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Abstract—CPI stacks are an intuitive way to visualize processor core performance bottlenecks. However, they often do not provide a
full view on all bottlenecks, because stall events can occur concurrently. Typically one of the events is selected, which means
information about the non-chosen stall events is lost. Furthermore, we show that there is no single correct CPI stack: stall penalties can
be hidden, can overlap or can cause second-order effects, making total CPI more complex than just a sum of components.
Instead of showing a single CPI stack, we propose to measure multiple CPI stacks during program execution: a CPI stack at each
stage of the processor pipeline. This representation reveals all performance bottlenecks and provides a more complete view on the
performance of an application. Multi-stage CPI stacks are easy to collect, which means that they can be included in a simulator with
negligible slowdown, and that they can be included in the core hardware with limited overhead.

F

1 INTRODUCTION

CPI (cycles per instruction) stacks divide the total CPI of an
application into components that reflect the time spent in

various events. The base component reflects the minimum CPI
needed to execute instructions, which equals 1 over the pipeline
width. The other components correspond to stall events that
make the core perform worse than this ideal performance: in-
struction and data cache misses, branch mispredictions, depen-
dences between instructions, multi-cycle latency instructions,
etc. The size of a component is proportional to its impact on
final CPI, such that the sum of all components equals the total
CPI. This makes it convenient to visualize a CPI stack as a
stacked bar, see Figure 1.

In a superscalar out-of-order processor, CPI stacks are
challenging to construct because multiple events can overlap.
For example, when an instruction cache (Icache) miss occurs,
instructions that are already in the reorder buffer (ROB) can
continue executing. Or when an instruction causes a data cache
(Dcache) miss, the frontend can still fetch and decode new
instructions until the ROB is full.

Previous CPI stack construction proposals solve this by
counting the impact of stall events at one stage of the pipeline.
For example, the IBM POWER5 CPI stack algorithm [6] con-
siders the commit stage. A stall cycle is defined as a cycle
on which no instruction commits. There are two main causes
for not committing instructions: (i) the ROB is empty due to a
frontend stall (Icache miss or branch misprediction), or (ii) the
instruction at the head of the ROB is still executing (due to a
long-latency instruction or a Dcache miss).

Similarly, Eyerman et al. [4] propose to measure CPI stacks
at the dispatch stage, that is when instructions are entered
into the ROB and the reservation stations (RS). Stall cycles
are cycles where no (correct-path) instructions are dispatched,
either because the frontend does not deliver instructions (due
to an Icache or branch miss), or because the ROB or RS is full
(due to a long-latency instruction or Dcache miss blocking the
head of the ROB).

Yasin [7] proposes to use a hierarchical approach. The top
level CPI stack is measured at the dispatch stage, while back-
end misses (Dcache misses and long-latency instructions) are
measured at the issue or commit stage. Because of concurrent
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Fig. 1. Example CPI stacks at dispatch [4], issue and commit [6].

miss events, the lower level components do not add to the total
CPI. Instead, the performance counter data should be inspected
by level: if the top level has a small backend component,
one should not consider the lower level backend events, even
though they can have a large magnitude. A simple CPI stack
representation is therefore not possible.

All these proposals lead to different CPI stacks, sometimes
only slightly different, but sometimes the differences are more
expressed, see Figure 1. None of these representations is wrong,
nor do they individually reveal all bottlenecks: it is just not
possible to summarize all bottlenecks into a single additive
stack, because of overlapping events. To show this, we perform
the following experiment. We simulate the execution of an
application on a core with all stall events modeled and record
the CPI. Next, we make one component (e.g., Icache, branch
predictor or Dcache) perfect and simulate again. Intuitively,
the CPI component of that event equals the difference in CPI
between both simulations.

The results for two such experiments are shown in Table 1
(see Section 3 for our setup). Mcf simulated on an Intel Knight’s
Landing (KNL) core configuration sees a 0.02 CPI reduction if
all ALU instructions take 1 cycle. Making the Dcache perfect
(but keeping realistic ALU latencies) reduces the CPI by 0.30.
However, when assuming a perfect Dcache and single-cycle
ALU, CPI is reduced by 0.36, which is larger than the sum of
the individual improvements. Put differently, if the Dcache is
perfect, the ALU component equals 1.11− 1.05 = 0.06, while it
is only 0.02 initially. The ALU stalls are initially mostly hidden
by the Dcache misses, but become apparent when the Dcache
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TABLE 1
CPI components by idealizing structures.

App & core Config CPI Diff. CPI
mcf on KNL All real 1.41

1-cycle ALU 1.38 0.02
perfect Dcache 1.11 0.30
perf. Dcache & 1-cyc. ALU 1.05 0.36

mcf on BDW All real 0.72
perfect bpred 0.39 0.33
perfect Dcache 0.43 0.29
perfect bpred & Dcache 0.25 0.47

misses are removed.
For mcf on an Intel Broadwell (BDW) core configuration,

CPI decreases by 0.33 with a perfect branch predictor and by
0.29 with a perfect Dcache. Perfect branch prediction and a
perfect Dcache reduces CPI by 0.47, which is now less than
the sum of the individual components. These miss penalties
overlap: their combined improvement is smaller than the sum
of their individual components. It is impossible to represent
both hidden and overlapping stalls in a stacked representation
that adds to the total CPI.

We can conclude that a single additive CPI stack is a too
simple representation for performance bottlenecks. Instead, we
propose to measure multiple CPI stacks at different stages in the
pipeline. This reveals all bottlenecks at all stages. The different
CPI stacks show the range of the possible CPI reduction if
a certain stall event is eliminated. For example, if the Icache
component at dispatch is 0.2, and at commit, it is 0.1, the
potential CPI reduction of eliminating Icache misses is between
0.1 and 0.2.

Note that multi-stage CPI stacks cannot exactly predict the
performance gain by removing a component. An exact predic-
tion requires extensive critical path analysis [5], which consid-
erably slows down simulation or requires complex hardware.
Multi-stage CPI stacks give more information than single CPI
stacks by providing an upper and lower bound, while at the
same time being relatively easy to measure.

We first discuss how the CPI stacks at each of the stages are
collected. Next, we discuss our experimental setup and validate
our premise that multi-stage CPI stacks are able to estimate the
boundaries of the actual CPI improvements, providing more
information than single CPI stacks.

2 MULTI-STAGE CPI STACK CONSTRUCTION

The construction of the stacks is similar at each stage. At
each cycle, a stall is accounted when no instructions or fewer
instructions than the width of the pipeline are processed. On a
stall, the ground cause of the stall is inspected. Note that each
stage has a separate set of counters, e.g., the Icache miss counter
at the dispatch stage is different from the Icache miss counter at
the commit stage. We do not discuss TLBs for clarity, but they
are included in our measurements: Icache should be interpreted
as Icache and ITLB, and similarly for Dcache and DTLB.

Table 2 shows the accounting algorithm at three crucial
stages in the core pipeline: dispatch, issue and commit. Similar
accounting can be done at other stages (e.g., fetch and decode).
In the algorithms, W is the width of the stage (the maximum
number of instructions that can be processed per cycle) and
n the number of (correct-path) instructions processed in this
cycle (which is between 0 and W ). If the pipeline stages have a
different width, we set W to the minimum of all widths, as this
will be the bottleneck. FE stands for frontend pipeline (fetch,
branch prediction, decode), ROB stands for reorder buffer and
RS for reservation stations (or issue queue).

In these algorithms, simplified for clarity, we measure 6
components: the base component (base comp) for time spent
in actually executing instructions; the branch predictor com-
ponent (bpred comp) for time spent in resolving branch mis-
predictions; the instruction cache and data cache component
(Icache comp and Dcache comp) for time spent in misses
in the instruction and data cache; the ALU latency compo-
nent (ALU lat comp) for cycles lost due to multi-cycle la-
tency instructions; and the instruction dependence component
(depend comp) for cycles lost due to limited instruction-level
parallelism. An actual implementation could have more com-
ponents, e.g., differentiating between the different cache levels
and TLBs or more structural stalls in the issue stage. All
components are initially zero, and keep accumulating until the
end of the application.

The algorithms are executed every cycle, and are very
similar for all three stages. First, we calculate the fraction f
of the width that has been used this cycle and add that to the
base component. If W is smaller than the width of the stage,
f can be larger than one. In that case, we transfer the part
above one to the next cycle. Because we exclude wrong-path
instructions (instructions fetched after a branch misprediction),
the base component for all stacks is the same, as each correct-
path instruction has to traverse all stages. At the end of this
section, we discuss how we discern between correct-path and
wrong-path instructions.

If the useful fraction f is smaller than 1, we try to find a
reason for the stall. Lines 4 to 8 handle frontend stalls: branch
mispredictions and Icache misses. Note the different point in
time at which frontend miss accounting starts for each stage:
when the frontend is empty for the dispatch stage, and when
the reservation stations and the ROB is empty for the issue
and dispatch stage, respectively. As a result, the frontend miss
components at the dispatch stage are always larger than those
at the issue stage, which in their turn are larger than those of the
commit stage. Conceptually, the frontend stall component at the
dispatch stage assumes that instructions that could have been
fetched during the frontend stall will have no extra stalls in
the backend (through dependences, multi-cycle latency instruc-
tions or Dcache misses) and thus can utilize all of the cycles in
an ideal execution flow. On the other hand, the frontend stall
component at the commit stage assumes that when the frontend
stall is removed, the new instructions can only start executing
after the ROB is drained, e.g., because they all depend on the
last instruction. Clearly, the actual performance gain will be
somewhere between these extremes, which is exactly the goal
of multi-stage CPI stacks.

Lines 9 through 16 handle backend stalls: Dcache misses,
long-latency instructions or dependence chains (which are de-
tected as single-cycle instructions that can only start executing
when they are at the head of the ROB because of dependences
on older instructions). Here, the commit stage will start ac-
counting sooner than the dispatch stage: when the instruction
at the head of the ROB is still executing versus when the ROB
is completely full (after the instruction at the head took a long
time to execute). The rationale is similar to frontend misses:
the dispatch stage assumes that all instructions fetched after
the instruction that caused the stall are independent of that
instruction and cause no extra stalls. On the other hand, the
commit stage assumes that these instructions have to wait until
the stalled instruction is finished. Again, the actual penalty is
somewhere in between, depending on the characteristics of the
application.

The backend miss component is handled slightly differently
at the issue stage. Instead of looking at the instruction at the
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TABLE 2
Per cycle CPI accounting algorithm at dispatch, issue and commit (prod = producer).

Dispatch Issue Commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

f = n/W
base comp += f
i f f <1:

i f FE empty :
i f Icache miss :

Icache comp += 1− f
e lse i f bpred miss :

bpred comp += 1− f
e lse i f ROB or RS f u l l :

i = ROB head
i f i has Dcache miss :

Dcache comp += 1− f
e lse i f l a t e n c y [ i ] > 1 cyc :

ALU lat comp += 1− f
e lse :

depend comp += 1− f

f = n/W
base comp += f
i f f <1:

i f RS empty :
i f Icache miss :

Icache comp += 1− f
e lse i f bpred miss :

bpred comp += 1− f
e lse :

i =prod ( f i r s t non−ready i n s t r )
i f i has Dcache miss :

Dcache comp += 1− f
e lse i f l a t e n c y [ i ] > 1 cyc :

ALU lat comp += 1− f
e lse :

depend comp += 1− f

f = n/W
base comp += f
i f f <1:

i f ROB empty :
i f Icache miss :

Icache comp += 1− f
e lse i f bpred miss :

bpred comp += 1− f
e lse i f ROB head not done :

i = ROB head
i f i has Dcache miss :

Dcache comp += 1− f
e lse i f l a t e n c y [ i ] > 1 cyc :

ALU lat comp += 1− f
e lse :

depend comp += 1− f

head of the ROB, we look up the instruction that produces data
for the first non-ready instruction. By definition, this instruction
is still executing, and prevents its consumers from starting their
execution. This is a more accurate instruction to blame than the
head of the ROB, which could be an older instruction that is
almost finished. However, at the dispatch and commit stage,
we do not have the dependency information that is available
at the issue stage. This ability makes the case for the issue
stage CPI stack, which would otherwise seem useless as its
frontend and backend components are always in between those
of the dispatch and commit stacks. Furthermore, we can also
measure other structural stalls at the issue stage, such as the
unavailability of functional units or issue ports, (predicted)
memory address conflicts between loads and stores, etc.

Discerning between correct-path and wrong-path instruc-
tions: In the description of the algorithms, we assume that
we can discern wrong-path from correct-path instructions in
the dispatch and issue stage. However, this is only possible in
a functional-first simulator, where the branch target is known
before the timing simulation starts. If functional simulation is
done at the simulated execute stage (execute-at-execute simu-
lation model) or the accounting mechanism is implemented in
hardware, we cannot make this distinction before the branch is
actually executed. Note that there is no problem at the commit
stage: wrong-path instructions are never committed.

In case wrong-path instruction detection at the dispatch
and issue stage is impossible, we propose to initially treat
all instructions as correct-path instructions. The resulting CPI
stacks will have a larger base component for the dispatch and
issue stage than for the commit stage. Because the commit stage
has the correct base component and all base components should
be equal, we can take the difference between the dispatch/issue
base component and the commit base component and add that
to the branch miss component. This will account for the part of
the branch miss component related to dispatching and issuing
wrong-path instructions.

Multicore and multi-threaded applications: Our technique
produces one set of CPI stacks per core. For multithreaded
applications running on a multicore processor, it can be illustra-
tive to add corresponding elements of the per-core CPI stacks
to obtain a full application view. Synchronization stalls can
be collected by the operating system, and added as an extra
component in the visualization. Eyerman and Eeckhout [3]
propose per-thread dispatch stage CPI stacks for simultaneous
multithreading (SMT) processors. Their approach can be easily
extended to SMT CPI stacks at other stages.

3 EXPERIMENTAL SETUP

We implement the dispatch, issue and commit stage CPI stacks
in the Sniper [2] multi-core simulator. The simulation time in-
creases by 2% compared to the original version of Sniper (which
already includes measuring dispatch CPI stacks). We simulate
all SPEC CPU 2017 [1] single-threaded benchmarks with the
reference input sets (36 benchmark-input combinations). To
limit simulation time, we fast-forward 10 billion instructions
and simulate 1 billion instructions into detail. Each benchmark
is simulated on an Intel Broadwell (BDW; 4-wide out-of-order
pipeline) and an Intel Knights Landing (KNL; 2-wide out-of-
order) inspired core configuration. All uncore components are
scaled down by the socket core count, in order to mimic a fully
loaded processor. For example, shared cache size and memory
bandwidth is divided by 18 for the BDW configuration, as our
BDW socket configuration contains 18 cores.

In order to show the validity of the measured CPI stacks,
we also perform simulations where certain components are
idealized. In particular we simulate a perfect L1 Icache (each
access hits in L1), a perfect L1 Dcache, perfect branch pre-
diction (including perfect target prediction), and single-latency
instructions (all arithmetic and logic instructions are finished in
1 cycle). We collect the CPI of each simulation, and deduct it
from the realistic simulation CPI to quantify the performance
improvement.

4 VALIDATION

To validate that multi-stage CPI stacks provide more informa-
tion than individual stacks, we perform the following study. For
the Icache, Dcache, bpred and ALU component, we select the
benchmarks for which the component is at least 10% of the total
CPI (in any of the stacks). For these benchmarks, we simulate
a configuration with a perfect Icache, perfect Dcache, perfect
bpred, or single-cycle ALU operations. Next, we calculate the
‘error’ on the component: the difference between the predicted
CPI component and the actual CPI reduction. We calculate the
error for each of the three stacks (dispatch, issue and commit),
and the multi-stage stack representation, where we assume a
zero error if the actual CPI reduction is within the minimum
and maximum component. If it is not within the boundaries,
the error equals the error of the closest component (of the three
stacks).

Figure 2 shows the results for BDW and KNL (the ALU com-
ponent on BDW was larger than 10% for only one benchmark,
so we do not show results for this one). Clearly, the multi-stage
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Fig. 2. Error on the components for the individual CPI stacks and the
combined multi-stage CPI stacks, on (a) BDW and (b) KNL.
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Fig. 3. Multi-stage CPI stacks for imagick on KNL.

CPI stack representation has the lowest error, most significantly
for the bpred and ALU components, where the error reduces to
0 (all perfect bpred or 1-cycle ALU CPI reductions are within
the boundaries).

The Icache and Dcache components still have a non-zero
error. Icache and Dcache misses are highly intertwined, because
all caches from level two and higher contain both instructions
and data. When the L1 Icache is made perfect, no accesses to
the L2 cache are made, and no data elements are evicted by
instructions. So making the Icache perfect reduces the L2 miss
rate for data, and therefore the Dcache miss component also
reduces. And vice-versa, the Icache component reduces when
the L1 Dcache is made perfect. These are second-order effects,
which are impossible to predict with a simple accounting
mechanism. Furthermore, they all lead to a larger CPI reduction
than predicted, which is less harmful than having a smaller
improvement than predicted.

The results also show that the dispatch stack is on av-
erage more accurate for frontend misses (Icache and bpred),
while the commit stack is more accurate for backend misses
(Dcache). Because the frontend miss components are larger for
the dispatch stack than for the commit stack, and vice-versa
for the backend misses, frontend and backend misses are often
overlapping: their individual performance gains are larger than
their combined gain.

The errors on the components of the issue stack is in
between that of the dispatch and commit stacks, or even lower
than both for KNL. This is because the components are usu-
ally in between that of the two other stacks. Therefore, the
issue stage CPI stacks may seem superfluous. However, as
discussed in Section 2, the issue stage has unique knowledge
about the dependences between instructions. As an example,
Figure 3 shows the CPI stacks for the imagick benchmark
on the KNL core. There is an extra component, namely ‘Mi-
crocode’, which indicates the time spent in dispatching mi-
crocoded instructions, which are instructions that consist of
multiple micro-operations, and therefore take multiple cycles
to dispatch. The dispatch and commit stacks show that the
largest stall component is dependences between single-cycle
latency instructions. On the other hand, the issue stack shows
that instructions mainly wait on multi-cycle ALU instructions.
Setting the latency of these instructions to 1 indeed reduces
CPI by 0.14, which is about the maximum possible performance
improvement, as the microcode component cannot be removed.

5 CONCLUSIONS

CPI stacks are an intuitive way to visualize performance bottle-
necks in a processor core. However, because of superscalar and
out-of-order execution, single CPI stacks are an overly simple
representation and hide much stall information. We propose to
measure multiple CPI stacks at different stages in the pipeline.
This representation shows all stall events, indicating the range
of the performance improvement that is expected when a stall
event is eliminated.

Our experiments show that in most of the cases, the actual
performance improvement is within the boundaries predicted
by the dispatch, issue and commit CPI stacks. The cases where
the performance improvement is not within these boundaries
can be attributed to second-order effects that cannot be pre-
dicted with a simple accounting mechanism. Furthermore, none
of the three stacks is consistently more accurate than the others.
Adding the infrastructure to measure the stacks has a negligible
impact on simulator performance. We can conclude that multi-
stage CPI stacks are a valuable addition to the analysis toolbox
of a simulator or to the performance counter infrastructure on
a core.
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