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Abstract—Despite very accurate branch predictors, branch misses remain an important source of performance limiters, especially for
irregular applications. To ensure in-order commit, branch miss recovery is done in-order: all instructions after the oldest branch miss
are flushed, even if they eventually reconverge with the correct path. We propose a technique to limit flushing to real wrong-path
instructions only, allowing the resolution of newer branch misses while an older one is not yet resolved. Our technique involves minimal
additions to a conventional out-of-order processor, by reusing existing checkpoint mechanisms and relying on programmer/compiler
inserted hints to detect data and control independence. We evaluate the technique on graph benchmarks, resulting in up to 2x

increase in performance.

Index Terms—Superscalar execution, branch prediction, speculative execution

1 INTRODUCTION

RANCH mispredictions break the continuous flow of instructions
B through the pipeline by unconditionally flushing all instructions
following the branch miss and restarting fetch at the correct branch
target. The pipeline is unable to know which instructions will eventu-
ally end up on the correct path in case of branch reconvergence and
whether these instructions have data dependences with the correct or
false path, so conservatively flushing all instructions ensures correct-
ness. This branch miss recovery approach also keeps the instructions
in the reorder buffer in sequential program order, which is important
to enable precise and immediate interrupts through in-order commit.
However, it wastes compute time and resources, because branch code
paths reconverge often, and many flushed instructions turn out to be
correctly fetched and executed. These instructions not only need to
be fetched and decoded again, memory fetches need to be redone
and branches are predicted again, while they could have already been
resolved speculatively before the flush.

The existence of control and data independent instructions after
a mispredicted branch has been recognized before, and a lot of
prior work proposes mechanisms to exploit branch reconvergence to
improve performance [8]. However, most of these proposals either add
complex hardware to detect these instructions and to reuse them on
branch recovery [2], which increases design complexity and cancels
some of the energy saving benefits, or they only reuse a small
part of the converging instructions [6]. Our proposal targets adding
minimal extra hardware to a conventional out-of-order pipeline, while
maximally reusing converged instructions.

This paper has the following contributions:

« We propose three novel instructions to hint the pipeline which
instructions are control and data independent. We believe that
in general, programmer/compiler — hardware cooperation will
be crucial to improve energy efficiency.

¢ We show how existing out-of-order mechanisms, such as
renaming and checkpoints, can be used to implement reuse
of converged instructions. The only additions are a linked list
reorder buffer and a fetch redirect queue.

« We estimate the performance impact of our technique on graph
benchmarks, resulting in 1.3x to 2x performance increase
for branch intensive applications, and no performance loss for
applications with low branch miss rates.

e All authors are with Intel Corporation, {stijn.eyerman, wim.heirman,
sam.van.den.steen, ibrahim.hur} @intel.com

2 RELATED WORK

Branch convergence and selective flushing have been recognized as
potential performance optimizations for out-of-order pipelines more
than 20 years ago [8]. More recently, Al-Zawawi et al. [2] propose
a novel ROB-less design, based on re-execution buffers to execute
control and data dependent instruction after a mispredicted branch.
Naresh et al. [6] propose to only reuse convergent instructions in
the frontend pipeline, flushing all dispatched instructions. These two
proposals are examples of two extreme approaches: the first advocates
a dramatic redesign of the processor pipeline to extract the largest
performance benefit, while the latter has a very small impact on the
pipeline design, but only reuses a small fraction of the convergent
instructions. Our proposal lies somewhere in the middle: minimal
changes to the architecture by using hints in the code, and maximal
reuse of convergent instructions.

Alternatively, multithreading can be used to spawn threads for
control and data independent regions [1], which avoids flushing in-
structions of other regions on a misprediction. Creating and spawning
threads has a high overhead, especially when the independent regions
are small. Furthermore, optimized parallel code already uses the
available hardware thread contexts.

Malik et al. [7] discuss the performance benefit of parallel branch
resolution, highlighting the importance of maximizing branch level
parallelism (BLP) in control independent architectures. Our proposal
supports BLP: branches in different slices execute concurrently and
are not flushed due to misses in other slices.

3 SELECTIVE FLUSHING MECHANISM

For developing the selective flush mechanism, we put forward two
guidelines: (1) Minimize hardware additions by reusing existing
mechanisms and relying on programmer/compiler support, and (2)
retain observable pipeline behavior, in particular in-order commit, to
not jeopardize the compute ecosystem outside the core.

We split the discussion of our mechanism in two parts: detecting
control and data independent instructions, and the branch miss recov-
ery mechanism to reuse these instructions. Next, we discuss further
details of our proposal as well as an estimation of the performance
impact.

3.1 Detecting Convergent Instructions

Instead of spending hardware (and thus chip area and energy) to
automatically detect branch miss control and data independent (CDI)
instructions, we propose to use code hints to the processor pipeline.



Listing 1. Example in pseudo assembler. 2, B are lists of instructions, c
is a condition, i is the iterator and N the iteration count.

loop: slice_start
A
brec ¢, end
B
end : slice_end
inc i
brl i, N, loop

slice_fence

Instructions inserted by the programmer or compiler delineate CDI
regions, called slices. Compiler inserted instructions may limit the
general applicability of the technique, but it minimizes extra hardware
and energy consumption, and the compiler (in cooperation with the
programmer) has a much more global view on the program. Adding
new instructions has a non-negligible impact on the architecture,
however, only three instructions with no operands are needed, whose
coding can be selected from the wide range of no-op instructions in
most instruction sets.

We define a slice as a sequence of instructions in a program such
that all slices within a region (delineated by a slice fence) are CDI
with respect to each other. Slices do not need to be consecutive to each
other, instructions outside a slice can occur between two slices. These
intermediate instructions are CDI of the instructions in the slices, but
the instructions in the slices can depend on the instructions outside
the slices.

To illustrate these definitions, assume a loop with independent
iterations, containing a conditional branch. Listing 1 shows pseudo
assembler code, where A and B are a list of instructions, and c is
a condition. The code already contains the three novel instructions:
slice_start, slice_end and slice_fence. The slices con-
sist of code blocks A and B and the branch, for each iteration. The
increment and loop branch are outside of slices, but within the slice
region. The region is ended after the loop with a slice_fence.

The slices are independent of each other, so a misprediction of the
branch in the slice has no impact on other iterations. This means that
only the instructions until the next slice_end need to be flushed.
The slices do depend on the code outside the slice, i.e., they depend
on the value of i and they are control dependent on the loop branch.
However, the increment and branch do not depend on the code within
the slices, so they can execute out of order with the slices, but need to
be executed in order w.r.t. themselves. On a misprediction of the loop
branch (e.g., after the last iteration), all instructions fetched after the
branch need to be flushed, whether in a slice or not, because no new
iterations are needed. The s1ice_fence indicates that instructions
following the fence might depend on the data generated in the slices,
so all branch misses within the slices should be recovered before
executing instructions after the fence. Additionally, we require that
dependences between slices and the code after a slice_fence
are through the memory and not through registers. This ensures that
register renaming has impact only within a slice, simplifying the
rename table recovery.

These instructions are inserted by the compiler, which usually has
a global view on data and control dependences between instructions,
or by the programmer. Performance aware programmers already need
to think about parallelism to exploit the compute power of multi-
core processors. For example, a popular parallelization framework
is OpenMP. A parallel for loop means that iterations can be
spread over multiple threads and are therefore inherently independent.
However, it is often inefficient to schedule each iteration to a different
thread, so chunks of multiple iterations are assigned to each thread.
The iterations within a chunk are also independent, and can be sliced
by inserting the slice instructions. Furthermore, because iterations
can be spread across threads, there will be no register dependences
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Fig. 1. lllustration of the recovery mechanism and linked ROB. Instruc-
tions in slices are colored, with a different color for each slice. brcl is
mispredicted.

between the iterations and the code following the parallel for loop
since registers are not shared between threads.

Special care must be taken for reduction variables, which are
explicitly mentioned in the parallel for construct. When imple-
mented through a register update instead of an atomic memory oper-
ation for performance reasons, they cause a loop carried dependence.
We will discuss how to handle reduction variables in Section 3.5.

A parallel for is not the only construct where slices can be
used. Any code block with a conditional branch of which the next
few code blocks are independent (delimited by a slice_fence) can be
sliced, avoiding flushing the independent code blocks on a branch
miss in the slice.

3.2 Selective Flush and Reuse

The three slice instructions define which instructions should be flushed
on a branch miss. When within a slice, only the instructions until the
next slice_end should be flushed and refetched. When outside a slice,
we should flush all instructions after the branch miss, as in normal
execution. Through the renaming scheme in out-of-order processors,
independent iterations use separate sets of physical registers, so
all non-flushed instructions can continue executing while fetch is
redirected.

Selectively flushing and refetching instructions breaks the program
order of the ROB entries: older (refetched) instructions can appear
after newer (non-flushed) instructions, and flushed instructions can
leave holes in the ROB. To ensure in-order commit, we propose to
implement the ROB as a linked list [8], where the next instruction
is indicated using a pointer, rather than the next in line. A linked
list ROB is used in the IBM POWER [9] to enable sharing the ROB
across SMT threads. Similar to POWER, the pointer overhead can
be reduced by dividing the ROB into blocks of a few consecutive
instructions, and use pointers between blocks.

Figure 1 illustrates the mechanism for the example in Listing 1,
assuming A and B consist of one instruction and leaving out the slice
instructions for clarity. In fact, slice instructions could be left out
of the ROB by adding a single bit to each instruction whether or
not it is in a slice. The numbers indicate the different iterations. To
increase generality, assume a third code block C in the loop body that
is executed when B is not and vice versa (an if-then-else construct).

Initially, instructions are dispatched in program order (Fig. 1a).
When the misprediction of branch brcl is detected, instructions
of that slice (instruction B1) are flushed (Fig. 1b). The next ROB
entry pointer after the branch is set to the next free entry (Fig. 1c).
Meanwhile, a rename table checkpoint (CP2) is taken at the newest
instruction. Conventional branch recovery uses checkpoints of the
rename table at the mispredicted branch to rewind the execution. We



use the same mechanism to also checkpoint the rename table at the
most recent non-flushed instruction.

The branch checkpoint (CP1) is used to redirect fetch to the correct
path (Fig. 1d), and when that slice is ended, the ROB next pointer
points back to the first non-flushed instruction after the mispredicted
branch (inc1l). Next, we start fetching again from CP2, after letting
the ROB entry of the newest instruction (brc3) point to the next free
ROB entry (Fig. le). Because we require that there are no register
dependences across slices and the rest of code, renamings done in the
correct path after CP1 do not have an impact on CP2. Note that in
this case, instruction C1 could be put in the flushed B1 slot, avoiding
pointer redirects. In general, we cannot assume that the correct path
is as long as or shorter than the wrong path, so pointer redirects are
required to implement this scheme.

Concerning the load/store queues, we assume that ROB entries
containing memory operations have a pointer to the corresponding
load/store queue entries, ensuring that these are also committed/retired
in program order. Because we ensure that there are no memory
dependences between slices, memory address aliasing checks and
store-to-load forwarding can be done on the out-of-order sequence
of memory operations in the load/store queues, avoiding a linked
list load/store queue implementation. Note that memory operations
within a slice will always appear in order (potentially with other non-
dependent operations in between).

3.3 Concurrent Branch Misses

While recovering from a branch miss in our selective flush mecha-
nism, other branch misses in newer instructions might be detected.
When we are still recovering from an older branch miss, it would
harm performance to interrupt the old branch miss recovery to recover
from the newer branch miss, and it would also complicate the
implementation to restart the older recovery afterwards. Therefore,
we postpone the recovery from the newer miss until the recovery of
the older miss is done.

To implement this behavior, we propose to add a fetch redirect
queue (FRQ) to the frontend of the pipeline. This FIFO queue holds
all pending fetch redirects due to branch misses. When a branch miss
within a slice is detected, instructions are selectively flushed, and
redirect data is pushed in the FRQ. This data includes the correct path
instruction address, a pointer to the checkpoint after the mispredicted
branch and a pointer to the ROB entry of the mispredicted branch.
At the fetch stage, the FRQ is checked when we are in normal fetch
mode (i.e., not recovering from a branch miss) or when the previous
branch miss has been fully recovered (i.e., a slice_end instruction
is encountered). If there is a redirect entry at the head of the FRQ,
fetch is redirected by restoring the checkpoint, setting the instruction
pointer to the correct path address, and setting the next pointer of
the ROB entry of the branch to the next free ROB entry. If we were
in normal fetch mode, additionally a checkpoint of the current state
is saved in a separate place (e.g., CP2 in Fig. 1, called the ‘normal
fetch’ checkpoint hereafter). As long as there are entries in the FRQ,
we continue to recover from the pending misses after recovering from
the previous miss. When the FRQ is empty, normal fetch mode is
restored by redirecting fetch to the saved ‘normal fetch’ checkpoint.

It can occur that a branch miss in a slice is flushed itself, because
an older non-slice branch is detected as a misprediction. In that case,
flushed ROB entries are checked whether they contain a sliced branch
miss, and the corresponding entries in the FRQ are removed. These
entries are detected by comparing the ROB pointers in the FRQ. The
FRQ is used only for branch misses within a slice. If a branch miss
outside a slice is detected, the ‘normal fetch’ checkpoint is replaced by
the correct path target. If the FRQ still contains entries (after removing
the flushed branch misses), these are recovered first before fetching
the correct path.

3.4 Slice Fence

A slice_fence instruction indicates that instructions following it might
depend on the data produced in the slices preceding it. This means
that all slice branch misses need to be recovered before starting to
execute instructions after the fence. By prioritizing FRQ entries upon
fetch, we ensure that all detected misses are resolved first. However,
undetected branch misses may still reside in the ROB. Therefore,
instructions after the fence should not be executed until all branches
in slices are resolved.

Instead of stalling the pipeline until all sliced branches are re-
solved, which would incur a performance penalty, instructions after
the fence can also be executed speculatively. Thereto, we store a
checkpoint at the fence instruction. When a branch miss in a preceding
slice is detected, the instructions within the slice are flushed, as well
as all instructions after the fence. The ‘normal fetch’ checkpoint is
replaced by the checkpoint at the fence, such that all instructions after
the fence are refetched after the branch miss is recovered.

3.5 Reduction Variables

Reduction variables within parallel for loops have the following prop-
erties: (a) they can be (atomically) updated in any order and (b) none
of the instructions in the loop body depend on them. They are usually
implemented as thread local register updates for the iterations on one
thread, after which they are reduced globally across all threads. This
implementation will break when using slices and selective flushing:
when restoring the ‘normal fetch’ checkpoint, the old value of the
reduction variable is restored and the updates (or rollbacked updates)
in the recovered branch path will be lost.

Storing these variables in memory and doing atomic updates
through memory solves this issue, but harms performance. Instead,
we propose to postpone their execution until commit. Committed
instructions are never flushed, so the final value will be correct.
To implement this, we propose to add an ‘execute-at-commit’ flag
to common reduce instructions (add, increment, multiply). Because
no other instructions depend on the reduction variable, delaying
their update until commit will not delay the execution of the other
instructions.

3.6 Performance Impact

To reason about the performance benefit of selective flushing, we use
interval analysis [5], and count penalties at the dispatch stage. On
a branch miss, wrong-path instructions are dispatched until the next
slice_end instruction. Thereafter, correct path instructions outside the
slice and from the next slices are dispatched. When the branch miss is
detected, dispatch is not stalled, because the correct path instructions
are fetched back-to-back to the ‘normal fetch’ instructions. So the
penalty equals the time between dispatching the branch miss and the
next slice end instruction. The branch penalty of the conventional
mechanism equals the full branch resolution time (executing the
dependence path to the branch) and frontend pipeline refill time [5],
which is considerably longer. Furthermore, branch misses will now
also be resolved in parallel, further reducing the penalty.

The performance benefit can be reduced when there are not
enough free ROB entries to hold the correct path after flushing the
wrong-path instructions in a slice. In that case, we need to wait
until the first correct path instructions commit and free their entries
to continue dispatching the next correct path instructions. To avoid
this performance hit when the ROB is almost full, the processor
can also flush instructions newer than a recent checkpoint, and use
that checkpoint as the next ‘normal fetch’ point instead of taking a
checkpoint at the newest instruction. This leaves more space for the
correct path, while never performing worse than the conventional flush
mechanism, which flushes all instructions.



Listing 2. BFS backward update loop.

1 #pragma omp parallel for reduction (+:awake_count)
schedule (dynamic, 1024)

2 for (NodeID u=0; u < g.num_nodes(); u++) {

3 if (parent[u] < 0) {

4 for (NodelD v g.in_neigh(u)) {

5 if (front.get_bit(v)) {

6 parent[u] = v;

7 awake_count++;

8 next.set_bit(u);

9

10

break ;
}
11 1
12 }
13 1
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Fig. 2. Time per BFS backward update iteration for a conventional
pipeline, our slice mechanism and perfect branch prediction, divided into
base (instruction execution), branch miss stalls and memory stalls.

4 PERFORMANCE EVALUATION

We evaluate our proposal first on the backward update loop of
breadth-first graph search (BFS), see Listing 2 (taken from the GAP
benchmark suite [3]). The parallel for loop indicates independent loop
iterations, with one reduction variable. The loop body contains 3
hard-to-predict data dependent branches (lines 3 and 5, and the loop
condition on line 4 that depends on the variable in-degree), leading
to a large penalty due to branch misses: the CPI profile generated
by our simulator indicates that 81% of the cycles is spent resolving
and recovering from branch misses. Note that the inner for loop (line
4) cannot be sliced: it is exited as soon as a match is found, so the
iterations are control dependent. So we add a slice_start between lines
2 and 3, and a slice_end between lines 12 and 13.

To evaluate performance, we use an in-house simulator based on
Sniper [4], configured as a 4-wide out-of-order processor pipeline,
with state-of-the-art TAGE branch predictor. The slice instructions
are implemented as Sniper ‘magic’ instructions that are captured by
the timing model. When a branch miss occurs within a slice, only
the instructions up to the next slice_end are marked as wrong path
instructions and are eventually flushed.

Fig. 2 shows the time per iteration of one thread of the BFS back-
ward update loop with the conventional pipeline, our selective flush
technique and oracle branch prediction. Perfect branch prediction has
2.2x lower execution time, and is now bottlenecked by the memory
bandwidth. Our technique improves performance 2.1x, reducing the
gap with oracle branch prediction to 7%.

The division of the execution time shows that the conventional
execution is limited by branch misses. Our mechanism still has a
considerable branch miss component, but it is reduced a lot because
67% fewer instructions are flushed and branch misses are resolved
in parallel (the number of branch misses remains the same). The
reduction in branch miss stalls decreases the time between memory
operations, increasing bandwidth usage and thus memory stalls. Band-

TABLE 1
Performance increase of selective flush and perfect branch prediction
versus a conventional processor core for all GAP benchmarks.

| bc bfs cc pr sssp tc
Slice 1.30x 1.74x 1.71x 1.00x 1.34x 1.30x
Perfect 1.41x 1.80x 1.82x 1.03x 1.34x 1.74x

width usage becomes close to the available bandwidth, which explains
why further reducing branch miss penalty (perfect branch prediction)
does not improve performance. The base component for the slice
mechanism is slightly higher, because of the extra slice instructions.

Next, we evaluate our mechanism on all GAP benchmarks, where
we add slice instructions at the beginning and end of the main parallel
for loops. Table 1 shows for the six benchmarks the performance
gain of our mechanism versus a conventional core, as well as the
impact of perfect branch prediction. All benchmarks but one (pr) result
in substantial performance improvements, close to perfect branch
prediction. Pagerank (pr) has a low branch miss rate, limiting the
potential gain. Triangle count (tc) has many branch misses, but they
resolve quickly, limiting the net gain of selective flush.

5 CONCLUSIONS AND FUTURE WORK

Branch mispredictions remain an important source of performance
loss. Efficiency gains can be obtained by not flushing and continuing
to execute control and data independent converging instructions. We
propose a mechanism to implement selective flushing, reusing most
of the existing checkpoint infrastructure, while still ensuring in-order
commit. Initial evaluations show up to 2x performance benefit for
applications with high branch penalties. As future work, we will in-
vestigate multiple variations of selective flushing (fewer checkpoints,
freeing more ROB entries for the correct path) and quantify the
performance impact.
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