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Analyzing and Exploiting Memory Hierarchy Parallelism
With MLP Stacks

Adnan Hasnat, Wim Heirman , and Shoaib Akram

Abstract—Obtaining high instruction throughput on modern CPUs re-
quires generating a high degree of memory-level parallelism (MLP). MLP
is typically reported as a quantitative metric at the DRAM level. However,
understanding the reasons that hinder memory parallelism requires more
insightful metrics and visualizations. This paper proposes a new taxonomy
of MLP metrics, splitting MLP into core and prefetch components and
measuring both miss and hit cache level parallelism. Our key contribution
is an MLP stack, a visualization that integrates these metrics, and connects
then to performance by showing the CPI contribution of each memory level.
The stack also shows speculative parallelism from dependency-bound and
structural-hazard-bound loads. We implement the MLP stack in a proces-
sor simulator and conduct case studies that demonstrate the potential for
targeting software optimizations (e.g., software prefetching), and hardware
improvements (e.g., instruction window sizing).

Index Terms—Performance analysis, memory-level parallelism,
bottleneck identification, cache hierarchy, prefetching.

I. INTRODUCTION

M ODERN Cpus exploit memory-level parallelism (MLP) to
hide the long latency of memory accesses and improve in-

struction throughput. Specifically, CPUs use large instruction windows
and speculative execution to issue independent load/store instructions
to memory. Further, the memory system uses non-blocking caches,
multi-banking, and prefetching to resolve multiple requests simulta-
neously. Application programmers and compiler writers expose MLP
through software prefetching, vectorization, and loop unrolling. Thus,
quantifying, understanding, and extracting MLP is paramount to high-
performance code and hardware development.

To better understand MLP across the memory hierarchy and factors
inhibiting it, this work proposes a visualization called MLP stack,
similar in spirit to the well-known CPI stack [1]. We construct MLP
stacks from a rigorous analysis of parallelism in memory requests across
the memory hierarchy and connect it to the program’s CPI and run-time.

MLP is the average number of useful accesses to DRAM across
cycles with at least one pending access. Simply measuring this metric,
however, does not provide an insightful picture. We identify four aspects
that motivate our work and that we incorporate in our visualization. ➊

First, an architect or performance engineer must know if improving
MLP improves the program’s performance (i.e., connecting MLP to
performance). Caches and speculative execution hide memory latency,
and thus, improving MLP only benefits if the system struggles to hide
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the latency of cache misses. ➋ Second, it is important to understand
the performance impact of cache misses and the resulting cache-level
parallelism. Since DRAM accesses result from misses across all cache
levels, DRAM MLP is limited by the number of concurrent misses
non-blocking caches can support, which is limited by the number of
miss status handling registers (MSHRs). Further, shared cache accesses
increasingly incur high latency due to a complicated interconnection
network [2]. Hence, overlapping shared cache accesses is equally
important. ➌ Third, since prefetchers inject extra memory accesses into
the system, it helps to understand the MLP impact of core and prefetcher
accesses separately. ➍ The final aspect is pinpointing MLP bottlenecks.
Attributing a factor to each bottleneck proportional to its significance
provides useful insight. Our visualization incorporates these four as-
pects to enable targeted hardware and software optimizations.

Our proposed MLP stack integrates MLP across the memory hier-
archy and the issue queue to provide a better insight into the MLP of a
program. Along with DRAM MLP, we quantify and show cache-level
parallelism (CLP) split into miss and hit CLP, developing a new MLP
taxonomy. Our stack also shows the cycles (or run-time) spent waiting
for accesses to each cache level and DRAM, indicating the degree to
which out-of-order (OOO) execution hides memory latency. Finally,
our proposed stack helps visualize MLP improvements if the OOO
CPU could resolve specific hazards inhibiting load execution.

We implement the MLP stack in the Sniper architectural simulator [3]
and explore case studies on real programs. These case studies provide
insight into MLP across the memory hierarchy and inform computer ar-
chitects and programmers where to target optimizations and understand
their true impact.

II. RELATED WORK

MLP is an established metric, and much prior work aims to exploit
it. We discuss the most relevant works. Chou et al. [4] propose a
framework for studying MLP called the epoch model, which breaks
execution down into windows based on certain microarchitectural
events. Their proposed stack shows MLP bottlenecks, but does not
connect them to performance. They also do not study cache impacts.
Mehta et al. [5] use performance counters and Little’s law to quantify
MLP on real hardware. They connect peak MLP to MSHR capacity, and
target software optimizations based on the gap between observed and
peak MLP. We use architecture simulation to provide a detailed view
of the processor’s execution and avoid their theoretical assumptions.
Tang et al. [2] propose a compiler approach to co-optimize cache and
memory-level parallelism. Finally, Carlson et al. [6] propose epochs
per kilo instructions (EPKI) as a metric to understand the performance
impact of MLP. They propose epoch profiles that connect instruction
window size and cache capacity to EPKI, whereas we propose an
intuitive visualization for understanding MLP.
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III. VISUALIZING MLP WITH MLP STACKS

We first provide a new MLP taxonomy for OOO CPUs to supplement
traditional (average DRAM) MLP. We then build our visualization, the
MLP stack, that visualizes different types of MLP and connects them
to their performance impact.

A. MLP Taxonomy

1) Traditional MLP: At any given time t, one can directly mea-
sure the number of concurrent DRAM accesses, giving us the instan-
taneous MLP, MLP (t). Measuring MLP (t) at all points in time
throughout the program’s execution provides a complete view of MLP,
but it is tedious to collect and analyze so many points. Thus, tradition-
ally, the notion of average MLP is suitable, which we denote MLP ,
defined as the average number of accesses to DRAM per cycle where
there is at least one access to DRAM. If T (DRAM) is the number of
cycles spent accessing DRAM, then the formula for MLP is below.

MLP =

∑
t MLP (t)

T (DRAM)
(1)

The above definition deliberately excludes idle cycles (when there
is no access to DRAM) in the denominator. Considering idle cycles
decreases MLP, which is misleading. DRAM may be idle due to
desirable reasons, e.g., high cache locality. The processor waits for
memory (i.e., memory bound) when there is at least one access to
DRAM, which is when we want to overlap memory accesses. This
denominator implies, MLP ≥ 1.

2) Extending MLP for Prefetches: To isolate the effect of
prefetches, we split MLP into parts due to core-generated (MLPC ) and
prefetch-generated (MLPP ) accesses. We make the denominators we
average over forMLPC andMLPP the same, i.e., time spent accessing
DRAM, whether a core or prefetch. This choice splits MLP neatly into
two summands and is also desirable because we want to overlap core
accesses with both core and prefetch accesses. Hence, we consider
cycles when either core or prefetch access is happening. We note that
some prefetched data is never used by the core (useless prefetches).
We split prefetch MLP further into useful and useless prefetch MLP.

3) Extending MLP for Caches: We now quantify the parallelism
of cache accesses, considering both cache hit and miss parallelism.
The former determines the overlapping latency of cache accesses,
and the latter indicates the MSHR contention. The total cache access
parallelism includes both hits and misses. We define the instantaneous
versions of these metrics below.
� TCLP (Ln, t): total (hits and misses) number of accesses at level

Ln and time t,
� MCLP (Ln, t): pending misses at level L and time t,
� HCLP (Ln, t): pending hits at level L and time t.
We define the core and prefetch components of the above CLP

metrics to isolate accesses attributed to the core and prefetch separately.
For example, HCLPC(L3, t) is the hits that are core accesses at level
L3 and time t. We use XCLP to denote the specific type of CLP
given by an arbitrary variable X . For example, X = M gives MCLP ,
X = H gives HCLP .

However, we must choose a suitable denominator when computing
an average for these metrics. The most obvious choice is to average each
of the XCLPi(Ln, t)s over the number of cycles where it is at least
one. However, this would cause the denominators applied to different

levels to be different, and we would lose the following properties obeyed
by the instantaneous versions of the metrics:
� An access at level Ln must also be pending

miss at all previous levels Lk, we have TCLPC

(Lm, t) ≤ TCLPC(Ln, t) and MCLPC(Lm, t) ≤
MCLPC(Ln, t) for m > n. Prefetch CLP does increase at any
levels where new prefetches are actively injected but decreases
at any levels beyond that, implying MLP (t) ≤ MCLP (Ln, t)

for all n, since any access that reaches DRAM is pending as a
miss at all prior levels,

� TCLP (Ln, t) = MCLP (Ln, t) +HCLP (Ln, t).
Losing these properties makes the metrics less intuitive by obscuring

the expected relationships between them. In consequence, building a
stack that conveys a cohesive picture becomes hard. Hence, we use the
following denominator for all averages: the total time spent accessing
any level of the memory hierarchy, which we denote T (Hier). Doing
this resolves the issue but requires us to use the same denominator
for DRAM MLP, i.e., T (Hier) instead of T (DRAM). Thus, unlike
the prior art, the denominator choice in our MLP definition considers
the memory hierarchy holistic rather than DRAM alone, enabling us
to propose a cohesive visualization of MLP metrics discussed so far.
Ultimately, we have:

XCLP (Ln) =

∑
t XCLP (Ln, t)

T (Hier)

We also redefine MLP at the DRAM level to:

MLP =

∑
t MLP (t)

T (Hier)

4) Speculative MLP: We consider the MLP of loads unable to
issue in any cycle due to dependent address computation (dependency
bound or DP-bound) or resource starvation (structural hazard bound or
ST-bound). We estimate extra MLP such loads could provide, gaining
insight into the type of optimization that can help. We hence define
average DP-bound and ST-bound speculative MLP as the average
number of loads in the issue queue that are either DP or ST-bound
per cycle where there is at least one access to the memory hierarchy.

B. Building MLP Stacks

We now combine different MLP metrics in the form of an MLP stack.
We also interpose MLP in our visualization with the CPI stack [1] to see
its relationship to performance. A CPI stack attributes portions of the
program’s CPI to specific bottlenecks, including time spent waiting for
access to various memory levels. Combining CPI with MLP provides
a first-order indication of MLP’s connection to performance, as we can
observe the time lost waiting for memory accesses. The MLP stack
shows that insufficient MLP is the reason for the inability of the CPU
to overlap memory access latencies.

We build separate MLP stacks for hit, miss, and total MLP. Fig. 1
shows a canonical MLP stack. The boxes in each stack represent dif-
ferent components of CPI and their corresponding MLP. For example,
DRAM shows the contribution of DRAM accesses to CPI on the Y-axis,
and DRAM MLP on the X-axis. Similarly, the stack shows different
cache components of CPI and their CLP. Total stack shows TCLP,
miss stack shows MCLP and hit stack shows HCLP. Speculative MLP
represents hidden MLP due to non-issued loads. Finally, unrelated to
MLP, compute shows the CPI of non-memory components.

In each graph, the horizontal dimension provides information about
MLP. The DRAM and cache components in the horizontal dimension
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Fig. 1. Canonical MLP stack. The X-axis showing memory-level parallelism,
and the Y-axis shows different components of program’s CPI.

have a width corresponding to their average parallelism. This paral-
lelism is also split horizontally between the core, useful prefetch, and
useless prefetch components using different brightnesses of colors, with
the total width indicating the total parallelism (core + prefetch) at that
level. In the miss stack, the parallelism shown horizontally is MCLP,
which indicates MSHR occupancy, while in the hit stack, it is HCLP,
which represents overlapping accesses to that level.

Meanwhile, the vertical dimension provides important information
about CPI. The DRAM and cache boxes have heights equal to the
total number of cycles with at least one access at that level. Then,
the vertical position of each of these boxes corresponds to its CPI
component, with each box overlapping with the next and the positions
being such that the distance from the bottom of each box to the bottom
of the next box, i.e., the exposed vertical distance, is equal to the CPI at
that level. For instance, the L1 box begins at vertical position 0 while
the L2 box begins at vertical position CPI[L1] (making the exposed
height of the L1 box CPI[L1]− 0 = CPI[L1]). The L3 box begins
at vertical position CPI[L1] + CPI[L2] (so the exposed height of
the L2 box is CPI[L1] + CPI[L2]− CPI[L1] = CPI[L2]) and so
on. The DRAM box is then overlapped by the compute box, whose
height represents the remaining non-memory CPI. The hidden part of
the height of each box then represents the time when that memory
component is active but not seen by the CPU due to its overlap with
computation.

For the speculative MLP components, identifying ready but non-
issued (ST-bound) and non-ready (DP-bound) loads in a cycle is
straightforward. The width of st-bound and dp-bound in Fig. 1
shows their MLP. To set the height of these components, we measure
the time these unresolved loads in the issue queue contribute to the
total execution time. In the original CPI stack, this height is part of the
compute CPI component (the purple box).

IV. EVALUATION

A. Methodology

We implement MLP stacks in Sniper v8.0, modifying its detailed
(ROB) model. During each simulation interval, we iterate over entries
in the instruction window to identify executing loads, including where
they hit in the hierarchy, useful/useless prefetches, and loads unable to
issue due to structural hazard or dependence. We find the denominator
for calculating average MLP by counting the total number of cycles
with access to any memory level. We then use the formulae above to
compute the MLP metrics for the three stacks.

We use the v1.3 release of GAPBS benchmarks [7]. We use a
uniform-random graph with 216 vertices and default node setting. We
exclude the graph generation from the simulation. We show results for
a memory-intensive and a compute-intensive kernel, namely, Between-
ness Centrality (BC) and PageRank (PR). We compile the benchmarks
with GCC 11 using production compiler settings. We also use a sparse
matrix-vector multiplication (SPMV) kernel with a 256 MB vector size
for a case study involving software prefetching.

We simulate the Intel Gainestown CPU used in the 5500 series
Xeon cores based on the Nehalem microarchitecture. We use an MSHR
capacity of 16 across all cache levels and a linear stride prefetcher at
L2. We use a sampling frequency of one sample per 16 ROB simulation
intervals, resulting in a less than 1% accuracy loss compared to sampling
every interval.

B. Case Studies

The top row in Fig. 2 shows the total, hit, and miss MLP stacks
(no prefetching) for BC. Looking at the total MLP stack, we observe
limited DRAM MLP but high L1 MLP. One key insight the MLP stack
provides is that improving the L1 and L2 MLPs brings limited benefits
because of their negligible contribution to CPI. An engineer must focus
on exploiting the L3 and DRAM MLP more. We also observe that MLP
at these levels is below the peak achievable MLP of 16 (i.e., the MSHR
capacity). Comparing the miss and hit MLP stacks informs us it may
help more to focus on reducing the latency of concurrent cache hits
than enabling more miss-level parallelism. We also do not see much
MLP among loads that are ready but unable to issue due to structural
hazards. On the other hand, MLP is high among data-dependent loads,
and microarchitectural optimizations must focus on issuing as many of
these dependent loads as possible to exploit more MLP.

Fig. 2(d), (e), and (f) shows the MLP stack of BC with O0, O0 with
prefetching, and O3 with prefetching. MLP is exploited much better
with O3 optimization in Fig. 2(a). Enabling hardware prefetching in
O0 brings limited benefits in terms of MLP as there is not much MLP
to begin with, showing the interaction of compiler optimizations and
hardware prefetching at the memory level. In Fig. 2(f), we observe
an increase in MLP at L2, L3, and DRAM levels due to hardware
prefetching and wasted MLP due to useless prefetches. These stacks
provide insight to the architect about the usefulness of prefetching,
and its interaction with the memory hierarchy. Note that run-time (Y-
axis) is a better metric for comparing optimizations that change the
instruction count. We can trivially change the Y-axis to run-time from
CPI if needed. Finally, Fig. 2(g) shows the MLP stack of the compute-
bound PR with high speculative MLP but negligible DRAM CPI.

Fig. 2(h) and (i) shows the MLP stack for SPMV with hardware
prefetching (h) and with software prefetching as well (i). We do a soft-
ware prefetch at a stride of 4 when accessing the vector with non-zero
matrix values. We hypothesize that additional software prefetches inject
additional DRAM MLP, which should be visible in the graph. We only
show the total MLP stack because cache MLPs are obscured entirely
by DRAM in the miss and hit stacks. Instead, we observe a dramatic
increase in L1 MLP in Fig. 2(i) and a reduction in DRAM MLP. This
result is because software prefetching increases the L1 hit rate and re-
duces the number of accesses to DRAM. If we observe the DRAM MLP
as a quantitative metric in isolation, we may conclude that performance
and memory behavior degrades due to software prefetching. However,
observing L1 MLP in the proposed stack provides more insight into the
true impact of software prefetching.
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Fig. 2. Top row shows total (a), hit (b), and miss (c) MLP stacks for BC compiled with O0 and no prefetching. The middle row shows the miss MLP stack
for BC with O0 (d), BC with O0 and hardware prefetching (e), and BC with O3 and hardware prefetching (f). The bottom row shows the total MLP stack for the
compute-bound PR with O3 and no prefetching (g), SPMV with O3 and hardware prefetching (h), and SPMV with hardware and software prefetching (i).

V. CONCLUSION AND FUTURE WORK

We have proposed a new visualization to enhance the performance
architect’s toolbox, namely the MLP stack. MLP stack connects MLP
to performance and provides directions for targeting software opti-
mizations and hardware improvements. Our case studies in this paper
specifically show that the MLP stack offers greater insight into the
changing MLP behavior across the memory hierarchy due to various
software optimizations. Future work will use MLP stacks for balanced
memory system design, and investigate multithreaded applications. We
will also study new ways of exploiting speculative MLP.
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