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Abstract—CPI stacks are an intuitive way to visualize proces-
sor core performance bottlenecks. However, they often do not
provide a full view on all bottlenecks, because stall events can
occur concurrently (e.g., an instruction cache miss and a data
cache miss). To not double-count penalties, typically one of the
events is selected, which means information about the non-chosen
stall events is lost. Furthermore, we show that there is no single
correct CPI stack: stall penalties can be hidden, can overlap or
can cause second-order effects, making total CPI more complex
than just a sum of components.

Instead of showing a single CPI stack, we propose to measure
multiple CPI stacks during program execution: a CPI stack at
each stage of the processor pipeline. This representation reveals
all performance bottlenecks and provides a more complete view
on the performance of an application. Additionally, we propose
FLOPS stacks, targeted at HPC performance analysis. FLOPS
stacks are a variant of CPI stacks at the issue stage, but
instead of considering all instructions, they focus at floating point
performance specifically, which is the common definition of useful
work in the HPC domain.

Multi-stage CPI stacks and FLOPS stacks are easy to collect.
We show that they can be included in a simulator with negligible
slowdown, and we provide recommendations how to include them
in a hardware core.

I. INTRODUCTION

Analyzing the performance of an application on current

high-performance processors is a challenging task. Out-of-

order execution, multiple cache levels, concurrent memory

accesses and superscalar pipelines are only a few of the

performance-enhancing techniques that introduce large com-

plexity and that increase the inability of easily detecting the

main performance bottlenecks. Cycles per instruction (CPI)

stacks [2] have been proposed as an intuitive way of visu-

alizing performance bottlenecks. CPI stacks divide total CPI

(the reciprocal of IPC) into components that represent the

impact of a certain event on overall performance, see Figure 1.

The bottom component, called the base component, represents

the lowest possible CPI (CPI is a lower-is-better metric),

which is one over the pipeline width (the maximum number

of instructions that can be executed per cycle). The other

components show the impact of multiple stall events (e.g.,

cache and branch predictor misses) that make performance

lower than the ideal case. The components are calculated such

that each component is proportional to its impact, and the sum

of all components equals total CPI. Hence its representation

as a stacked bar, and its name: CPI stacks.

Due to the complexity of the processor, assigning stall

cycles to a certain component is not always unambiguous.
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Fig. 1. Example CPI stacks at dispatch [8], issue and commit [14].

For example, if the frontend of the core has an instruction

cache (Icache) miss, while the backend is seeing a data cache

(Dcache) miss on another instruction, which event should

be blamed? One should avoid double-counting cycles, which

would lead to a stack that is higher than the total CPI. A

rigorous approach is to account penalties at one particular

stage in the processor pipeline and to determine the root cause

of why this stage is not able to exploit its full width at the

current cycle.

Eyerman et al. [8] propose to perform the accounting at

the dispatch stage, which is the stage where instructions

leave the frontend (consisting of fetch, branch prediction and

decode) and are assigned to a reorder buffer (ROB) entry

and a reservation station (RS) entry. If no or fewer than the

dispatch width instructions can dispatch in a cycle, a stall

cycle is detected, and the cause of the stall is determined.

For example, if the frontend cannot deliver new instructions

because of an Icache or branch predictor (bpred) miss, the stall

cycle is assigned to the respective component. It also occurs

that the ROB or RS are full, blocking dispatch despite the

availability of new instructions. In that case, the instruction

at the head of the ROB is inspected, because its inability to

be committed from the ROB caused the ROB to fill up. If

that instruction is waiting on a Dcache miss to complete, the

stall cycle is assigned to the Dcache miss component. If not,

it could be a long-latency instruction (e.g., a division) or an

instruction whose execution is delayed due to inter-instruction

dependences.

The IBM POWER CPI accounting approach [14], on the

other hand, performs the accounting at the commit stage. A

stall cycle is defined as a cycle in which fewer instructions

than the commit width are committed. The causes here could

179

2018 IEEE International Symposium on Performance Analysis of Systems and Software

0-7695-6375-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ISPASS.2018.00031



TABLE I
CPI COMPONENTS BY IDEALIZING STRUCTURES.

App & core Config CPI Diff. CPI
mcf on KNL All real 1.41

1-cycle ALU 1.38 0.02
perfect Dcache 1.11 0.30
perf. Dcache & 1-cyc. ALU 1.05 0.36

mcf on BDW All real 0.72
perfect bpred 0.39 0.33
perfect Dcache 0.43 0.29
perfect bpred & Dcache 0.25 0.47

be an empty ROB, caused by a frontend miss (Icache or

bpred miss), or that the instruction at the head of the ROB

is not yet finished, caused by a Dcache miss or a long-latency

instruction.

Although both approaches look very similar, they have

subtle differences, which could result in different CPI stacks,

see Figure 1. For example, on an Icache miss, the dispatch

stage accounting mechanism accounts the full miss latency to

the Icache miss component (because the frontend is stalled for

that period of time), while the commit stage mechanism starts

accounting only after the ROB is completely empty, which

could be several cycles later, or even never, if the ROB was

relatively full and the miss latency is low (e.g., upon an L2

cache hit). On the other hand, a Dcache miss is accounted

as soon as the instruction that causes it is at the head of the

ROB for the commit mechanism. For the dispatch mechanism,

accounting starts when the ROB is completely full, which is

several cycles later, or even never if the ROB contained few

instructions and the miss has low latency.

The question that arises, and that has been subject of debate,

is “which one is the correct one?” We claim that both stacks

are in fact correct. The ambiguity is a result of the complexity

and parallelism in the core organization, meaning that there is

no single correct CPI stack representation. To show this, we

performed the following experiment. We simulate the execu-

tion of an application on a core with all stall events modeled

and record the CPI. Next, we make one component (e.g.,

Icache, bpred or Dcache) perfect (always hit) and simulate

again. Intuitively, the CPI component of that event equals the

difference in CPI between both simulations.

The results for two such experiments are shown in Table I

(see Section IV for our setup). The first example, mcf simu-

lated on an Intel Knight’s Landing (KNL) core configuration

sees a 0.02 CPI reduction if all ALU instructions take 1

cycle. Making the Dcache perfect (but keeping realistic ALU

latencies) reduces the CPI by 0.30. However, when assuming a

perfect Dcache and single-cycle ALU, CPI is reduced by 0.36,

which is larger than the sum of the individual improvements.

Put differently, if the Dcache is perfect, the ALU component

equals 1.11− 1.05 = 0.06, while it is only 0.02 initially. The

ALU stalls are initially mostly hidden by the Dcache misses,

but become apparent when the Dcache misses are removed.

For mcf on an Intel Broadwell (BDW) core configuration,

CPI decreases by 0.33 with a perfect branch predictor and by

0.29 with a perfect Dcache. Perfect branch prediction and a

perfect Dcache reduces CPI by 0.47, which is now less than

the sum of the individual components. These miss penalties

overlap: their combined improvement is smaller than the sum

of their individual components. It is impossible to represent

both hidden and overlapping stalls in a stacked representation

that adds to the total CPI.
We can conclude that a single additive CPI stack is a too

simple representation for performance bottlenecks. Instead, we

propose to measure multiple CPI stacks at different stages

in the pipeline. This reveals all bottlenecks at all stages.

The different CPI stacks show the range of the possible CPI

reduction if a certain stall event is eliminated. For example, the

bpred component for mcf on a BDW core (second example

in Table I) is 0.39 for the dispatch CPI stack and 0.11 for

the commit CPI stack. The actual CPI reduction of a perfect

branch predictor is 0.33, which is in between both numbers.
Note that multi-stage CPI stacks cannot exactly predict

the performance gain by removing a component. An exact

prediction requires extensive critical path analysis [9], which

considerably slows down simulation or requires complex

hardware. Multi-stage CPI stacks give more information than

single CPI stacks by providing an upper and lower bound,

while at the same time being relatively easy to measure.
While CPI, and its counterparts IPC and MIPS (million

instructions per second), are commonly used performance

metrics for general purpose applications, the performance of

(mainly scientific) high-performance compute (HPC) applica-

tions is often expressed in floating point operations per second

(FLOPS). Floating point operations are considered “useful”

operations in scientific applications, as opposed to peripheral

instructions such as memory operations and branches. Because

not all instructions in an HPC application are floating point

operations, FLOPS cannot be directly calculated from IPC

or MIPS. Therefore, we propose an alternative stack repre-

sentation, targeted at the HPC domain, called FLOPS stacks.

FLOPS stacks are in essence CPI stacks at the issue stage

(where instructions start executing on the functional units),

limited to floating point functional units. Optimal FLOPS is

reached when all floating point compute capacity is in use.

Stall cycles are defined as cycles where less than the full

capacity is used, which could be due to a miss event as in

CPI stacks, but also due to the unavailability of floating point

instructions. FLOPS stacks are an alternative representation for

HPC application developers or architects designing processors

for the HPC industry.
In summary, this paper presents the following contributions:

• We show that there is no single correct CPI stack repre-

sentation.

• We propose the concept of multi-stage CPI stacks and

show that they include more information than a single

CPI stack, by providing upper and lower performance

bounds of the potential performance improvement.

• We develop low complexity algorithms for measuring CPI

stacks in a simulator and in hardware, and show that

adding this feature in a simulator has negligible impact

on simulation speed.

180



• We propose an alternative representation for the issue

stage CPI stack, called the FLOPS stack, targeted at the

HPC domain.

After discussing related work, we present our algorithms

and validate the premise that multi-stage CPI stacks provide

more information than single CPI stacks using simulated data.

We also show that FLOPS stacks can give additional causes of

low FLOPS, which are not visible in CPI stacks. We present

our conclusions at the end of the paper.

II. RELATED WORK

A CPI stack is a well-known and commonly used concept

[2], [8], [13], [14]. Constructing CPI stacks on in-order

processors is relatively straightforward: a stall at one stage

will stall the whole pipeline, meaning that there is almost no

overlap between miss events. In addition, most latencies in

an in-order processor are fixed, meaning that a simple event

count multiplied by latency provides a good CPI component

approximation [2]. As explained in the introduction, overlaps

in current superscalar out-of-order processors makes cycle

accounting a lot more complicated.

Several CPI accounting mechanisms have been proposed.

In the introduction, we discussed the proposal by Eyerman et

al. [8], who do the accounting at the dispatch stage, and the

IBM POWER approach [14], that uses the commit stage as the

accounting point. A mixed approach is taken by Yasin [17].

In his hierarchical accounting mechanism, a top level stack is

measured at the dispatch stage, discerning between frontend

and backend stalls, but without subdividing these into specific

miss events (Icache, Dcache, bpred misses, etc.). In the next

levels, specific miss event penalties are measured at different

stages in the pipeline: front-end miss events at the dispatch

stage, and back-end miss events at the issue stage. As a result,

the components at the lower levels do not add up to the

total cycle count. Instead, one should start with inspecting

the top level stack: if that has a large frontend component,

only the frontend components on the next levels should be

considered, despite the fact that the backend components on

the next levels can also have a large magnitude, and vice

versa. This representation is more complex than a simple CPI

stack. Furthermore, we will show that a stack measured at the

dispatch stage, which is the top level stack in Yasin’s proposal,

prioritizes frontend misses, potentially underestimating the

impact of backend misses.

Eyerman and Eeckhout [7] proposed a mechanism to mea-

sure per-thread CPI stacks on a simultaneous multithreading

(SMT) processor. Their starting point is a dispatch stage CPI

stack. Their proposal could be easily extended to SMT CPI

stacks at other stages, in line with the algorithms described in

Section III.

The intuitiveness of a stacked representation has inspired

other performance analysis proposals. Speedup stacks [6] show

why a parallel application does not reach a speedup linear

to the number of threads. Criticality stacks [4] visualize the

criticality of each thread in a parallel application. Speeding up

critical threads has more impact on performance than speeding

up less critical threads. Bottle graphs [5] are an extension

to criticality stacks, with an extra parallelism dimension on

the Y-axis. They provide an intuitive visualization of parallel

performance, in particular of irregular applications. All of

these are targeted at parallel applications, while the CPI

stacks presented in this paper are measured per core. For

multithreaded applications, CPI stacks of each individual core

can be aggregated to a single CPI stack [10].

III. MEASURING MULTI-STAGE CPI STACKS AND FLOPS

STACKS

The general principle for constructing a CPI or FLOPS stack

is similar for all stages. At each cycle, a stall is accounted

when no instructions or fewer instructions than the width of

the pipeline are processed. On a stall, the ground cause of

the stall is inspected, which can be either the inability of the

previous stage to deliver new instructions, or a stall event in

the current or next stages. Note that each stage has a separate

set of counters, e.g., the Icache miss counter at the dispatch

stage is different from the Icache miss counter at the commit

stage.

A. CPI Stack Algorithm

Table II shows the accounting algorithm at three crucial

stages in the core pipeline: dispatch, issue and commit. Similar

accounting can be done at other stages (e.g., fetch and decode).

In the algorithms, W is the width of the stage (the maximum

number of instructions that can be processed per cycle) and

n the number of (correct-path) instructions processed in this

cycle (which is between 0 and W ). FE stands for frontend

pipeline (fetch, branch prediction, decode), ROB stands for

reorder buffer and RS for reservation stations (or issue queue).

In these algorithms, simplified for clarity, we measure 6

components: the base component (base comp) for time spent

in actually executing instructions; the branch predictor com-

ponent (bpred comp) for time spent in resolving branch mis-

predictions; the instruction cache and data cache component

(Icache comp and Dcache comp) for time spent in misses in

the instruction and data cache (and TLB); the ALU latency

component (ALU lat comp) for cycles lost due to multi-cycle

latency instructions; and the instruction dependence compo-

nent (depend comp) for cycles lost due to limited instruction-

level parallelism. An actual implementation could have more

components, e.g., differentiating between the different cache

levels and TLBs or more structural stalls in the issue stage.

All components are initially zero, and keep accumulating until

the end of the application.

The algorithms are executed every cycle. First, we calculate

the fraction f of the width that has been used this cycle

and add that to the base component. Because we exclude

wrong-path instructions (instructions fetched after a branch

misprediction), the base component for all stacks is the same,

as each correct-path instruction has to traverse all stages. In

Section III-B, we discuss how we discern between correct-path

and wrong-path instructions.
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TABLE II
PER CYCLE CPI ACCOUNTING ALGORITHM AT DISPATCH, ISSUE AND COMMIT (PROD = PRODUCER).

Dispatch Issue Commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

f = n /W
base comp += f
i f f <1:

i f FE empty :
i f I c a c h e miss :

Icache comp += 1− f
e l s e i f bpred miss :

bpred comp += 1− f
e l s e i f ROB or RS f u l l :

i = ROB head
i f i has Dcache miss :

Dcache comp += 1− f
e l s e i f l a t e n c y [ i ] > 1 cyc :

ALU lat comp += 1− f
e l s e :

depend comp += 1− f

f = n /W
base comp += f
i f f <1:

i f RS empty :
i f I c a c h e miss :

Icache comp += 1− f
e l s e i f bpred miss :

bpred comp += 1− f
e l s e :

i = prod ( f i r s t non−r e a d y i n s t r )
i f i has Dcache miss :

Dcache comp += 1− f
e l s e i f l a t e n c y [ i ] > 1 cyc :

ALU lat comp += 1− f
e l s e :

depend comp += 1− f

f = n /W
base comp += f
i f f <1:

i f ROB empty :
i f I c a c h e miss :

Icache comp += 1− f
e l s e i f bpred miss :

bpred comp += 1− f
e l s e i f ROB head not done :

i = ROB head
i f i has Dcache miss :

Dcache comp += 1− f
e l s e i f l a t e n c y [ i ] > 1 cyc :

ALU lat comp += 1− f
e l s e :

depend comp += 1− f

If the useful fraction f is smaller than 1, we try to find

a reason for the stall. Lines 4 to 8 handle frontend stalls:

branch mispredictions and Icache misses. Note the different

point in time at which frontend miss accounting starts for each

stage: when the frontend is empty for the dispatch stage, and

when the reservation stations and the ROB is empty for the

issue and commit stages, respectively. As a result, the frontend

miss components at the dispatch stage are always larger than

those at the issue stage, which in their turn are larger than

those of the commit stage. Conceptually, the frontend stall

component at the dispatch stage assumes that instructions that

could have been fetched during the frontend stall will have

no extra stalls in the backend (through dependences, multi-

cycle latency instructions or Dcache misses) and thus can

utilize all of the cycles in an ideal execution flow. On the

other hand, the frontend stall component at the commit stage

assumes that when the frontend stall is removed, the new

instructions can only start executing after the ROB is drained,

e.g., because they all depend on the last instruction. Clearly,

the actual performance gain will be somewhere between these

extremes, which is exactly the goal of multi-stage CPI stacks.

Note that this reasoning assumes that all other events remain

the same. Due to the coupling of events (e.g., removing data

cache misses from a unified cache also has an impact on

the instruction cache miss rate), this is not always the case,

meaning that the actual performance gain might be larger or

smaller than these boundaries.

Lines 9 through 16 handle backend stalls: Dcache misses,

long-latency instructions or dependence chains (which are

detected as single-cycle instructions that can only start ex-

ecuting when they are at the head of the ROB because of

dependences on older instructions). Here, the commit stage

will start accounting sooner than the dispatch stage: when

the instruction at the head of the ROB is still executing

versus when the ROB is completely full. The rationale is

similar to frontend misses: the dispatch stage assumes that

all instructions fetched after the instruction that caused the

stall are independent of that instruction and cause no extra

stalls. On the other hand, the commit stage assumes that these

instructions have to wait until the stalled instruction is finished.

Again, the actual penalty is somewhere in between, depending

on the characteristics of the application.

The backend miss component is handled slightly differently

at the issue stage. Instead of looking at the instruction at the

head of the ROB, we look up the instruction that produces

data for the first non-ready instruction. By definition, this

instruction is still executing, and prevents its consumers from

starting their execution. This is a more accurate instruction

to blame than the head of the ROB, which could be an older

instruction that is almost finished. However, at the dispatch and

commit stages, we do not have the dependency information

that is available at the issue stage. This ability makes the

case for the issue stage CPI stack, which would otherwise

seem redundant as its frontend and backend components are

always in between those of the dispatch and commit stacks.

Furthermore, we can also measure other structural stalls at

the issue stage, such as the unavailability of functional units

or issue ports, (predicted) memory address conflicts between

loads and stores, etc.

In some architectures, not all stages have the same width. In

particular, the issue stage is often wider than the dispatch and

commit stage, in order to support all instruction types. It is

clear that the ideal CPI is determined by the narrowest stage,

e.g., if the issue stage can issue 6 instructions per cycle, but

dispatch and commit are 4-wide, the minimum CPI is 1/4.

As a result, the base component at the wider stages will be

smaller than the base component at the other stages, and the

wider stages can stall even in the absence of miss events, just

because of the difference in width. Instead of using the actual

width of the stage, we propose to set W as the minimum

of all stage widths. As a result, f can be larger than 1 in

wider stages. In that case, we assume f = 1 and ‘transfer’

the part larger than one to the next cycle. Because the other

stages are narrower, this transferred part will never grow to

large values. This way of accounting also models the impact

of wider stages: by issuing long-latency instructions earlier
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through the wider stage, part of its latency can be hidden for

later, narrower stages.

B. Discerning wrong-path from correct-path instructions

In the description of the algorithms, we assume that we can

discern wrong-path from correct-path instructions in the dis-

patch and issue stage. This is straightforward in a functional-

first simulator, where the branch target is known before the

timing simulation starts. However, if functional simulation is

done at the simulated execute stage (execute-at-execute simu-

lation model) or the accounting mechanism is implemented in

hardware, we cannot make this distinction before the branch is

actually executed. Note that there is no problem at the commit

stage: wrong-path instructions are never committed.

In case wrong-path instruction detection at the dispatch and

issue stage is impossible, we can take two approaches: a sim-

ple, less accurate one, and a more complex, but more accurate

one. The simple approach is to initially treat all instructions as

correct-path instructions. The resulting CPI stacks will have a

larger base component for the dispatch and issue stage than for

the commit stage. Because the commit stage has the correct

base component and all base components should be equal,

we can take the difference between the dispatch/issue base

component and the commit base component and add that to

the branch miss component. This will account for the largest

part of the branch miss component related to dispatching and

issuing wrong-path instructions. This approach is taken by

Yasin [17]: bad speculation slots are calculated as the number

of issue slots minus the number of retire (commit) slots.

A more accurate approach is the use of speculative counters.

Instead of adding stall cycles directly to a global counter, the

cycle components are kept in speculative counters that are

kept per instruction or per basic block (as in the CPI counter

architecture proposed by Eyerman et al. [8]). If an instruction

or the branch ending a basic block commits, it is proven to be a

correct-path instruction and its speculative counters are added

to the global counter. If a branch misprediction is detected, the

speculative counters of all wrong-path instructions are added to

the global branch miss counter. Because this technique incurs

a storage and control overhead, we foresee that it will be im-

plemented in simulators only. For hardware implementations,

the simple approach is more appropriate.

C. FLOPS Stacks

FLOPS stacks are an alternative representation of the CPI

stack at the issue stage. Instead of focusing on all instructions,

FLOPS stacks only consider floating point operations, as

they are considered the only “useful” instructions in scientific

HPC applications and are the target of performance analysis

methods such as the roofline model [16]. FLOPS stacks

are measured at the issue stage, because maximum FLOPS

performance is determined by the number of (vector) floating

point units, and not by the dispatch or commit width. The

FLOPS stack accounting algorithm is given in Table III. The

maximum FLOPS is obtained by using all vector floating

point units (e.g., AVX2 or AVX512), without masking (which

TABLE III
FLOPS ACCOUNTING ALGORITHM.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

f = a∗n∗m/ ( 2∗ k∗v )
base comp += f
i f f <1:

i f a<2:
non fma comp += (2−a )∗ n∗m/ ( 2∗ k∗v )

i f m<v :
mask comp += n ∗ ( v−m) / ( k∗v )

i f n<k :
i f no VFP i n s t s in RS :

f ron tend comp += ( k−n ) / k
e l s e i f VU used by non−VFP i n s t :

non vfp comp += ( k−n ) / k
e l s e :

i = prod ( o l d e s t VFP i n s t )
i f i i s a memory l o a d :

mem comp += ( k−n ) / k
e l s e :

depend comp += ( k−n ) / k

uses only part of the vector), and executing fused multiply-

add (FMA) instructions. The latter condition stems from the

fact that a multiply and add are considered two operations in

the theoretical FLOPS calculation, which means that an FMA

instruction doubles the floating point throughput compared to

a vector addition or multiplication. So the maximum FLOPS

equals 2 · k · v per cycle, with k the number of vector floating

point units, and v the vector width (e.g., 16 single-precision

floats for AVX512). The 2 reflects the 2 FMA operations.

In the algorithm, n is the number of vector floating point

operations issued, a is the operation count per instruction

(2 for FMA, 1 for additions or multiplications; it can be in

between if multiple vector instructions are issued, e.g., 1.5 if

one FMA and one addition is issued), and m is the number of

unmasked elements (v when totally unmasked, 0 when every

element is masked out). The total number of floating point

operations issued in a cycle is therefore a · n ·m. VFP stands

for vector floating point, RS is reservation station, VU is the

vector functional unit and prod(i) is the producer of instruction

i (i.e., the instruction that produces a value needed by i).

FLOPS stacks have a few different components than CPI

stacks. The base component (base comp) are the cycles where

the maximum FLOPS is reached. The non-FMA component

(non fma comp) reflects the cycles lost due to non-FMA

VFP instructions (simple additions, multiplications, etc.). The

masking component (mask comp) is the fraction of cycles

lost due to masking vector elements. The frontend component

(frontend comp) measures the lost cycles because the frontend

could not deliver VFP instructions, either because all instruc-

tions are non-VFP, or there are no instructions because of an

Icache miss or bpred miss. This component could be further

divided into these three components (not shown for brevity).

The vector unit can also be used by non-VFP instructions (such

as integer vector instructions or broadcasts), this lost VFP

slot is collected by the non-VFP component (non vfp comp).

Finally, the memory component (mem comp) and dependence

component (depend comp) reflects losses due to VFP opera-

tions waiting on memory operations or other instructions.
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The base component is the number of cycles to execute the

useful work in the application assuming the maximum FLOPS

(M = 2 · v · k per cycle) is always reached. The total FLOPS

of this application is therefore

FLOPS =
base comp

cycles
· freq ·M (1)

where cycles is the total cycle count and freq is the core

clock frequency. By multiplying each component by freq·M
cycles

,

we obtain a stack with height freq ·M , which is the maxi-

mum obtainable FLOPS. The base component is the actually

obtained FLOPS, and the other components reflect the causes

why this maximum is not obtained. This makes the FLOPS

stack an intuitive representation for FLOPS based performance

analysis, allowing it to augment the roofline model by iden-

tifying specific causes why an application does not reach its

theoretical performance.

The crucial difference between a FLOPS stack and a CPI

stack is that when the full processor pipeline width is used by

non-VFP instructions, a CPI stack detects a fully useful cycle,

while the FLOPS stacks measures a full “stall” cycle. This is

why FLOPS stacks can look totally different from CPI stacks,

as we will show in Section V-B.

IV. EXPERIMENTAL SETUP

We implement the dispatch, issue and commit stage CPI

stacks, and the FLOPS stacks in the Sniper [3] multi-core

simulator. The simulation time increases by less than 1%
compared to the original version of Sniper (which already

includes measuring dispatch CPI stacks), which proves that

adding multi-stage CPI stack and FLOPS stack accounting

has a very small overhead. Although we have not verified it,

we are convinced that including them in hardware should also

be feasible with limited overhead.

To evaluate multi-stage CPI stacks, we simulate all SPEC

CPU 2017 [1] single-threaded benchmarks with the refer-

ence input sets (36 benchmark-input combinations). To limit

simulation time, we fast-forward 10 billion instructions and

simulate 1 billion instructions into detail. Each benchmark is

simulated on an Intel Broadwell (BDW; 4-wide out-of-order

pipeline) and an Intel Knights Landing (KNL; 2-wide out-of-

order) inspired core configuration. All uncore components are

scaled down by the socket core count, in order to mimic a fully

loaded processor. For example, shared cache size and memory

bandwidth is divided by 18 for the BDW configuration, as our

BDW socket configuration contains 18 cores.

In order to show the validity of the measured CPI stacks,

we also perform simulations where certain components are

idealized. In particular we simulate a perfect L1 Icache (each

access hits in L1), a perfect L1 Dcache, perfect branch pre-

diction (including perfect target prediction), and single-latency

instructions (all arithmetic and logic instructions complete in

1 cycle). We collect the CPI of each simulation, and deduct it

from the realistic simulation CPI to quantify the performance

improvement.

Because the floating point SPEC CPU benchmarks are not

well vectorized, their FLOPS value is very low. Therefore,

and because FLOPS stacks are targeted at HPC applications,

we evaluate FLOPS stacks on the DeepBench benchmark

suite [15]. DeepBench consists of a set of kernels that are

crucial for deep learning. In particular, we evaluate single

precision general matrix multiplication (sgemm) and convo-

lution (conv). We use the latest version of Intel Math Kernel

Library (MKL) [12] for sgemm, and Intel MKL-DNN [11] for

convolution. For sgemm, we simulated all 235 training and

inference configurations. For convolution, we simulated the

forward phase (fwd), the backward filter phase (bwd f) and

the backward data phase (bwd d) of all training configurations

(for a total of 3×94=282 configurations). We simulate these

applications on a 68-core KNL and a 26-core Intel Skylake

(SKX) processor configuration, both supporting AVX512 vec-

torization.

We aggregate the CPI stacks by averaging them component

per component. This is possible because all threads show

homogeneous behavior [10]. Similarly, we add the FLOPS

stacks by their components.

V. EXPERIMENTAL VALIDATION

In this section we validate our premises that multi-stage CPI

stacks provide more information than single CPI stacks by

giving an upper and lower bound of the potential performance

improvement, and that FLOPS stacks are a useful addition to

the performance analysis of HPC applications.

A. Multi-Stage CPI Stacks

To validate that multi-stage CPI stacks provide more in-

formation than individual stacks, we perform the following

study. For the Icache, Dcache, bpred and ALU component,

we select the SPEC CPU 2017 benchmarks for which the

component is at least 10% of the total CPI (in any of the

stacks). This filters out ‘zeros’: both the CPI component and

the performance difference are close to 0, which means that a

component has no impact for a benchmark. Keeping these ze-

ros in would artificially increase the cases with zero error. For

these benchmarks, we simulate a configuration with a perfect

Icache, perfect Dcache, perfect bpred, or single-cycle ALU

operations. Next, we calculate the ‘error’ on the component:

the difference between the predicted CPI component and the

actual CPI reduction. We calculate the error for each of the

three stacks (dispatch, issue and commit), and the multi-stage

stack representation, where we assume a zero error if the

actual CPI reduction is within the minimum and maximum

component. If it is not within the boundaries, the error equals

the error of the closest component (of the three stacks). Note

that this is not an error in the conventional meaning, it is

a measure of how much information we can get out of one

or multiple CPI stacks. Boundaries provide more information

than single values, and are correct when the actual value falls

in between them.

Figure 2 shows the results for BDW and KNL (the ALU

component on BDW was larger than 10% for only one
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(b) KNL

Fig. 2. Error on the components for the individual CPI stacks and the
combined multi-stage CPI stacks, on (a) BDW and (b) KNL. Boxes are bound
by the first and third quartile, the median is the line in the box, and the
whiskers extend to the extreme values.

benchmark, so we do not show results for this one). Clearly,

the multi-stage CPI stack representation has the lowest error

(smaller box and median closer to zero). This reduction is

most significant for the bpred and ALU components, where

the error reduces to 0 (all perfect bpred or 1-cycle ALU CPI

reductions are within the boundaries).

The results show that the dispatch stage on average overesti-

mates the Icache and bpred component, and underestimates the

Dcache component. The commit stack behaves the other way

around: underestimating the frontend components (Icache and

bpred) and overestimating the Dcache component. This means

that none of the stacks is more accurate than the others for all

components: the dispatch stack is better at estimating frontend

components, while the commit stacks is more accurate for

backend components. The combined stacks for the Icache and

Dcache components on BDW still show a significant error.

The reason for this is the high coupling of Icache and Dcache

misses through the unified cache, as we will show in the

discussion of the individual examples in the next paragraphs.

Figure 3 shows a selection of interesting multi-stage CPI

stacks. The top graph, mcf on the BDW core configuration, is

the second example of Table I. The dispatch stack ‘predicts’

a CPI reduction of 0.39 for a perfect branch predictor, which

is closer to the actual reduction of 0.33 than the 0.11 bpred

component at the commit CPI stack. On the other hand, CPI

reduces by 0.29 when the Dcache is made perfect, which
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(a) mcf on BDW
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(b) cactus on BDW
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(c) bwaves on BDW
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(d) povray on KNL
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(e) imagick on KNL

Fig. 3. Selection of multi-stage CPI stacks before and after making compo-
nents perfect.
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is better predicted by the commit stack (0.30) than by the

dispatch stack (0.06).

Making the Icache perfect for cactus on a BDW core

(Figure 3(b)), leads to a CPI reduction of 0.24, which is in

between the dispatch Icache component (0.49) and the commit

Icache component (0.08). A perfect Dcache, on the other hand,

leads to a CPI reduction that is much larger than what any

stack predicts. This occurs for some other benchmarks too, and

is the cause for the non-zero error for the combined Icache and

Dcache components in Figure 2. Icache and Dcache misses

are highly intertwined, because all caches from level two and

higher contain both instructions and data. When the L1 Icache

is made perfect, no accesses to the L2 cache are made, and

no data elements are evicted by instructions. So making the

Icache perfect reduces the L2 miss rate for data, and therefore

the Dcache miss component also reduces. And vice-versa,

the Icache component reduces when the L1 Dcache is made

perfect, which is the case in this example. This is a second-

order effect, which is impossible to predict with a simple

accounting mechanism. Furthermore, it leads to a larger CPI

reduction than predicted, which is less harmful than having a

smaller improvement than predicted.

Note that the dependence component also disappears when

making the Dcache perfect. To explain this effect, consider a

chain of dependent instructions that start with the Dcache miss.

During the Dcache miss, all independent instructions can ex-

ecute (out-of-order), which means that after the Dcache miss,

the chain of dependent instructions are the only instructions

left in the reservation stations. Because they need to execute

one after another, the full pipeline width cannot be used,

leading to dependence stalls. In the absence of the Dcache

miss, the dependent instructions execute together with the

independent instructions, causing a full usage of the pipeline

width, and no stalls. This is another example of a second-order

effect, which would require complex dependence analysis to

correctly predict it.

A particularly interesting case is that of the Icache compo-

nent for bwaves on BDW, see Figure 3(c). All three stacks

(at dispatch, issue and commit) have a larger than 0.19 Icache

component, indicating that CPI would reduce with at least 0.19

when the Icache is perfect. However, the observed reduction

is less than 0.01, which is not as expected. A further analysis

shows that the contention for L2 miss status holding registers

(MSHR) is very high. The miss rate in the L1 Icache is low, but

because of the many hardware prefetches, the L2 MSHRs are

contended, and Icache misses are queued for a long time until

an MSHR is available. During the Icache misses, contention

remains high because hardware prefetching continues even

if there are no regular instructions in the ROB. If the L1

Icache is made perfect, the queuing time is transferred to the

Dcache misses (the Dcache component increases), undoing

the performance gain of the eliminated Icache misses. On

the other hand, if the Dcache is made perfect, there are no

triggers for hardware prefetches, and the CPI comes close to

the ideal 0.25 value. Again, this is a higher-order effect, which

cannot possibly be captured by a low-overhead accounting

mechanism.

The fourth example (Figure 3(d)) shows the multi-stage

CPI stacks for povray on the KNL core. Note the appearance

of a new component called ‘Microcode’. Some multi-micro-

operation instructions in a KNL core require a few cycles to

be decoded, resulting in a stall in the dispatch stage, reflected

by the Microcode component. When issue and commit stall

on an empty RS or ROB, and the dispatch stage is stalled by

a microcode penalty, they are also accounted microcode stall

cycles. If all ALU latencies are set to one cycle (ALU 1), CPI

reduces by 0.22, which is better approximated by the commit

ALU component (0.23) than by the dispatch ALU component

(0.08). On the other hand, making the branch predictor perfect

reduces CPI by 0.26, which is in between the 0.08 predicted

by the commit CPI stack and the 0.31 bpred component of the

dispatch CPI stack.

For all examples, the issue stack components are in between

the respective components of the dispatch and commit stack.

Therefore, the issue stage CPI stacks may seem superfluous.

However, as discussed in Section III, the issue stage has unique

knowledge about the dependences between instructions: the

cause of the issue stall is attributed to the instruction for which

the first non-ready instruction is waiting. This information is

not available at the dispatch and commit stack, where the ROB

head is blamed for causing the stall. As an example, Fig-

ure 3(e) shows the CPI stacks for the imagick benchmark on

the KNL core. The dispatch and commit stacks show that the

largest stall component is dependences between single-cycle

latency instructions. On the other hand, the issue stack shows

that instructions mainly wait on multi-cycle ALU instructions.

Setting the latency of these instructions to 1 indeed reduces

CPI by 0.14, which is about the maximum possible perfor-

mance improvement, as the microcode component cannot be

removed.

Some of the issue CPI stacks have a relatively large ‘Other’

component. These occur when there are ready instructions, but

structural stalls prevent issuing them, such as the unavailability

of issue ports or predicted memory address conflicts (making a

newer load wait for an older store to finish). These effects can

also be separately measured in the issue CPI stack, revealing

possible bottlenecks caused by structural stalls. Note that the

issue stage is the only stage where these stalls can be detected.

B. FLOPS Stacks

To show that FLOPS stacks complement the CPI stack

analysis for HPC applications, we perform the following

experiment. We measure issue stage CPI stacks and FLOPS

stacks for all DeepBench applications on KNL (68 threads)

and SKX (26 threads). Next, we normalize each stack, and

take the difference between corresponding components of the

CPI and FLOPS stack (the normalized FLOPS base component

minus the normalized CPI base component, and similar for

the frontend, memory and dependence components; all other

components are either close to zero or exactly the same). We

average all differences per set of benchmarks (sgemm train,

sgemm inference, convolution forward, convolution backward
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Fig. 4. Relative difference per component between the issue stage CPI stack
and the FLOPS stack for the DeepBench applications on KNL and SKX.

filter and convolution backward data), see Figure 4. As all

normalized components finally add to 1, the sum of the

differences is zero (the bars above and underneath the 0%

line have equal height).

The base component of the FLOPS stack is always smaller

than that of the CPI stack (negative difference). The CPI base

component equals the number of instructions divided by the

pipeline width (2 for KNL and 4 for SKX) and the FLOPS

base components is the number of VFP instructions divided

by the number of VPUs (2 for KNL and SKX). For SKX, this

means that to have a CPI base component equal to the FLOPS

base component, at least half of the instructions need to be

FMAs, which is not the case for these applications. For KNL,

in order to have an equal base component, all instructions

need to be FMAs, which explains why the base component

difference is much larger for KNL than for SKX. Note that

an ‘instruction’ here actually means a micro-operation, as the

processor pipeline uses micro-operations (its width is 2 or

4 micro-operations). A VFP instruction that has a memory

operand is split into two micro-operations: one load and

one VFP calculation. This explains the low fraction of VFP

instructions, although in terms of macro-instructions (x86

instructions), they can be in the majority.

For the sgemm benchmarks, the difference between KNL

and SKX is large. The FLOPS base component for SKX is

on average only 5% smaller than the CPI base component,

meaning that it has a relatively high ratio of VFP instructions.

The ‘compensating’ component is mainly the dependence

component, meaning that even if the fraction of VFP instruc-

tions increases, they would still have to wait for dependences

amongst themselves, and the FLOPS would not increase. For

SGEMM train, there is small headroom to increase FLOPS

by increasing the VFP fraction, because it has a 2% frontend

component difference, which measures the cycles where no

VFP instructions are available (there are almost no frontend

misses in these benchmarks).

For sgemm on KNL, there is a much larger memory

component, despite the fact that these applications do not have

many Dcache misses. On KNL, the MKL just-in-time (jit)

�

�

�

�

�

�������� � �����
������

��
	


��� ��� 
���
������ ������ ������
���� �������

�

�

�

�

�

������� ������
������

��
��
��

�	
� �����	 �������
����� ������ ������
�	
� ��
����

Fig. 5. IPC and FLOPS stack for one convolution train fwd configuration on
SKX, without and with perfect Dcache.

code engine uses FMA operations with a memory operand,

meaning that the instruction is split into a L1 Dcache access

and an FMA calculation. The latter has to wait until the load

from L1 Dcache is finished, explaining the large memory

component. On SKX, the same function is implemented by

first loading data from memory, broadcasting the values in

an AVX512 register, and using this register in multiple FMA

operations without memory operand. The FMA instructions

are dependent on the broadcast instruction, which is reflected

in a larger dependence component.

For the convolution benchmarks, the difference between

the FLOPS stack and CPI stack components is high both for

KNL and SKX. The frontend component difference is a large

contributor to a low base component, meaning that FLOPS can

be improved by increasing the fraction of VFP instructions.

There is also a 5% to 10% memory component, which means

that FLOPS will improve more than CPI by reducing Dcache

misses and VFP dependences on memory operations.

Figure 5 shows an example of a FLOPS stack (right). For

comparison, the IPC stack is also shown. An IPC stack uses

the same counters as a CPI stack, but instead of dividing each

component by the number of instructions (to obtain CPI),

we divide by the number of cycles and multiply with the

maximum IPC. This is a similar procedure as for FLOPS

stacks, see Equation 1. The base component is now the

obtained IPC, while the top is the maximum IPC. IPC stacks

and FLOPS stacks have the same unit, namely instructions

per time, which makes them more intuitive to compare. The

maximum IPC is 4 and the maximum FLOPS is 4 TFLOPS

(coincidentally the same number). The ‘Unsched’ component

is the IPC or FLOPS lost because some of the threads are

yielded due to synchronization.

In this example, the IPC is almost ideal (3.7), while the

obtained FLOPS is only 43% of the maximum (1.7 out of 4

TFLOPS). The FLOPS stack shows the reasons for the low

FLOPS: (a) frontend, which means too few VFP instructions,

(b) memory, that is VFP instructions waiting on memory op-

erations, and (c) depend, which reflects dependences between

instructions. The instruction type mix indeed shows that only

35% of the instructions are vector FMA instructions, and

each have a memory operand, which effectively halves the
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FMA instruction count. Interestingly, the memory component

in the FLOPS stack is bigger than that of the IPC stack,

suggesting a bigger FLOPS gain with an ideal memory.

Making the Dcache perfect, however, lets both IPC and FLOPS

increase with 0.2. In the new FLOPS stack (far right), the

frontend and depend component have grown. VFP instructions

that originally waited for memory, are now stalled by other

dependences. Furthermore, by removing the memory waiting

stalls, the fraction of cycles with non-FP instructions also

increases (frontend component).

VI. CONCLUSIONS

CPI stacks are an intuitive way to visualize performance bot-

tlenecks in a processor core. However, because of superscalar

and out-of-order execution, single CPI stacks are an overly

simple representation and hide important stall information. We

propose to measure multiple CPI stacks at different stages

in the pipeline. This representation shows all stall events,

indicating the range of the performance improvement that is

expected when a stall event is eliminated.

Additionally, we present FLOPS stacks, which are alter-

native representations for issue stage CPI stacks. FLOPS

stacks are targeted at HPC applications, where floating-point

performance is more important than raw CPI. By focusing on

(vector) floating point operations, we obtain a stack that can be

very different from the issue stage CPI stack, and that indicates

whether a low FLOPS value is attributed to a low fraction of

FP instructions, dependence chains, Dcache misses, or other

structural stalls.

Our experiments show that in most of the cases, the actual

performance improvement is within the boundaries predicted

by the dispatch, issue and commit CPI stacks. The cases where

the performance improvement is not within these boundaries

can be attributed to second-order effects that cannot be pre-

dicted with a simple accounting mechanism. Furthermore,

none of the three stacks is consistently more accurate than the

others. We also show that FLOPS stacks are complementary to

CPI stacks, providing more information on how a low FLOPS

number can be increased, even when IPC is close to optimal.

Adding the infrastructure to measure the stacks has a

negligible impact on simulator performance. We can conclude

that multi-stage CPI stacks and FLOPS stack are a valuable

addition to the analysis toolbox of a simulator or to the

performance counter infrastructure on a core.
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