
Projecting Performance for PIUMA
using Down-Scaled Simulation

Stijn Eyerman, Wim Heirman, Yigit Demir, Kristof Du Bois, Ibrahim Hur — Intel Corporation

Abstract—Programmable Integrated Unified Memory Archi-
tecture (PIUMA) is Intel’s novel graph analysis optimized
processor architecture, targeted at efficiently executing graph
algorithms on very large graphs. Simulation is used to project
its performance for various algorithms before the system is
built. However, simulators are limited in the number of cores
and threads they can simulate, because of their low simulation
speed, high resource usage and poor scalability. Therefore, it is
practically impossible to simulate PIUMA at its full system scale.

In this paper, we present downscaled simulation, a technique
to project performance of a large scale system using a small scale
simulation. We apply the technique to PIUMA, showing how to
configure the downscaled system in order to accurately reflect
the characteristics of the full system. We evaluate downscaled
simulation on a set of graph applications, showing that it
accurately tracks simulation results of small scale simulations,
as well as the projections to large systems made by an analytical
model.

I. INTRODUCTION

Simulating a large scale system (e.g., a multi-node super-
computer) is a challenging task. Detailed simulation of com-
puter systems is very resource intensive: it requires executing
thousands of simulator instructions on the host to simulate the
performance of a single instruction on the simulated system.
As a result, detailed simulators execute more than 4 orders
of magnitude slower than the actual hardware. Furthermore,
parallel timing simulation requires tight synchronization to
accurately model the interactions between cores, network and
memory at small time granularity, which limits the potential
speed benefit of parallel simulation.

On the other hand, detailed simulation can be the only
option to reach the required level of accuracy. Analytical
models [8] or spreadsheet models only model high-level
characteristics, ignoring lower level details that can have a
significant impact on performance, such as network contention
or timing variability. Decoupled simulation, e.g., simulating
a single node in detail and separately simulating the inter-
connection network [13], ignores the interactions between
the components: network contention has an impact on node
performance, which on its turn impacts the network injection
rate, etc.

In this paper, we propose an efficient simulation methodol-
ogy for large-scale systems, such as PIUMA (Programmable
Integrated Unified Memory Architecture, formerly known as
PUMA) [9]. PIUMA is a graph-oriented instruction set proces-
sor, consisting of many multi-threaded cores to hide memory
latency, a hardware distributed global address space (DGAS)
for efficient random remote accesses, and offload engines for
common memory-intensive operations, such as gathers and

barriers. A multinode PIUMA systems consists of thousands
of cores and up to millions of threads, making it impossible
to fully simulate to assess its performance.

Our simulation technique scales down the system at each
level (e.g., core, node and multi-node system), ensuring that
we simulate each component of the system in detail (cores,
memory controllers, on-chip network, inter-node network,
etc.), but on a smaller scale to limit the time and resources
used by the simulation. This approach ensures that we model
the impact of all components and their interactions, which is
not feasible using high-level models or decoupled simulation.

In particular, this paper makes the following contributions:
• We present our novel methodology to simulate a large

system using a downscaled system with extrapolation.
• We apply this methodology to project performance of

a multi-node graph processor, and show how the down-
scaled system is configured to represent the full system
as closely as possible.

• We compare the projected performance to that of a small
scale simulation and an analytical model, showing that
downscale simulation provides very similar results, and
likely even more accurate results as it models more
aspects of the system than an analytical model.

II. RELATED WORK

Fast, accurate and scalable processor simulation has been
a long-lasting subject of research. Prior work has mainly
focused on reducing the workload to be simulated (application
sampling), accelerating the simulation model by making it less
complex, and using parallel simulation to increase simulation
speed. Our proposal adds a new dimension: sampling the
system to reduce the scale of the simulation, and using
extrapolation to project performance for a large scale system.
We discuss prior work on the former dimensions in the next
sections.

A. Application sampling

Realistic applications consist of billions of instructions to
be executed, which takes days or weeks to simulate even for
a small system on a fast simulator. Sampling the application
to reduce the instruction count has been an active research
area. Best known are the SMARTS technique [24], which
performs periodic statistical sampling, and SimPoints [21],
which detects phase behavior in applications, and uses one rep-
resentative sample per phase to cover the behavior of the full
application. Carlson et al. [3] propose a sampling methodology
for multi-threaded applications, which is more complicated

due to memory operation interleaving and synchronization
events. Gonzalez et al. [11] describe a sampling technique for
distributed MPI applications.

B. Fast simulation models

A way to speed up simulation is to abstract away certain
details of the processor microarchitecture that are assumed
to have no impact on performance in normal circumstances.
Instruction window centric simulation [5] abstracts away many
components, assuming they are designed in balance with the
instruction window size and pipeline width, resulting in an
order of magnitude speedup while limiting simulation error.

Other proposals use an analytical processor model instead
of detailed simulation [10], or simulate small parts of the
application and use these results to estimate the timing of the
rest of the application [12]. Large scale network simulators
often use very simple processor models, such as a one-
instruction-per-cycle (one-IPC) model [18], or use a synthetic
network traffic simulator [14]. The latter two models are very
fast, but the traffic they model does not resemble that of a real
application, resulting in questionable validity and usefulness.

Traces of real applications, containing the network oper-
ations (e.g., MPI calls) with their timing [13], [20], model
traffic more realistically, but are tied to a specific system setup
(number of nodes, number and type of cores on a node) and
these traces quickly become too large to store practically. Fur-
thermore, these models assume clearly separated computation
and communication phases, which is usually the case in bulk
synchronous MPI applications. For more fine-grained commu-
nication, e.g., in a distributed global address space (DGAS)
where each memory access can potentially cause communi-
cation, compute and communication are highly intertwined,
making it hard to model accurately with completely separated
compute and network models. Our technique simulates both
the compute (cores, memory) as the communication (network)
concurrently in detail, so it models the combined effect more
accurately.

C. Parallel simulation

A third way to speed up simulation is to run parallel simu-
lation threads [4]. However, to achieve accurate simulation in
shared components (e.g., shared cache, network on chip, mem-
ory controller), the simulated time of all threads should be syn-
chronized, which significantly reduces the parallel efficiency
and simulation speed. Distributed simulation across multiple
simulation hosts [18], [19] offers even more parallelism, at the
cost of a higher implementation complexity, lower accuracy
due to loose synchronization and/or low simulation speed due
to superlinear synchronization delays.

While all techniques described here have the same goal as
our proposal, namely speeding up simulation, none of them
targets the main issue we tackle in this paper: the scale of
the simulated system. Our down-scale simulation method is
orthogonal to these prior techniques: it can be combined with
any of them to further reduce simulation overhead.

III. PIUMA ARCHITECTURE

The main feature of PIUMA is that the full system has
distributed shared memory, i.e., all memory locations can be
accessed from any point in the system, even across nodes.
Crucial for full-system shared memory supporting sparse ac-
cesses is a high-bandwidth low-latency interconnection net-
work, alleviating the need for partitioning the data. Thereto,
our graph processor configuration uses a hierarchical network
configuration, with all-to-all network connections at each level
(HyperX network topology [1]). This topology significantly
limits the number of hops to reach a distant memory location,
and it has a high exclusive bandwidth between each pair of
cores.

The system has 5 hierarchic levels: pipeline, core, tile,
node and system. The pipeline is the basic execution unit,
executing instructions from multiple threads. Because graph
analysis applications are mainly memory bound, the pipeline is
a multi-threaded single-issue in-order pipeline. To completely
fill the pipeline, it supports 16 concurrent threads, providing a
hardware thread context for each thread. Each pipeline has a
small private cache. Due to the absence of locality in most
graph applications, PIUMA has no higher level or shared
caches.

Four pipelines form a core. Each core has one memory
controller, that addresses its part of the shared memory system.
Eight cores make up a tile. Cores on a tile are connected using
an all-to-all network-on-chip.

A node consists of 16 tiles. Each tile is connected to each
other tile on the same node. Each tile also has inter-node
links, for creating a multinode system. The HyperX network
topology enables to scale out to any number of nodes, by
adding levels. An example 32 node system has 16 threads per
pipeline, times 4 pipelines per core, times 8 cores per tile,
times 16 tiles per node, times 32 nodes in the system, or a
total of 256 K threads.

IV. DOWN-SCALING A PIUMA SYSTEM

The motivation of our method is that it is impossible to
simulate all components of a full PIUMA system, because that
would require too many resources and would take too much
time. Therefore, we sample the system by simulating only part
of it. However, simulating, for example, a single tile of a few
cores means that we do not model the impact of the inter-
tile and inter-node network, which is crucial for projecting
performance to the full system. Therefore, our downscale
method samples sparsely: a few cores on a few tiles on a few
nodes. That enables modeling all components of the system:
cores, tiles, nodes and the corresponding network and memory
controllers.

Table I shows the hierarchical configuration of a 32 node
system and the choices we made for downscaling the config-
uration. The idea behind the downscaled numbers is that we
reduce the count at each level by a factor of 4 (1 pipeline
per core instead of 4, 2 cores per tile instead of 8, etc.). This
ensures that the relative counts at each level remain the same.
Note that we do not scale down the number of simultaneous

TABLE I
FULL SYSTEM AND DOWN-SCALED HIERARCHY

Level Full system Down-scaled
Pipeline 16 threads 16 threads
Core 4 pipelines 1 pipeline
Tile 8 cores 2 cores
Node 16 tiles 4 tiles
System 32 nodes 8 nodes

Full tile Downscaled tile

16x fewer
links

16x less
traffic

Fig. 1. Tile and on-tile network in the full system (left) and in the downscaled
system (right). Arrows represent pipelines, boxes are cores.

threads in a pipeline, because the effect of multithreading
a pipeline has no linear scaling. Scaling down the thread
count to 4 threads instead of 16 could reduce the generated
memory traffic (data accessed per time unit) by a factor of 4
if performance is memory bound, i.e., the pipeline is mainly
stalled on outstanding memory operations: there are 4 instead
of 16 outstanding misses. However, if performance is compute
bound, i.e., bound by the compute capacity of the pipeline,
then the generated memory traffic will be similar with 4
threads as with 16 threads. To faithfully model the impact
of pipeline multithreading on performance for all types of
behavior, we therefore keep the thread count per pipeline at
16. Because each pipeline has its own cache and there are no
other caches, we do not need to scale caches.

Next, we need to scale memory and network bandwidth, in
order to faithfully model contention in the memory controller
and network links. There is one memory controller per core.
The core is down-scaled with a factor of four (1 pipeline
instead of 4), meaning that there are four times fewer threads
than on the real system, generating four times less memory
traffic. Therefore, we need to scale down the bandwidth per
memory controller with a factor of 4. Because the number
of memory controllers in the system is equal to the number
of cores, we do not need to scale the memory bandwidth
further as the system size increases: for every downscaling of
the core count, the number of memory controllers also scales
proportionally.

For downscaling the network bandwidth, we use the method
of equal bisection bandwidth usage at each level of the
network hierarchy. Bisection bandwidth is the sum of the

bandwidths of all links that cross the boundary between two
halves of a system. For example, consider a tile that has 8
cores, interconnected with all-to-all connections, see Figure 1.
Half a tile has 4 cores, and each of these cores has 4 links
going to the 4 cores on the other half that cross the bisection.
So the total bisection bandwidth is the bandwidth of 16 links.
Our downscaled tile has only 2 cores, with one link between
them. That means that in order to have the same bisection
bandwidth, this link should have 16× higher bandwidth than
the inter-core links in the full system. However, the number of
threads that generate network traffic is also smaller. Assuming
that bisection network traffic is proportional to thread count,
the total amount of traffic generated on one halve of the
downscaled system is 16× lower than on the full system: 4×
fewer pipelines per core and 4× fewer cores on a tile. As a
result, with 16× fewer links and 16× less traffic across the
bisection, we can use the link bandwidth of the actual system
to have the same bandwidth usage as in the real system.

Table II shows the bandwidth downscale factors for each
level of the system. Although the total system is downscaled
with a factor of 256, bandwidth numbers only need to scale
down with a maximum factor of 16, because of the reduction
in link count when the system size is reduced.

Regarding latency, we keep the uncontended link latencies
the same as in the full system, because the way the system is
downscaled ensures that the number of hops taken by each
request is the same as in the full system. The bandwidth
scaling ensures that bandwidth usage is modeled correctly,
which means that if bandwidth usage is high, extra queuing
latency will be added by the simulator’s memory and network
model, as would occur in the full system.

A. Applications and Extrapolation

Next to downscaling the system, we also need to downscale
the application running on the system, i.e., reducing its thread
count but retaining the same behavior as if they execute on the
full system. Fortunately, most large scale applications running
on these large scale manythreaded systems are homogeneous,
i.e., each thread executes the same code on different data. If the
available thread count increases, the work (the data to process)
is simply divided among more threads, while each individual
thread keeps executing the same code but on a smaller part
of the data. The applications evaluated in this paper are all
homogeneous applications that scale well from a few to many
threads, with homogeneous behavior in all threads.

After simulating the downscaled configuration, we need to
extrapolate the results to the full system. The most straightfor-
ward way to extrapolate is to assume that the application scales
perfectly with increasing thread count, and thus to divide the
simulated execution time of the downscaled system by the total
downscale factor, e.g., 256 for the 32-node system (perfect
strong scaling).

However, even with a well scaling homogeneous applica-
tion, it is potentially unsafe to assume perfect scaling with
such a high scaling factor. For example, increasing the thread
count with 256× using the same input data size might lead

TABLE II
NETWORK LINK BANDWIDTH DOWNSCALE FACTOR CALCULATION FOR THE DOWNSCALED SYSTEM (TH = THREADS, C = CORES, T = TILES, N = NODES).

threads per halve # bisection links total
Level full system downscaled factor full system downscaled factor factor
Tile 64 th/c× 4 c 16 th/c× 1 c 16 4×4 1 16 16/16 = 1
Node 64 th/c × 8 c/t × 8 t 16 th/c × 2 c/t × 2 t 64 8×8 2×2 16 16/64 = 1/4
System 64 th/c × 128 c/n × 16 n 16 th/c × 8 c/n × 4 n 256 16×16 4×4 16 16/256 = 1/16

to load imbalance, where some threads have less work to do
than others because the data cannot be evenly divided. This
is not modeled by our downscaled system, because of the
much smaller thread count. Therefore, it is usually safer to
extrapolate using weak scaling: for a downscaled simulation
that has f times fewer threads than the full system, the full
system will have the same execution time as the simulated
downscaled system on f times larger input data (assuming
that the input can be scaled linearly). For example, if we use
a graph with 1 million vertices to simulate the downscaled
system, the full system will have the same execution time
processing a graph with 256 million vertices. Scaling the input
set with the downscale factor ensures that the amount of work
per thread remains constant, avoiding the need to profile or
model strong scaling limitations.

V. EXPERIMENTAL SETUP

To validate the downscale methodology for large scale
system simulation, we use an adapted version of the Sniper
multicore simulator [4] to simulate an PIUMA-like architec-
ture described above. We also port four graph kernels and ap-
plications to the PIUMA architecture: Random Walks, Graph
Search, Breadth First Search and Application Classification.

A. Evaluated Applications

Random Walks (RW) [16] samples a graph by selecting a
set of source vertices and performing walks by selecting a
random neighbor of the current vertex as the next step. Graph
Search (GS) [23] looks for vertices with a large attribute value.
From a source vertex, it selects the neighbor with the largest
attribute value to walk to, and proceeds from there with the
same algorithm (steepest ascent).

Breadth First Search (BFS) [2] starts from a single source
vertex and traverses the graph breadth-first, i.e., all of a ver-
tex’s children before the children of these children. Application
Classification (AC) [17] detects patterns of malware network
traffic from a large traffic graph by performing subgraph
matching: the malware graph pattern is matched to the full
graph to detect occurrences of this pattern.

We selected these four applications because they have
different behavior (latency, bandwidth or compute bound) and
they represent common graph operations (fetching neighbors,
attributes, etc.), which is the designated domain of the PIUMA
processor design. A common characteristic of all four appli-
cations is that they have a random uniform access pattern:
each memory operation accesses each memory controller in a
uniform way. In other words, there is no locality, which means

most accesses go to another memory controller than the one
closest located to the core it is executing.

To evaluate new applications in our infrastructure, we ported
them to the SPMD programming model for PIUMA, and
optimized them to efficiently support large thread counts,
system-wide shared memory and user-level scratchpads. We
run all applications on synthetic RMAT graphs [6] with scale
24 (16 million vertices). For Application Classification (AC),
we use an RMAT scale 14 graph as the data graph, and a
pattern graph of 10 vertices.

B. Analytical model

Because we cannot practically simulate full systems, we
cannot compare our downscale method against full system
simulation results, nor can we compare against machine mea-
surements, because the system we model does not yet exist.
However, because the applications are relatively simple and the
pipelines are single-issue in-order processors, it is possible to
predict the performance pretty accurately using an analytical
model. The model takes into account the performance of the
innermost loop, by counting the number of instructions and
memory operations, and also taking into account memory and
network bandwidth and latency.

The general idea of the model is that performance is
either limited by the pipelines, memory bandwidth or network
bandwidth. It calculates the minimum execution time of all
iterations of the innermost loop in the pipeline, by adding the
latency of all instructions of the loop, including the average
latency of the memory operations. This time is divided by the
total thread count, assuming perfect workload balance across
threads.

Next, the amount of memory accessed is calculated by
multiplying the memory accesses and sizes in the innermost
loop with the iteration count. This number is divided by the
aggregate memory bandwidth, i.e., adding the bandwidth of
all memory controllers, to get the minimum time required to
perform the memory operations.

We also estimate the amount of network traffic by assuming
a uniform random distribution of remote memory accesses,
which is a good approximation for most graph applications.
Because the lower levels of the HyperX network topology are
more densely connected than the higher levels, and network
traffic is uniform, the network bottleneck is usually situated at
the highest level (e.g., the inter-node network level for multiple
nodes). Therefore, we calculate the bisection bandwidth on
the highest level, i.e., the total bandwidth between two equal
halves of the system. By dividing the estimated bisection traffic

TABLE III
CONFIGURATIONS SIMULATED AND PROJECTED (“wN xT yC zP” MEANS w

NODES, x TILES PER NODE, y CORES PER TILE AND z PIPELINES PER CORE).

Dense Downscale
simulated extrapolated to factor

1n 1t 1c 4p 1n 1t 1c 1p 1n 1t 1c 4p 4×
1n 1t 2c 4p 1n 1t 2c 1p 1n 1t 2c 4p 4×
1n 1t 4c 4p ↪→ 1n 1t 4c 4p 8×
1n 1t 8c 4p ↪→ 1n 1t 8c 4p 16×
1n 2t 8c 4p 1n 2t 2c 1p 1n 2t 8c 4p 16×

1n 4t 2c 1p 1n 4t 8c 4p 16×
↪→ 1n 8t 8c 4p 32×
↪→ 1n 16t 8c 4p 64×

2n 4t 2c 1p 2n 16t 8c 4p 64×
4n 4t 2c 1p 4n 16t 8c 4p 64×
8n 4t 2c 1p 8n 16t 8c 4p 64×

↪→ 16n 16t 8c 4p 128×
↪→ 32n 16t 8c 4p 256×

by this bandwidth, we obtain the minimum time needed to
transfer the data across the network.

Finally, we assume that pipeline latency, memory access
time and network time are overlapping, so the final execution
time estimation equals the maximum of these three timings.
The analytical model has several assumptions that might
or might not be valid for the evaluated workload, such as
assuming perfect balance, uniform access patterns and limiting
the application to the innermost loop only. It also only takes
into account averages, ignoring the impact of traffic bursts.
Furthermore, it involves a detailed study of the assembly
instructions of the inner loop of the application, to determine
the instruction count, types and memory behavior. The down-
scale simulation method requires a specific configuration of
the simulator, but once that it is determined, it can simulate
most applications unchanged, making its applicability and ease
of use better than that of the analytical model. It also more
accurately simulates the effect of individual events, such as
temporary imbalance and bursts.

VI. VALIDATION

In this section, we use our experimental setup to evaluate
and validate our downscale method. We compare against two
other methods:
• Full simulation: we simulate all threads, pipelines, cores,

tiles and nodes of a part of the system. Given the high
overhead of full simulation, we could simulate up to 2
nodes for RW and GS. For AC and BFS, we simulate up
to 2 and 4 tiles respectively.

• Analytical model: described in the previous section.
The downscale simulation and the analytical model are vali-
dated on a small scale system by the full simulation. Although
there is no golden reference for the large scale system, if both
the analytical model and the downscale simulation method
agree, the confidence in both techniques is high.

In order to have multiple points of comparison and to show
that the downscale model is able to accurately track scaling
trends, we perform multiple simulations or projections per
application, starting from one core up to 32 nodes. Table III

2.4E-4

9.8E-4

3.9E-3

1.6E-2

6.3E-2

2.5E-1

1.0E+0

1 4 16 64 256 1024 4096

E
x
e

c
u

ti
o
n
 t
im

e
 (

s
)

PIUMA cores

analytical model scaledown sim full sim perfect
1 tile 1 node 32 nodes

Random Walks (RW)

2.4E-4

9.8E-4

3.9E-3

1.6E-2

6.3E-2

2.5E-1

1.0E+0

1 4 16 64 256 1024 4096
E

xe
c
u
ti
o

n
 t
im

e
 (

s)

PIUMA cores

analytical model scaledown sim full sim perfect

1 tile 1 node 32 nodes

Graph Search (GS)

6.1E-5

2.4E-4

9.8E-4

3.9E-3

1.6E-2

6.3E-2

2.5E-1

1.0E+0

1 4 16 64 256 1024 4096

E
xe

cu
ti
o

n
 t
im

e
 (

s
)

PIUMA cores

analytical model scaledown sim full sim perfect

1 tile 1 node 32 nodes

Application Classification (AC)

1.6E-2

6.3E-2

2.5E-1

1.0E+0

4.0E+0

1.6E+1

6.4E+1

1 4 16 64 256 1024 4096

E
xe

cu
tio

n
 t
im

e
 (

m
s)

PIUMA cores

analytical model scaledown sim full sim perfect

1 tile 1 node 32 nodes

Breadth First Search (BFS)
Fig. 2. Comparison between full simulation, downscaled simulation, analyt-
ical model and perfect scaling model.

0

0.2

0.4

0.6

0.8

1

RW GS AC BFS

IP
C

full scaledown

0%

20%

40%

60%

80%

100%

RW GS AC BFS

m
e

m
o

ry
 B

W
 u

s
a
g

e

full scaledown

0%

20%

40%

60%

80%

100%

RW GS AC BFS

n
e
tw

o
rk

 B
W

 u
s
a

g
e

full scaledown

Fig. 3. Comparison between full 2-tile simulation and scaledown simulation, in terms of IPC, memory bandwidth usage and network bandwidth usage.

shows the configurations evaluated for the dense sampling
and for the downscale simulations, including how they are
extrapolated. The scaling factor in the table is the factor by
which the execution time is divided or input is scaled up for
the extrapolation.

Figure 2 shows the results of the validation study, comparing
the full simulation, downscale simulation method and the
analytical model from 1 to 4,096 cores (or 32 nodes). Note
that BFS has no results for the dense sampling at 1 and 2
cores because the core local storage is too small to execute
the algorithm on 1 and 2 cores. For comparison, we also add
a perfect scaling curve (execution time equals the execution
time of one core divided by core count), to show that both the
downscale model and the analytical model track the scaling
effects in a more detailed way than a simple perfect scaling
model.

For the configuration for which we have full simulation
results, the full simulation, scaledown simulation and analyt-
ical model results match very well. Within a tile (8 cores),
scaling is perfect as indicated by the dotted line. The network
connecting cores on a tile has the lowest latency and highest
bandwidth, explaining the good scaling. For RW and BFS,
scaling is slightly worse than perfect when going to two tiles
(16 cores). RW and BFS are latency sensitive, the extra latency
introduced by going off-tile reduces its performance. This
behavior is captured by both the downscale simulation and
analytical model, which shows that the downscale simulation
is able to capture the network effects, even though the sim-
ulated thread count is 16 times lower than that of the dense
simulation.

For most applications, we see a larger deviation from perfect
scaling once we go beyond 1 node (128 cores). The inter-node
network links have the longest latency, which is the main
limiting factor for RW and BFS. Furthermore, the uniform
access pattern means that in a multinode system, most accesses
will leave the node, saturating the inter-node links. This is
the the case for Application Classification. Graph Search is
memory bandwidth bound, and because aggregate memory
bandwidth scales linearly with core count, it shows perfect
scaling.

At large core counts (multiple nodes), we notice some
deviation between the analytical model and the scaledown
method, although they follow the same trend compared to
perfect scaling. For RW, the analytical model predicts a
slightly larger execution time. The analytical model assumes
the worst latency for going off-node: first going to another core

on the same tile, then going to another tile, before jumping to
the other node, and the same path on the destination node (to
other tile and other core). Some operations do not need to take
this path, because their local inter-node link already connects
to the destination node. The scaledown method models this
routing more accurately, resulting in a lower average latency
and better performance.

To further validate the accuracy of the scaledown method,
Figure 3 compares the average IPC of a pipeline (max 1), av-
erage memory bandwidth usage (fraction of peak bandwidth)
and average network bandwidth usage for a 2-tile simulation
using a full simulation (2 tiles of 8 cores of 4 pipelines) and
the downscale simulation (2 tiles of 2 cores of 1 pipeline). The
figure shows that for all of these metrics, downscale simulation
method matches full simulation, and it tracks the diversity of
these metrics across the 4 applications.

The results show that scaledown simulation method is
able to accurately model a large scale system while limiting
the simulation size and overhead. It models the effect of
intra-node and inter-node network latency and bandwidth on
performance, and finds scaling bottlenecks. While we show
that an analytical model is also able to track these effects,
downscale simulation is easier to deploy, because it boils
down to a simulation with a slightly changed configuration,
while analytical modeling requires more insight and could
be impossible for more complex applications. Full simulation
is the most accurate projection technique, but also requires
the most time and resources. As an example, the full 2-node
simulation of RW took almost 3 days using 33 high-end Xeon
machines, while the 2-node scaledown simulation took 4.5
hours on one machine.

VII. CONCLUSIONS

We propose a method to perform performance projections
for large scale systems, while keeping the simulation overhead
limited. The system is downscaled at each level, such that
we still model all components (cores, network, memory) and
their effects on performance. By extrapolating the results of a
downscaled simulation, we can project the performance of that
system, either through weak or strong scaling. We show that
the downscale method corresponds well with full simulation
for small scale systems, and that it follows the same trends
as an analytical model, while being more straightforward to
use and potentially more accurate, because it simulates the
(downscaled) application in detail, while an analytical model
is more high-level.

ACKNOWLEDGEMENT

This research was, in part, funded by the U.S. Government.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
U.S. Government.

REFERENCES

[1] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: topology, routing, and packaging of efficient large-scale
networks,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. ACM, 2009, p. 41.

[2] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in SC ’12: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and
Analysis, Nov 2012, pp. 1–10.

[3] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation
of multi-threaded applications,” in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2013, pp. 2–
12.

[4] ——, “Sniper: Exploring the level of abstraction for scalable and
accurate parallel multi-core simulations,” in International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), Nov. 2011.

[5] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 11, no. 3, pp. 28:1–
28:25, Aug. 2014.

[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining, 2004, pp. 442–446.

[7] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. D. Bosschere, “Statistical
simulation: Adding efficiency to the computer designer’s toolbox,” IEEE
Micro, vol. 23, no. 5, pp. 26–38, 2003.

[8] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst., vol. 27, no. 2, pp. 3:1–3:37, May 2009.

[9] S. Eyerman, W. Heirman, I. Hur, and J. B. Fryman, “Programmable
unified memory architecture (PUMA),” FOSDEM 2020, Feb 2020.

[10] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation: Rais-
ing the level of abstraction in architectural simulation,” in International
Symposium on High-Performance Computer Architecture (HPCA-16).
IEEE, 2010, pp. 1–12.

[11] J. Gonzalez, J. Gimenez, M. Casas, M. Moreto, A. Ramirez, J. Labarta,
and M. Valero, “Simulating whole supercomputer applications,” IEEE
Micro, vol. 31, no. 3, pp. 32–45, May 2011.

[12] T. Grass, C. Allande, A. Armejach, A. Rico, E. Ayguadé, J. Labarta,
M. Valero, M. Casas, and M. Moreto, “MUSA: A multi-level simulation
approach for next-generation HPC machines,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2016, pp. 45:1–45:12.

[13] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A.
Evensky, and J. Mayo, “A simulator for large-scale parallel computer
architectures,” Technology Integration Advancements in Distributed Sys-
tems and Computing, vol. 179, 2012.

[14] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelo-
giannakis, and J. Kim, “A detailed and flexible cycle-accurate network-
on-chip simulator,” in IEEE International Symposium on Performance
Analysis of Software and Systems (ISPASS), 2013, pp. 86–96.

[15] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs,
B. Nikolic, R. Katz, J. Bachrach, and K. Asanovic, “FireSim: FPGA-
accelerated cycle-exact scale-out system simulation in the public cloud,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), June 2018, pp. 29–42.

[16] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2006, pp. 631–636.

[17] G. Levchuk, J. Colonna-Romano, and M. Eslami, “Application of
graph-based semi-supervised learning for development of cyber COP
and network intrusion detection,” in Disruptive Technologies in Sensors
and Sensor Systems, R. D. Hall, M. Blowers, and J. Williams, Eds., vol.
10206, International Society for Optics and Photonics. SPIE, 2017,
pp. 67 – 82. [Online]. Available: https://doi.org/10.1117/12.2263543

[18] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed par-
allel simulator for multicores,” in International Symposium on High-
Performance Computer Architecture (HPCA-16). IEEE, 2010, pp. 1–
12.

[19] A. Mohammad, U. Darbaz, G. Dozsa, S. Diestelhorst, D. Kim, and N. S.
Kim, “dist-gem5: Distributed simulation of computer clusters,” in 2017
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2017, pp. 153–162.

[20] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling paral-
lel simulation of large-scale HPC network systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 1, pp. 87–100, Jan
2017.

[21] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Dis-
covering and exploiting program phases,” IEEE Micro, vol. 23, no. 6,
pp. 84–93, Nov 2003.

[22] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson,
and K. Asanović, “RAMP gold: an FPGA-based architecture simulator
for multiprocessors,” in Proceedings of the 47th Design Automation
Conference, 2010, pp. 463–468.

[23] V. Viswanathan, A. K. Sen, and S. Chakraborty, “Stochastic greedy
algorithms,” International Journal on Advances in Software, vol. 4, no. 1,
2011.

[24] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in International Symposium on Computer Architecture (ISCA),
June 2003, pp. 84–95.

https://doi.org/10.1117/12.2263543

	Introduction
	Related Work
	Application sampling
	Fast simulation models
	Parallel simulation

	PIUMA architecture
	Down-Scaling a PIUMA System
	Applications and Extrapolation

	Experimental Setup
	Evaluated Applications
	Analytical model

	Validation
	Conclusions
	References

