding to the
trans and x variables in the source code. Whereas trans
has good cache behavior and can be serviced mostly out of
the L1 cache, x experiences many cache misses—and could
be a candidate for moving into high-bandwidth memory, or
algorithmic optimizations such as blocking.

Site #1: Location: main fft.c:251 { trans = malloc(...); }

Hit-where: Loads : 1433601 (14.3%)

L1 : 1384287 (96.6%)

L2 : 43560 (3.0%)

dram : 5754 (0.4%)

Total allocated: 2.0MB (2.0MB average)

Site #2: Location: main fft.c:250 { x = malloc(...); }

Hit-where: Loads : 1433601 (14.3%)

L1 : 1026277 (71.6%)

L2 : 326618 (22.8%)

dram : 80706 (5.6%)

Total allocated: 2.0MB (2.0MB average)

Figure 5: Per-array statistics for fft.

6. REFERENCES
[1] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper:

Exploring the level of abstraction for scalable and
accurate parallel multi-core simulations. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC),
pages 52:1–52:12, Nov. 2011.

[2] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and
L. Eeckhout. An evaluation of high-level mechanistic
core models. ACM Transactions on Architecture and
Code Optimization (TACO), 11(3):28:1–28:25, Aug.
2014.

[3] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. Smith.
A top-down approach to architecting CPI component
performance counters. IEEE Micro, 27(1):84–93, 2007.

[4] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval
simulation: Raising the level of abstraction in
architectural simulation. In Proceedings of the IEEE
International Symposium on High-Performance
Computer Architecture (HPCA), pages 307–318, Feb.
2010.

[5] W. Heirman, T. E. Carlson, S. Che, K. Skadron, and
L. Eeckhout. Using cycle stacks to understand scaling
bottlenecks in multi-threaded workloads. In Proceedings
of the IEEE International Symposium on Workload
Characterization (IISWC), pages 38–49, Nov. 2011.

[6] A. Yasin. A top-down method for performance analysis
and counters architecture. In Proceedings of the IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 35–44, Mar.
2014.

