
ARTICLE IN PRESS
0167-9260/$ - se

doi:10.1016/j.vl

�Correspond
E-mail addr

iartundo@tona
INTEGRATION, the VLSI journal 40 (2007) 382–393

www.elsevier.com/locate/vlsi
Predicting reconfigurable interconnect performance
in distributed shared-memory systems

W. Heirmana,�, J. Dambrea, I. Artundob, C. Debaesb,
H. Thienpontb, D. Stroobandta, J. Van Campenhouta

aELIS Department, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
bTONA Department, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium

Received 28 October 2005; received in revised form 9 May 2006; accepted 11 May 2006
Abstract

Reconfigurable interconnection networks have been shown to benefit performance in distributed shared-memory multiprocessor

machines. Usually, performance measurements for these networks require large numbers of slow full-system simulations, making design-

space exploration a cumbersome and time-consuming task. In this paper, we present a prediction model for the performance of a

reconfigurable network, based on a single full-system simulation and a much shorter, per parameter set post-processing phase. We

provide simulation results establishing the relative accuracy of the technique and analyze the impact of several assumptions that were

made. With our method, a quick evaluation of a large range of parameters is now possible, allowing the designer to make well-founded

design trade-offs.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Prediction model; Interconnection network; Reconfiguration; Distributed shared-memory
1. Introduction

Electrical interconnection networks connecting the
different processors and memory modules in a modern
large-scale multiprocessor machine are running into several
physical limitations [1]. In shared-memory machines, where
the network is part of the memory hierarchy [2], the ability
to overlap memory access times with useful computation is
severely limited by inter-instruction dependencies. Hence, a
network with high latencies causes a significant perfor-
mance bottleneck.

It has been shown that optical interconnection technol-
ogies can alleviate this bottleneck [3,4]. Mostly unhindered
by crosstalk, attenuation and increased capacitive busload,
these technologies will soon provide a cheaper, faster and
smaller alternative to electrical interconnections, on
distances from a few centimeters upward. Massively
e front matter r 2006 Elsevier B.V. All rights reserved.

si.2006.05.001

ing author. Tel.: +329 264 95 27; fax: +329 264 35 94.

esses: wim.heirman@elis.ugent.be (W. Heirman),

.vub.ac.be (I. Artundo).
parallel inter-chip optical interconnects [5–7] are already
making the transition from lab-settings to commercial
products.
Optical signals may provide another advantage: the

optical pathway can be influenced by components like
steerable mirrors, liquid crystals or diffractive elements. In
combination with tunable lasers or photodetectors these
components will enable a runtime reconfigurable inter-
connection network [8,9] that supports a much higher
bandwidth than what is achievable through electrical
reconfiguration technology. From a viewpoint higher in
the system hierarchy, this would allow us to redistribute
bandwidth or alter the network topology such that node-
pairs that communicate intensely have a direct high-
bandwidth, low-latency connection.
However, the switching time for most of these compo-

nents is such that reconfiguration will necessarily take place
on a time scale that is significantly above that of the
individual memory accesses. The efficiency with which such
networks can be deployed will therefore strongly depend
on the temporal behavior of the interprocess data transfer

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2006.05.001
mailto:iartundo@tona.vub.ac.be
mailto:iartundo@tona.vub.ac.be


ARTICLE IN PRESS

NI

CacheMem

CPU

Network

NI

CacheMem

CPU

NI

CacheMem

CPU

Fig. 1. Schematic overview of a multiprocessor machine. For message-

passing machines, the network traffic is under control of the application.

In shared-memory machines, network traffic is generated by the network

interfaces (NI) in response to non-local memory accesses by a processor.

W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393 383
patterns. We have characterized the locality in both time
and space of the traffic flowing over the network in [10],
using large-scale simulations of the execution of real
benchmark programs with a simulation platform based
on the Simics multiprocessor simulator [11]. We have
found that long periods of intense communication occur
between node pairs suggesting that slowly reconfiguring
networks can result in a significant application speedup.
Subsequently, we have included the model of a specific
reconfigurable network in our simulator, enabling us to
measure the attained speedup [8].

When designing the interconnection network for a new
line of machines, one would typically like to simulate the
speedup of a number of benchmark applications for a
range of network parameters, allowing the designer to
make the right trade-offs. This can easily require thousands
of simulation points. In a full-system simulation, the full
machine is modeled, including processors, caches, mem-
ories and the interconnection network, allowing the traffic
on the network to be driven by the actual benchmark
application. However, one such simulation can take up to
several days to complete, so it is impractical, or even
impossible, to do a full-system simulation for each bench-
mark application and each set of network parameters. The
typical solution for this problem is not to employ full-
system simulation but to only model the interconnection
network. The network traffic is now no longer generated by
an actual parallel application, but by a statistical traffic
generator [12]. These traffic generators are usually good for
modeling simple traffic such as uniform distributions or
broadcasting behavior, which can suffice to evaluate static
networks. The reconfigurable networks we propose, how-
ever, depend on low-frequency dynamics of the network
traffic such as bursts, which are not sufficiently modeled in
existing traffic generators.

Rather than trying to incorporate complicated dynamics
into existing traffic generators, we choose to develop a new
technique that takes an actual traffic trace as its input, as
generated by one full-system simulation. We presented this
technique in [13]. In the present paper, we extend our
prediction model to handle network implementations that
require a more complex extra link selection algorithm, and
apply it to evaluate a reconfigurable network with more
realistic topology parameters. We also show simulations
for a much wider range of network parameters, showing
the high relative accuracy of our technique.

Finally, note that although most of the technological
arguments given in this paper are aimed towards an
implementation of the reconfigurable network using optics,
the application of our prediction model is not limited to
optical networks. Any technology that can implement a
run-time adaptable topology that fits our general network
architecture can be evaluated using this technique.

In Section 2, we describe in more detail the architecture
of both the shared-memory machine and the reconfigurable
network that were used in this study. Section 3 gives the
methodology that was followed to obtain the communica-
tion patterns. The prediction model is presented in
Section 4. Section 5 gives the prediction results and
compares them with the actual speedup. We also introduce
some improvements in our network architecture and show
that the prediction method can be adjusted accordingly. In
Section 6, some future work is discussed. The conclusions
are summarized in Section 7.

2. System architecture

2.1. Multiprocessor architecture

Multiprocessor machines come in two basic flavors:
those that have a tight coupling between the different
processors and those with a more loose coupling. Both
types can conceptually be described as consisting of a
number of nodes, each containing a processor, some
memory and a network interface, and a network connect-
ing the different nodes (Fig. 1). In the extreme end of the
loosely coupled family we find examples such as the
Beowulf cluster [14], in which the network consists of a
commodity technology such as Ethernet. This simplistic
interconnection network, connected to the processors
through several layers of I/O-busses, results in relatively
low throughput (1Gbps per processor) and high latency
(several hundred microseconds). These machines are
necessarily programmed using the message passing para-
digm, and place a high burden on the programmer to
efficiently schedule computation and communication.
Tightly coupled machines usually have proprietary

interconnection technologies that are situated at an
architectural level that is much closer to the processor,
resulting in much higher throughput (tens of Gbps per
processor) and very low latency (down to a few hundred
nanoseconds). This makes them suitable for solving
problems that can only be parallelized into tightly coupled
subproblems (i.e., that communicate often). It also allows
them to implement a hardware-based shared-memory
model, in which communication is initiated when a
processor tries to access a word in memory that is not on
the local node, without programmer’s intervention. This
makes shared-memory-based machines relatively easy to
program. Since the network is now part of the memory



ARTICLE IN PRESS

base network (fixed)
extra links (reconfigurable)

Fig. 2. Reconfigurable network topology. The network consists of a base

network, augmented with a limited number of direct, reconfigurable links.

observer

network

reconfiguration extra links live

tSe tSw

selection

measurement

Δt

time

Fig. 3. The observer measures network traffic, and after each interval of

length Dt makes a decision where to place the extra links. This calculation

takes an amount of time called the selection time (tSe). During the

switching time (tSw), reconfiguration will take place making the extra links

temporarily unusable.

W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393384
hierarchy, it also makes such machines much more
vulnerable to increased network latencies.

Modern examples of the latter class of machines range
from small, 2- or 4-way SMP server machines (including
dual-core processors where both CPUs are on the same
silicon chip), over mainframes with tens of processors (Sun
Fire, IBM iSeries), up to supercomputers with hundreds of
processors (SGI Altix, Cray X1). The larger types of these
machines are already interconnect limited, and since the
capabilities of electrical networks are evolving much more
slowly than processor speeds, they make very likely
candidates for the application of reconfigurable optical
interconnection networks.

For this study, we consider a machine in which
coherency is maintained through a directory-based coher-
ency protocol. This protocol was pioneered in the Stanford
DASH multiprocessor [2], and is, in one of its variants,
used in all modern large shared-memory machines. In this
computing model, every processor can address all memory
in the system. Accesses to words that are allocated on
the same node as the processor go directly to local
memory, accesses to other words are intercepted by the
network interface. This interface will generate the necessary
network packets requesting the corresponding word
from its home node. Since processors are allowed to keep
a copy of remote words in their own caches, a cache
coherency protocol has to be implemented. The network
interfaces keep a directory of which processor has which
word in its cache, and make sure that, before a processor
is allowed to write to a word, all copies of the same word
in the caches of other processors are invalidated. Network
traffic thus consists of both coherency-related traffic
(control packets such as invalidate requests) and data
traffic (words that were not in a cache due to cold, conflict,
capacity or coherency misses). Therefore, one memory
access can take the time of several network round trips
(hundreds of nanoseconds). This is much more than
the time that out-of-order processors can occupy with
other, non-dependent instructions, but not enough for the
operating system to schedule another thread (simultaneous
multithreading (SMT) can help in this case, but has
very limited gain in practice). This makes it very difficult
to effectively hide the communication latency, and makes
the system performance very much dependent on network
latency.

2.2. A simple reconfigurable network architecture

Previous studies concerning reconfigurable networks
have mainly dealt with fixed topologies (usually a mesh
or a hypercube) that allowed swapping of node pairs,
incrementally evolving the network to a state in which
processors that often communicate are in neighboring
positions [15,16]. However, algorithms to determine the
placement of processors turned out to converge slowly, or
not at all when the characteristics of the network traffic
change rapidly.
Therefore, we assume a different and more modest
network architecture in this study. We start from a base
network with fixed topology. In addition, we provide a
second network that can realize a limited number of
connections between arbitrary node pairs—these will be
referred to as extra links or elinks. A schematic overview is
given in Fig. 2. To simplify routing the elinks are used
exclusively by the two linked nodes, multihop transfers use
only the base network.
An advantage of this setup, compared to other

topologies that allow for more general reconfiguration, is
that the base network is always available. This is most
important during periods where the extra network is
undergoing reconfiguration and may not be usable
(Fig. 3). Routing and reconfiguration decisions are also
simplified because it is not possible to completely
disconnect a node from the others—all nodes are at all
times connected through the base network.
To make optimal use of the extra connections, they

should speed up memory accesses that are in the critical
path of the application. Since it is very hard, if not
impossible, to determine which accesses are in the critical
path of any given application, we place the elinks between
the node pairs where communication is the most intense
(measured in bytes transferred per fixed-length time
interval). This way, congestion—and the resulting la-
tency—can be avoided, and a large fraction of the traffic,
hopefully including most of the critical accesses, can be
given a single-hop pathway, minimizing routing and
arbitration delays and resulting in the lowest possible



ARTICLE IN PRESS

Fig. 4. Schematic representation of the complete reconfigurable optical

interconnect. A processor node transmits data on one of nine wavelengths

l1 . . . l9. The selective optical broadcast element (SOB) distributes the

signal towards nine fellow processor nodes. Since every receiving

processor node is sensitive to one wavelength only, the target processor

node is selected by emitting at the appropriate wavelength.

1An optical interconnection (light source ! waveguide ! detector) is

unidirectional. Elinks as defined in this work are bidirectional and

therefore consist of two such assemblies, but each elink still counts as only

one when computing the fanout. In theory, it is not necessary for the elinks

to be bidirectional. However, since the implementation of a shared-

memory model uses a request–response protocol it is not considered very

useful to speed up the request but not the response or vice versa.

W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393 385
latency. The remaining traffic will use the base network,
possibly being routed over several intermediate nodes, and
hence will experience a higher latency.

Since the network traffic changes over time, the node
pairs with the most intense communication will change so
we need to revise the position of the elinks over time.
Therefore, we reconfigure the network at specific intervals,
the length of each interval being a (fixed) parameter of the
network architecture (the ‘reconfiguration interval’, de-
noted by Dt). Traffic is observed by a reconfiguration entity
during the course of an interval, and total traffic between
each node pair is computed. At the end of the interval the
new positions of the elinks are determined and the network
configuration is updated accordingly. Computing the new
configuration takes time, the selection time (tSe). Its
duration depends on the complexity of the selection
algorithm and the method of implementation (in hardware
or software). In addition, the reconfiguration itself is not
immediate: depending on the technology, reconfiguration
can take from 100ms up to several ms, this is the switching

time (tSw). Therefore, the reconfiguration interval Dt will be
one of the most important parameters. It should be long
enough to amortize on the cost of reconfiguration, during
which the elinks are unusable, but it must be sufficiently
short to keep pace with the changing demands made by
the application. Being able to quickly evaluate different
reconfiguration times (and other network parameters),
which is made possible by the technique described in
this paper, enables a network designer to make the right
trade-offs.

2.3. Implementation

The physical implementation of the reconfigurable
optical network we envision can be done by using low-
cost tunable laser sources, a broadcast-and-select scheme
for providing the extra optical links, and wavelength
selective receivers on every node (Fig. 4). For the
transmission side, vertical cavity surface emitting lasers
(VCSELs) are preferred for their low power consumption,
easy array integration and coupling into optical fibers.
Their tuning range (a few tens of channels) and speed
(between 100ms and 10ms) is adequate for following the
traffic patterns targeted in this study. The broadcasting can
be done through the use of a starcoupler-like element that
reaches all the nodes. By tuning the laser source, the right
destination is addressed. When scaling up to tens of nodes
or more this is no longer feasible: the number of available
wavelengths is finite, also such a wide broadcast would
waste too much of the transmitted power. In this case, a
component like a diffractive optical prism can be used,
which broadcasts light from each node to its own subset of
receiving nodes. On the receiving side, resonant cavity
photodetectors (RCPDs) make each node susceptible to
just one wavelength. Integration of all these optical
components has been proven and optical interconnects
are currently arriving to the midrange servers. More
information about this envisioned implementation can be
found in [8].
The simple network model from Section 2.2 provides us

with a unified, parameterized architecture that allows us to
analyze and simulate several types of implementations. A
realistic implementation like the one just described will, of
course, impose some limitations. For instance, the selective
optical broadcast device only allows a subset of all node
pairs to be directly connected with an elink. However, for
the current study we do not yet take these limitations into
account. Extending our work of [13], we did impose a
limitation on the number of elinks that can connect to a
node, here called the fanout. This restriction can be caused
by technological constraints such as a limited off-chip
bandwidth, or as a result of reducing cost by limiting the
number of optical transceivers per node. For instance, the
implementation depicted in Fig. 4 has only one tunable
transmitter and one selective receiver per node, restricting
the fanout to one.1

Another, non-optical implementation of this general
architecture might be a network that is part packet-
switched and part circuit-switched. The base network is
made up by the packet-switched part, for node pairs that
communicate often a circuit can be set up. This provides a
guaranteed, low-latency path for traffic between both



ARTICLE IN PRESS

2In our simulations both are assumed to be zero, but they are reflected

in the reconfiguration interval since the sum of selection and switching

times should be ‘significantly’ shorter than the interval.

W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393386
nodes, allowing them to bypass arbitration and buffering in
the intermediate nodes. Setting up a circuit requires several
packet round-trips, a circuit should therefore stay in place
for a ‘longer’ period of time to amortize on this initial cost
(with ‘long’ meaning a period spanning multiple memory
accesses). The circuit setup time is represented by the
‘switching time’ in our general architecture.

3. Methodology

We have based our simulation platform on the
commercially available Simics simulator [11]. It was
configured to simulate a multiprocessor machine resem-
bling the Sun Fire 6800 server, with 16 UltraSPARC III
processors clocked at 1GHz and running the Solaris 9
operating system. Stall times for caches and main memory
are set to realistic values (two cycles access time for L1
caches, 19 cycles for L2 and 100 cycles for SDRAM). The
directory-based coherency controllers and the interconnec-
tion network are custom extensions to Simics, and model a
full bit vector directory-based MSI-protocol and a packet-
switched 4� 4 torus network with contention and cut-
through routing. For the simulations validating our
predictions, a number of extra point-to-point links can be
added to the torus topology at any point in the simulation.

The network links in the base network are 16 bits wide
and are clocked at 100MHz. In the reported experiments,
the characteristics of an elink were assumed to be equal to
those in the base network, yielding a per-hop latency that is
the same for an elink as for a single base network link.
However, our simulation and prediction methodology
allow for any other latency ratio. Both coherency traffic
(read requests, invalidation messages, etc.) and data (the
actual cache lines) are sent over the network. The resulting
remote memory access times are representative for a Sun
Fire server (around 1ms on average).

Since the simulated caches are not infinitely large, the
network traffic will be the result of both coherency misses
and cold/capacity/conflict misses. To make sure that
private data transfer does not become excessive, a first-
touch memory allocation was used that places data
pages of 8KiB on the node of the processor that first
references them.

The SPLASH-2 benchmark suite [17] was chosen as the
workload. It consists of a number of scientific and technical
applications and is a good representation of the real-world
workload of large shared-memory machines. Because the
default benchmark sizes are too big to simulate their
execution in a reasonable time, smaller problem sizes were
used. Since this influences the working set, and thus the
cache hit rate, the level 2 cache was resized from the 8MiB
on a real UltraSPARC III to 512KiB, resulting in an 80%
hit rate.

The simulation slowdown (simulated time versus simula-
tion time) was a factor of 50,000 resulting in execution
times of several hours per benchmark on a Pentium 4
running at 2.6GHz with 2GiB RAM.
4. Predicting memory access speedup

4.1. Overview

In Section 2.2, it was assumed that the network can
make n connections between arbitrary node pairs, and that
we would choose to connect those node pairs that
communicate most intensely. A restriction is made on the
node fanout, such that at most f elinks can connect to any
one node. Since both the time to compute a new
configuration and the switching time are finite,2 the elinks
have to stay in place for some larger period of time, called
the reconfiguration interval Dt. After every interval of
length Dt, we collect the communication pattern of the last
interval, and place the n elinks between the selected node
pairs that had the most intense communication. We now
derive a prediction of memory access speedup that can be
parameterized for n, f and Dt, which are the most
important parameters for our reconfigurable network.
The speedup prediction is derived using the following

steps:
�
 A single full simulation is done of each benchmark,
using a non-reconfigurable network, yielding a list of
memory accesses and a list of network packets.

�
 Using the list of network packets, the n node pairs that will
be connected with an elink are found for each interval.

�
 The memory accesses that would benefit from the elinks
are identified.

�
 The latency of each memory access is reviewed, for
accesses that benefit from an elink this latency is divided
by a certain factor.

�
 A new average memory latency is computed, providing
a measure of network performance.

In the rest of this section, each of the above stages is
explained in more detail.

4.2. Full simulation

We start by doing one full-system simulation (per
benchmark), using the platform described in Section 3.
Only the base network is active, so this simulation also
serves as the baseline against which we measure the
memory latency improvement made by a reconfigurable
network. Our simulator creates a list of memory references
that cannot be satisfied by the local node, and a second list
of all packets that were sent through the network. Each
memory reference is annotated with the time the request
started, the requesting node, the home node and the
measured access latency. For network packets, we store the
sending time, the source and destination nodes and the
packet size.



ARTICLE IN PRESS

3This assumes the base network links and the elinks have the same

properties. If this is not the case, the 2.13 ratio can be adjusted

accordingly.

W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393 387
4.3. Determining the elinks placement

The packet trace is divided into intervals of length Dt. For
each interval, sums are made of the number of bytes that
were exchanged between each of the pðp� 1Þ=2 node pairs
(with p the number of processors or nodes). The elinks are
bidirectional, so traffic in both directions must be added
together. The node pairs are sorted according to the traffic
they exchanged in this interval. This list is traversed in
descending order, selecting node pairs that will be connected
with an elink. As long as we have not found n node pairs,
every next node pair on the list is selected unless adding an
elink between them violates the fanout restriction.

Instead of blindly using the n links with the most traffic,
some optimizations could be made. It is for instance
possible that a node pair in the top n is already directly
connected by a link from the base network. In this case, the
distance between the node pair is already minimal and
placing an elink between them will not improve latency,
unless adding this link can significantly decrease conges-
tion. This situation is further examined in Section 5.2.2.

Also, in our simulation, elinks are only used for traffic
that has the same endpoints as the link, not for traffic that
might use the elink as only a part of its path. Solving
this limitation would require elink selection and routing
protocols that are significantly more complex than those
in the current network models, and may not be com-
patible with the high-speed low-latency environment inside
a shared-memory machine. Therefore, we have decided
to forego on this issue for now, and delay its study for
future work.

4.4. Correlating memory accesses

The metric that makes network performance visible to the
processors is the memory access latency. Therefore, we now
determine how this memory access latency is affected by the
selection of n node pairs. Every memory access that requires
network traffic is initiated by the processor on one node and
serviced by the directory on another node, the home node of
the memory word. We now connect this memory access to
the node pair made up by these two nodes. If this node pair
was selected for the interval in which the memory access is
made, the access is considered to benefit from an elink. Since
memory access latencies (around 1ms) are significantly
shorter than the considered reconfiguration intervals
(100ms and upwards), there should be no problems of
accesses spanning several intervals.

There are memory accesses that require intervention by a
third node, in particular if the memory access is a write and
some third node needs to invalidate or write back the word.
However, these transactions involving three or more nodes
are not very common (in our simulations, their fraction in
total memory access latency was always less than 10%).
Besides, about half the time of these accesses is still spent in
communicating between the two primary nodes, so we
pretend these transactions only use the primary nodes.
4.5. Calculating new latencies

Traffic that can use an elink will reach its destination in
only one hop, compared to potentially several hops for
traffic using the base network. For the 4� 4 torus network
used in our simulation, the average distance between node
pairs is 2.13 network hops. We expect the node pairs
selected for connection with an elink to be uniformly
distributed over the network, the average distance spanned
by an elink should therefore also be 2.13. Traffic between a
selected node pair only uses the elink, so the number of
hops in this case is reduced to one. This traffic will
therefore, on average, traverse a factor of 2.13 times fewer
nodes than traffic using the base network. We now assume
that memory accesses between selected nodes will have a
latency that is reduced by the same factor.3

For each memory access we know the source and
destination node, and the distance between them. Therefore,
we could customize the speedup for each separate access
instead of using the average value. However, the placement
of subprocesses and data on the nodes may change between
different simulation runs, and thus also between the original,
base network only simulation and an execution with the
reconfigurable network. Therefore, we have decided to use
the average latency reduction for all accesses.
The reduction in congestion when using more links, and

the fact that wormhole routing is used, both result in the
latency not always scaling linearly with the number of hops
a packet should traverse. Modeling congestion is, however,
not trivially done in the current setting, and has not been
attempted for this study.
To summarize: in our original simulation all traffic uses

the base network, so the relation between memory access
latency in the original simulation with a non-reconfigurable
network, and a simulation using a reconfigurable network
is the following: memory access latencies between selected
node pairs are divided by 2.13, the others are not affected.
This relationship remains the same for different values of n,
f and Dt, but different sets of memory accesses will benefit
from the elinks.
4.6. Estimating application speedup

Total execution time consists of processor computation

time (for our purpose this includes cached and local
memory accesses) and remote memory accesses or commu-

nication time. The former is in principle not affected by the
network architecture, whereas a fraction of the latter (those
memory accesses that were identified to benefit from an
elink) can be speeded up.
We could try to estimate the application speedup using

computation and communication time, and have done
so in [13]. However, it became obvious that application



ARTICLE IN PRESS
W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393388
performance is not just a function of memory latency, but
that other factors introduce variability in the execution
time. This makes the application speedup rather unstable,
and makes it difficult to compare a simulated speedup with
the predicted speedups which are not affected by this
variability. Therefore, we will use the improvement of the
average memory access latency, as compared to the baseline
simulation for the same benchmark, as the performance
indicator for the various network implementations.

5. Results and discussion

5.1. Results

Predictions for a number of benchmarks and network
parameters are shown in Fig. 5. Each graph shows the
results for one benchmark, the final graph averages results
across the four benchmarks shown. In each graph, three
main groups represent a reconfiguration interval (Dt) of
100ms, 1 or 10ms. The fourth group shows the case in
which the same number of elinks is added, but they are not
reconfigured throughout the length of the program (the
best performance out of three random link placements is
shown). In the four sub-groups, the number of elinks n is
4; 8; 12 and 16, respectively. The left bar in each sub-group
shows the improvement of the average memory access
latency as measured by a simulation with the reconfigur-
able network in place, the right bar shows our prediction of
this latency improvement. For all simulations, a fanout
restriction of two elinks per node was imposed.

We see that latency generally improves when adding
elinks, or when decreasing the reconfiguration interval.
This could be expected, since more links allow a larger
percentage of memory accesses to be influenced, and a
shorter interval allows the network to follow the traffic
dynamics more closely. Adding non-reconfigurable elinks
(the ‘fixed’ situation in Fig. 5) also improves performance,
but less than even the most slowly reconfiguring imple-
mentation: just four elinks, reconfiguring every 100ms, can
outperform 16 fixed elinks (on a total of 32 base network
links for the 4� 4 torus topology, these 16 links
correspond to a 50% increase in total network bandwidth).

Somewhat unexpected is that for some benchmarks, in
the Dt ¼ 10ms case the improvement goes down when
adding more links. This is caused by randomness in the
simulations, and can be attributed to effects like the
behavior of the operating system scheduler moving
processes to a different CPU or the convergence in the
algorithm of some of the benchmarks. A change in either of
these can cause changes in the traffic patterns, and make
congestion appear or disappear throughout the network.
For instance, the paths between two heavily communicat-
ing node pairs may now partly overlap where they
previously did not, resulting in added congestion on the
network links shared between the paths. This results in a
different packet latency and hence a modified memory
access latency.
Comparison of the simulated latency improvements with
their predicted counterparts shows that our model can
provide a reasonably accurate absolute prediction of
latency improvement, and, more importantly, a very good
relative prediction over the different networks. This allows
one to use our model instead of simulations to evaluate
trade-offs during the design of a new network architecture.
The unexpected behavior in the Dt ¼ 10ms case described
above does not manifest itself in the predictions. Therefore,
our prediction has the added advantage that its results do
not suffer from this noise that is present in the full-system
simulations.
Fig. 6 shows the computation times required for both the

full-system simulations and our prediction model, the
former taking several hours while the latter can be
completed in just a few minutes. We did not include the
cost of the initial simulation in the computation time for
our method, since this should only be done once and can
subsequently be reused for thousands of network para-
meter sets. Our method, therefore, allows a reduction in
computation time by about two orders of magnitude. Note
that we already employed scaled-down benchmarks and
simplified architectural models (an in-order processor, less-
than-cycle-accurate processor and network models). If one
were to do these simulations with a highly detailed
simulator the computation time can easily be an order of
magnitude higher. In contrast, the prediction model was
implemented by a Python script, optimized for maintain-
ability and extensibility. A speed-optimized implementa-
tion written in, for instance, C would make the difference
in computation time even larger.

5.2. Discussion

5.2.1. Access latency reduction

We have assumed that the average link distance, and
therefore also the reduction of this distance after redirecting
traffic through an elink, is 2.13. It is conceivable that the
operating system, or the algorithms used in the benchmarks,
distributes data such that most data are found on a node
close by. However, this is not the case: we found the average
distance spanned by the elinks to be 2:1� 0:1 for all
benchmarks. Network traffic using one of the elinks will
indeed traverse, on average, 2.13 times fewer hops.
The relationship between reducing the number of hops

and the reduction in memory access latency is not very
clear at this point. Congestion seems to play an important
role, especially since the reduction in congestion (measured
as the time a packet spends waiting in a buffer, as opposed
to actually moving through the network) is significant
(from 50% of total traffic latency in the initial simulation
to 15% when elinks are added, averaged across all
benchmarks). The effect of a lowered congestion is not
included in our model, this results in a systematic over-
estimation of the latency (or under-estimation of the
latency improvement) as can be seen in Fig. 5. A deeper
analysis of the impact of congestion is therefore necessary,



ARTICLE IN PRESS

0%

5%

10%

15%

20%

25%

Δt = 100 μs Δt = 1 ms Δt = 10 ms fixed

La
te

nc
y 

re
du

ct
io

n
Barnes Benchmark

0%

5%

10%

15%

20%

25%

Δt = 100 μs Δt = 1 ms Δt = 10 ms fixed

La
te

nc
y 

re
du

ct
io

n

Cholesky Benchmark

0%

5%

10%

15%

20%

25%

Δt = 100 μs Δt = 1 ms Δt = 10 ms fixed

La
te

nc
y 

re
du

ct
io

n

FFT Benchmark

0%

5%

10%

15%

20%

25%

Δt = 100 μs Δt = 1 ms Δt = 10 ms fixed

La
te

nc
y 

re
du

ct
io

n

Ocean.cont Benchmark

0%

5%

10%

15%

20%

25%

Δt = 100 μs Δt = 1 ms Δt = 10 ms fixed

La
te

nc
y 

re
du

ct
io

n

Network (n = 4, 8, 12, 16)

Average

Simulation Estimation

Fig. 5. Measured and predicted average memory access latency reduction on 12 different networks for the Barnes, Cholesky, FFT and Ocean.cont

benchmarks (a)–(d), and averaged across all four benchmarks (e). Dt ¼ 100ms, 1ms, 10ms and1 for each of the four outer groups, n ¼ 4; 8; 12 and 16 for

the inner groups. f ¼ 2 for all cases.

W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393 389
including its distribution across the network and its
influence on memory accesses, both those on and off the
critical path of the application.

Finally, although network latency comprises the largest
part of total memory access latency, it is not the only part.
Congestion can also occur at the remote memory itself:
when a large number of nodes is sending requests to the
same node, its network link, the cache controller or
the memory bus can become saturated. This is the case
for the Cholesky benchmark, where adding elinks does not



ARTICLE IN PRESS

1

10

100

1000

fft cholesky barnes ocean.cont

C
om

pu
ta

tio
n 

tim
e 

(m
in

)

Benchmark

Simulation and estimation times

Simulation Estimation

Fig. 6. Computation time (in minutes) required for a full simulation (left)

and our prediction (right) for the four benchmarks considered. Note that

the Y-axis is in a logarithmic scale.

W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393390
always increase performance (Fig. 5(b), Dt ¼ 1ms case).
The prediction model does not know about this saturation,
and therefore tends to under-estimate latency (or over-
estimate the latency improvement).
5.2.2. Improving elink placement

When selecting the node pairs to receive a connection
with an elink, we have only looked at the traffic that flowed
between those nodes, not directly at the benefit such an
elink would provide. For nodes that are only one hop apart
in the base network, an elink between them will of course
not further improve latency.4 Also, elinks that span a large
distance (i.e., the distance between the endpoints of the
link, measured over the base network, is large) should
provide more gain than elinks that span shorter distances.
We have, therefore, modified the elink selection algorithm
used in Section 4.3 to sort the node pairs by traffic �
distance instead of sorting just by the traffic they ex-
changed. This way, a node pair at distance 2 should
exchange twice as much traffic as a node pair at distance 4
to have the same chance of being selected for an elink
connection. The position of a node pair in the sorted list
should now better represent its contribution to the total
latency, hopefully making the elinks more effective.

Fig. 7 shows some results for this modified elink selector
when simulating the FFT benchmark. The left graph shows
the distribution of the distance the elinks span, both for the
original selector and for the modified selector. Clearly, the
modified selector more often selects node pairs that are far
away for connection with an elink. The average spanning
distance for all elinks indeed goes up from 2.20 to 2.55. The
right graph shows the fraction of memory accesses that is
influenced by the elinks, and the fraction of total access
latency these accesses represent. A smaller number of
4It does influence congestion, since direct traffic between the endpoints

is now separated from the base network link handling traffic passing

through the nodes.
accesses is now influenced, however, this smaller fraction
represents a slightly larger fraction of the total latency. The
latency of the affected memory accesses should also be
reduced by a larger factor (since the average elink distance
is now larger), so latency improvement should be larger
compared to the original selector.
Our predictor can easily be modified to make predictions

for this new case. First, we have to change the elink-
selection in step 2 of the algorithm detailed in 4.1 so that it
mirrors the behavior of our modified selector. Next we
have to calculate the reduction factor that operates on the
latency of affected memory operations. The average elink
distance will no longer be 2.13 since longer links are
favored. Since the likelihood of a node pair being selected
now grows linearly with the distance between the nodes
(assuming equal traffic), the average elink spanning
distance will be a weighted average of the distances
between every node pair, with the distance itself as the
weight. For the 4� 4 torus network used in our simula-
tions, this results in an average of 2.5.
Fig. 8 again shows simulation results and our predic-

tions, for the different networks and averaged across the
four benchmarks. Comparing these results with Fig. 5
which employs the original elink selector, we note that the
speedup has further improved on all networks. This was to
be expected since the elinks are now better distributed to
augment the base network.
The absolute prediction accuracy is worse than it was

with the original selector. As we did in Section 5.2.1, we
again measured the distance spanned by all elinks that were
instantiated during the simulations, and found that the
average per simulation was now 2:5� 0:1, which validates
that the average distance an affected packet should travel
was now reduced by a factor of 2.5. However, the
argument made in 5.2.1 regarding the influence of
congestion is probably even more important here and
could explain the higher inaccuracy: traffic flows traveling
over a large distance cause congestion over a large part of
the network; redirecting this traffic over an elink therefore
reduces congestion more significantly than redirecting
more localized traffic. Since the new selector favors non-
localized traffic, the influence of congestion reduction
should weigh heavier on the results of Fig. 8, causing a
larger systematic over-estimation of the latency. The
relative accuracy of the predictor is still high, showing
that our method can adapt to different elink selection
methods.
6. Future work

As mentioned in Sections 5.2.1 and 5.2.2, the fact that we
did not model congestion, and the reduction thereof after
adding elinks, causes our prediction method to over-
estimate the latency. Further efforts will therefore go into
developing an extension to this model that has some notion
of the congestion in the network.



ARTICLE IN PRESS

0%

10%

20%

30%

40%

50%

1 2 3 4

R
el

at
iv

e 
oc

cu
re

nc
e

Distance

Distance distribution

Original Modified

0%

10%

20%

30%

40%

50%

Accesses Latency

In
flu

en
ce

d 
fr

ac
tio

n

Influenced fraction

Original Modified

Fig. 7. Spanning distance distribution of the elinks selected by the original and the modified elink selectors (left) and the fraction of memory accesses and

of total access latency that is influenced by elinks, also for both selectors (right). All results are for the FFT benchmark with Dt ¼ 1ms, n ¼ 8 and f ¼ 2.

0%

5%

10%

15%

20%

25%

Δt = 100 μs Δt = 1 ms Δt = 10 ms fixed

La
te

nc
y 

re
du

ct
io

n

Network (n = 4, 8, 12, 16)

Average

Simulation Estimation

Fig. 8. Measured and predicted average memory access latency reduction on 16 different networks, averaged across all four benchmarks, this time using

the modified elink selector. Dt ¼ 100ms, 1ms, 10ms and 1 for each of the four outer groups, n ¼ 4; 8; 12 and 16 for the inner groups.

W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393 391
When we look at practical implementations of a
reconfigurable network, we note that several of them,
including the one presented in [8], do not allow elinks to
be placed between arbitrary node pairs. To obtain an
efficient use of the elinks in these situations, it is necessary
that both elinks and base network links can be in the path
of a single packet. This, however, does not allow us to
use a single factor (the 2.13 or 2.5 for our 4� 4 torus
network) to represent the average distance reduction when
using an elink. Also we will have to extend routing protocols
and develop a more complex elink selection algorithm to
handle this case.

7. Conclusions

In this paper, we have addressed the problem of evaluating
and designing a partially reconfigurable interconnect net-
work for shared-memory multiprocessors. We have pro-
posed a technique for predicting the average memory access
latency for variable network parameters (number of extra
links n, the fan-out f, the reconfiguration interval Dt; . . .)
based on a single simulation run per benchmark and per base
network configuration. We found that our prediction has a
high relative accuracy and can, therefore, be used to evaluate
design trade-offs between different network implementa-
tions. The absolute inaccuracy (an almost systematic over-
estimation of memory access latency) is probably due to
congestion reduction, which is not yet incorporated in our
model. Future work will be aimed at including congestion
effects in our prediction model. We will also attempt to
improve the link selection method and adapt our prediction
model accordingly.

Acknowledgments

This paper presents research results of the PHOTON
Inter-university Attraction Poles Program (IAP-Phase V),
initiated by the Belgian State, Prime Minister’s Service,
Science Policy Office. C. Debaes is indebted to the FWO
for his post-doctoral fellowship.



ARTICLE IN PRESS
W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393392
References

[1] D.A.B. Miller, H.M. Ozaktas, Limit to the bit-rate capacity of

electrical interconnects from the aspect ratio of the system

architecture, J. Parallel Distributed Comput. 41 (1) (1997) 42–52.

[2] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta,

J.L. Hennessy, M. Horowitz, M.S. Lam, The Stanford DASH

multiprocessor, IEEE Comput. 25 (3) (1992) 63–79.

[3] J. Collet, D. Litaize, J.V. Campenhout, M. Desmulliez, C. Jesshope,

H. Thienpont, J. Goodman, A. Louri, Architectural approach to the

role of optics in monoprocessor and multiprocessor machines, Appl.

Opt. 39 (2000) 671–682.

[4] A.F. Benner, M. Ignatowski, J.A. Kash, D.M. Kuchta, M.B. Ritter,

Exploitation of optical interconnects in future server architectures,

IBM J. Res. Dev. 49 (4/5) (2005) 755–776.

[5] M. Brunfaut, et al., Demonstrating optoelectronic interconnect in a

FPGA based prototype system using flip chip mounted 2D arrays

of optical components and 2D POF-ribbon arrays as optical

pathways, in: Proceedings of SPIE, Bellingham, vol. 4455, 2001,

pp. 160–171.

[6] L. Chao, Optical technologies and applications, Intel Technol. J. 8(2).

[7] L. Schares, et al., Terabus—a waveguide-based parallel optical

interconnect for Tb/s-class on-board data transfers in computer

systems, in: Proceedings of the 31st European Conference on Optical

Communication (ECOC 2005), vol. 3, The Institution of Electrical

Engineers, Glasgow, Scotland, 2005, pp. 369–372.

[8] I. Artundo, L. Desmet, W. Heirman, C. Debaes, J. Dambre, J. Van

Campenhout, H. Thienpont, Selective optical broadcast component for

reconfigurable multiprocessor interconnects, IEEE J. Sel. Top. Quantum

Electron., Special issue on Optical Communication, 2006, in print.

[9] C. Katsinis, Performance analysis of the simultaneous optical multi-

processor exchange bus, Parallel Comput. 27 (8) (2001) 1079–1115.

[10] W. Heirman, J. Dambre, J. Van Campenhout, C. Debaes,

H. Thienpont, Traffic temporal analysis for reconfigurable inter-

connects in shared-memory systems, in: Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium, Color-

ado, IEEE Computer Society, Denver, Colorado, 2005, p. 150.

[11] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,

G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, B. Werner,

Simics: a full system simulation platform, IEEE Comput. 35 (2)

(2002) 50–58.

[12] F. Ridruejo, A. Gonzalez, J. Miguel-Alonso, TrGen: a traffic

generation system for interconnection network simulators, in: First

International Workshop on Performance Evaluation of Networks for

Parallel, Cluster and Grid Computing Systems (PEN-PCGCS’05),

Olso, Norway, 2005.

[13] W. Heirman, J. Dambre, D. Stroobandt, J. Van Campenhout,

C. Debaes, H. Thienpont, Prediction model for evaluation of

reconfigurable interconnects in distributed shared-memory systems,

in: Proceedings of the 2005 International Workshop on System Level

Interconnect Prediction (SLIP‘05), ACM Press, San Francisco, CA,

2005, pp. 51–58.

[14] T. Sterling, D. Savarese, D.J. Becker, J.E. Dorband, U.A. Ranawake,

C.V. Packer, Beowulf: a parallel workstation for scientific computa-

tion, in: Proceedings of the International Conference on Parallel

Processing, CRC Press, Boca Raton, USA, 1995, pp. 11–14.

[15] T.M. Pinkston, J.W. Goodman, Design of an optical reconfigurable

shared-bus-hypercube interconnect, Appl. Opt. 33 (8) (1994)

1434–1443.

[16] J.L. Sánchez, J. Duato, J.M. Garcı́a, Using channel pipelining in

reconfigurable interconnection networks, in: Sixth Euromicro Work-

shop on Parallel and Distributed Processing, 1998.

[17] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-

2 programs: characterization and methodological considerations, in:

Proceedings of the 22nd International Symposium on Computer

Architecture, Santa Margherita Ligure, Italy, 1995, pp. 24–36.
Wim Heirman was born in Temse, Belgium, on

November 28, 1980. He received the M.Sc. degree

in computer engineering from Ghent University,

Ghent, Belgium, in 2003. He is currently doing

Ph.D. research with the Department of Electro-

nics and Information Systems (ELIS), Ghent

University. His current research interests include

parallel computing systems, reconfigurable archi-

tectures and interconnection networks.
Joni Dambre was born in Ghent, Belgium, in

1973. She received the M.Sc. degree in electro-

technical engineering, and the Ph.D. degree in

computer engineering from Ghent University,

Ghent, Belgium, in 1996 and 2003, respectively.

She is currently a Postdoctoral Researcher

with the Department of Electronics and Informa-

tion Systems (ELIS), Ghent University. Her

research interests include early evaluation of

new interconnect techniques in digital systems.
Dr. Dambre is a Member of ACM.

Iñigo Artundo was born in Pamplona, Spain on

October 21, 1979. In 2004, he received with the

greatest distinction his master degree in telecom-

munication engineering at the Public University

of Navarra. Currently, he is doing a Ph.D in the

field of reconfigurable optical interconnects

architectures at the Department of Applied

Physics and Photonics, Vrije Universiteit Brussel,

Belgium. His current research interests are

reconfigurable architectures, optical interconnec-
tion networks and distributed shared-memory systems.

Christof Debaes was born in Geraardsbergen,

Belgium, in 1975. He graduated as an electro-

technical engineer from the Vrije Universiteit

Brussel (VUB) in 1998. He received the Ph.D.

degree from the Applied Physics and Photonics

Department, VUB, in collaboration with the

Ginzton Laboratory, Stanford University, Stan-

ford, CA, directed by Prof. D.A.B. Miller. He is

currently working at the VUB on a postdoctoral

fellowship from the Flemish Fund for Scientific
Research (FWO-Vlaanderen). His research activities are focused on optical

interconnects covering a wide range of subjects such as optical clock

injection, opportunities for reconfigurable optical interconnect and the use

of the use Deep Proton Lithography for micro-optical components.
Hugo Thienpont was born in Belgium 1961. He

graduated from the Vrije Universiteit Brussels

(VUB) in 1984 as an Electrical Engineer with

majors in applied physics and applied optics. In

1994, he became Professor in the Faculty of

Applied Sciences. Today he is director of research

of the ‘‘Laboratory for Photonics’’ and is

promoter of different photonics-related research

and industrial projects. His research activities

comprise materials, modeling, components and
devices, packaging and demonstrators for photonic interconnects.



ARTICLE IN PRESS
W. Heirman et al. / INTEGRATION, the VLSI journal 40 (2007) 382–393 393
Dirk Stroobandt obtained the Ph.D. degree in

electrotechnical engineering in 1998 from Ghent

University. From 1998 Dirk Stroobandt was

Post-doctoral Fellow with the Fund for Scientific

Research-Flanders (Belgium) (F.W.O.). Since

October 2002, he is full professor at Ghent

University where he is affiliated with the Depart-

ment of Electronics and Information Systems

(ELIS). His research is oriented towards a priori

estimations of interconnection lengths in electro-
nic systems and hardware/software codesign for embedded systems.
Jan Van Campenhout was born in Vilvoorde,

Belgium, on August 9, 1949. He received the

degree in electromechanical engineering from

Ghent University, Ghent, Belgium, in 1972; and

the M.S.E.E. and Ph.D. degrees from Stanford

University, Stanford, CA, in 1975 and 1978,

respectively. He is currently with the Faculty of

Engineering, where he teaches courses in computer

architecture, electronics, and digital design, and is

also the Head of the ELIS Department, at Ghent
University. His current research interests include the study and implementa-

tion of various forms of parallelism in computer systems, and their

application in programming language support, computer graphics and

robotics. He is a Member of Sigma Xi, KVIV, and ACM.


	Predicting reconfigurable interconnect performance �in distributed shared-memory systems
	Introduction
	System architecture
	Multiprocessor architecture
	A simple reconfigurable network architecture
	Implementation

	Methodology
	Predicting memory access speedup
	Overview
	Full simulation
	Determining the elinks placement
	Correlating memory accesses
	Calculating new latencies
	Estimating application speedup

	Results and discussion
	Results
	Discussion
	Access latency reduction
	Improving elink placement


	Future work
	Conclusions
	Acknowledgments
	References


