
PinComm: Characterizing Intra-Application Communication
for the Many-Core Era

Wim Heirman, Dirk Stroobandt
Ghent University, ELIS

Sint-Pietersnieuwstraat 41
9000 Gent, Belgium

Email: wim.heirman@ugent.be

Narasinga Rao Miniskar, Roel Wuyts, Francky Catthoor
IMEC

Kapeldreef 75
3001 Leuven, Belgium

Email: miniskar@imec.be

Abstract—As the number of cores in both embedded Multi-
Processor Systems-on-Chip and general purpose processors
keeps rising, on-chip communication becomes more and more
important. In order to write efficient programs for these
architectures it is therefore necessary to have a good idea of
the communication behavior of an application. We present a
communication profiler that extracts this behavior from com-
piled, sequential or parallel C/C++ programs, and constructs
a dynamic data-flow graph at the level of major functional
blocks. In contrast to existing methods of measuring inter-
program communication, our tool automatically generates the
program’s data-flow graph and is less demanding for the
developer. It can also be used to view differences between
program phases (such as different video frames), which allows
both input- and phase-specific optimizations to be made. We
will also describe briefly how this information can subsequently
be used to guide the effort of parallelizing the application, to
co-design the software, memory hierarchy and communication
hardware, and to provide new sources of communication-
related runtime optimizations.

Keywords-Profiling, dynamic dataflow graph, network-on-
chip, communication

I. INTRODUCTION

Due to the recent gap between Moore’s law and single-
threaded processor performance, multi- and many-core chips
are becoming the name of the game. In the embedded
domain, traditional instruction set processors are combined
with hardware accelerators, large blocks of memory and
interfaces to the external world and integrated into a self-
contained System-on-a-Chip. This new level of integration
brings with it the challenge of designing both the hardware
and the software for these complex systems. In this paper,
we will focus on the interconnection network. This architec-
tural aspect has long remained hidden inside large servers
and supercomputers, but it is now prevalent and must be
accounted for during the design of even what used to be
small, embedded systems. At the same time, communication
busses are being replaced with more scalable topologies such
as networks-on-chip. The cost of this scalability is non-
uniformity, which makes the communication patterns have
a much larger influence on performance.

To solve the communication problem, a systems designer
will want to do two things. First of all, when paralleliz-
ing the application, computation should be laid out such
that communication between network nodes is minimized.
Secondly, once the (remaining) communication pattern is
known, all computational nodes must be mapped onto a
network topology. Clearly, when heavily communicating
entities can be mapped onto the same network node, this
communication stream will no longer be visible on the
network, it will rather be carried by a much more efficient
mechanism such as through a processor core’s registers or
local cache or scratch-pad memory. Between minimizing
communication and mapping lies the concept of shaping
communication, for instance in making it nearest-neighbor
only which avoids slow, inefficient long-distance signaling.
Finally, once the previous optimizations have been done and
the application’s (network-visible) communication pattern is
fixed, a suitable on-chip network can be designed.

While static analysis can be used for some applications,
it is infeasible for a large fraction of important existing and
emerging applications. These programs have an irregular
structure, have a behavior that heavily depends on the input
data or on other external influences, or are dynamically
composed out of multiple smaller application components
sharing the same on-chip resources. Inter-processor com-
munication turns out to be especially dependent on these
influences, and can often not be predicted through composi-
tion of the traffic streams caused by the various components.
Dynamic methods of characterization and optimization are
therefore needed. Yet, an approach must still be largely
automatic to give the additional benefit that both charac-
terization and optimization can easily be tailored towards
multiple specific scenarios, which can consist of a (class of)
input set(s), a combination of program components, or even
specific program phases.

In this work, we introduce the PinComm profiler, which
allows an automatic measurement of a program’s commu-
nication patterns. Since it is a runtime profiler, it can be
connected to any program running on a host PC, with any
combination of inputs and parameters. It allows a designer to

!000111000 111666ttthhh IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn PPPaaarrraaalllllleeelll aaannnddd DDDiiissstttrrriiibbbuuuttteeeddd SSSyyysssttteeemmmsss

!555222!---999000999777///!000 $$$222666...000000 ©©© 222000!000 IIIEEEEEEEEE

DDDOOOIII !000...!!000999///IIICCCPPPAAADDDSSS...222000!000...555666

555000000

visualize communication inside both sequential and parallel
programs. Being developed as part of the OptiMMA project,
our end goal is to allow efficient runtime management of
all system resources. In this project, the communication
profile measured by PinComm is used as input to a runtime
scheduler such that it can make mapping and scheduling
decisions in a communication-aware way. Other uses of this
valuable information lie in parallelizing applications (while
minimizing communication between threads), in mapping
the application’s parallel components while optimally match-
ing communication patterns and network topology, or in
driving other communication-aware runtime optimizations.

II. PINCOMM: A COMMUNICATION PROFILER TOOL

A. Constructing the dynamic data-flow graph
Our profiler constructs a dynamic data-flow graph

(DDFG), which shows the communication that flows be-
tween parts of the program. These parts can be static
functions, dynamic function calls, threads (for parallel pro-
grams), or specific data structures; each will be represented
by a node in the DDFG.

PinComm is based on Pin, a dynamic instrumentation
tool [1]. Pin allows modular instrumentation of executables
on several platforms (including IA-32, x86-64 and Xscale)
through the use of plug-ins. Our profiler is such a Pin plug-
in, which instructs it to intercept all memory accesses and
all function calls. For function calls and returns, we keep
the call stack and output a call trace, which will later be
processed into a call tree. An identifier of the currently
executing function is also kept (one for each thread in
parallel applications). When memory writes are intercepted,
the function ID of the current function (and the thread
number, if applicable) is stored in a last-written-by table
together with the memory address that the write instruction
referenced. Now, when a read instruction is encountered,
we can look up the address in the last-written-by table and
determine the producer of this piece of data. We now know
that communication has occurred between two functions,
the consumer being the current function and the producer
being the function found in the last-written-by table. The
size of the communication stream is given by the size of the
memory read instruction.

For an exact measurement, the last-written-by table should
contain an entry identifying the last writer for each memory
address, at a one byte granularity. If one such entry is 64 bits
large, PinComm would have a memory overhead of 8× the
memory used by the application being profiled. While this
setting provides the most accuracy, it is usually not needed
since most memory accesses are aligned at four or eight byte
multiples. Moreover, when one is only interested in the ma-
jor communication streams, some accuracy can be traded off
for a significantly reduced memory overhead by increasing
the memory address granularity. This setting is configurable
at PinComm’s command line. When increasing this setting,

less memory is required to keep the last-written-by table, but
accuracy decreases when data consumptions can sometimes
no longer be attributed to the correct producer. This results
in a shift in communication streams, and can also cause
an increase in perceived communication, similar to false
sharing when only part of the memory block (or cache line)
actually contains shared data. Measurements showing the
effect of this setting will be shown in Section IV.

B. Clustering the data-flow graph
The result of the profiling phase consists of a dynamic call

tree (one for each thread) and a communication graph that
shows communication streams between all dynamic function
calls. Function names are extracted from linker information
in the executable, additionally, debug information can be
used to find the source file and line number for each function.
For complex programs, however, there are usually too many
functions, which clutters the graph and makes a visual
analysis impossible. To this end, markers can be inserted
in the source.1 These are recognized by the profiler and can
signify the start and end points of code regions. Each of
these regions can be named and will appear on the graph as
a single node. This way, a program can be split up in func-
tional blocks, and PinComm shows communication between
these blocks, rather than between individual functions.

When using PinComm on parallel programs, the com-
munication graph can also show communication between
threads. After clustering the results according to the proces-
sor each thread will run on, the (inherent) communication
that can be expected on the on-chip network can be de-
rived. This is done in an architecture-independent way (i.e.,
assuming perfect caching of private data). Simulation of a
realistic cache subsystem can be a next step, using existing
tools such as CPM$im [2], which is also based on the Pin
instrumentation tool.

Besides the thread number, the approximate point in time
at which the memory read or write operation was executed
can also be used as an identifier. PinComm counts the
number of instructions executed in each thread, and allows
this instruction count – with a configurable granularity –
to be used to split up the source and destination nodes
in the communication graph. This allows one to explore
the temporal communication behavior of an application. An
example of this will be given in Figure 6 in Section IV.

Finally, markers can also be used to start and stop the
measurement at some point during the application. This way,
one can select a part of the application to be measured, rather
than the complete program which may include uninteresting
parts such as initialization. For a streaming application,
frame or iteration boundaries can be marked, allowing intra-
and inter-frame communication to be visualized separately.
An example of this will be given in Section III-D.

1These are a specific type of NOP instruction, xchg bx, bx, they
therefore do not interfere with native execution of the same program binary.

555000!

C. Communication through memory regions
As a first order approximation, the dynamic data-flow

graph, when clustering all nodes according to which pro-
cessor they will run on, equals the communication that will
be visible on the on-chip network. This assumes that all
memory accesses internal to a processor (between functions
that were mapped to the same processor, or memory writes
that are only read by the same function) can always be
handled inside the network node this processor is located
on. In effect, this implies the assumption of a perfect cache,
or a scratch-pad memory large enough to hold each thread’s
private and shared-owned data.

For small data structures this approximation usually re-
sults in a communication profile that is accurate enough.
However, large data structures are often allocated in shared
memory blocks which have their own network node, or
in off-chip memory. In this case, additional network traffic
flows will exist between the processor’s network node and
the node containing the memory block or the off-chip
memory interface. To this end, we added the option of
marking specific data types or malloc() calls with an
object type identifier. For each of these object types, a
separate node in the DDFG will be added. Edges to and from
this node now represent writes to and reads from objects of
this type – or traffic to and from a specific memory block or
interface. This allows one to estimate the resulting network
traffic to this node, and also get a quantitative measure of
its required memory bandwidth – on which the type of
memory, banking/interleaving and other design parameters
can be decided.

III. CASE STUDY: 3-D WAVELET DECODER

A. Application
Our demonstration application is a Wavelet Subdivision

of Surfaces (WSS) algorithm, which is a scalable, multi-
resolution 3-D decoder and is described in detail in [3]. By
progressively decoding higher wavelet frequencies, it can
decode objects with an adaptive quality level, depending on
the complexity of the input and on external requirements
such as the distance of the object to the viewer, required
video resolution or available processing power. Clearly,
this application is in itself highly adaptive in its resource
requirements, both through the input set (the complexity
of the rendered scene), input events by the user (which
change the viewpoint or the environment) and environmental
influences on the target platform (such as concurrently
running processes, battery or thermal constraints, etc.).

B. Input to 3D-WSS and scenarios
In this experiment, the input to the 3D-WSS application

consists of a gaming environment with three rooms, each
containing 13, 17 or 22 objects, and four different camera
positions per room. The combination of room number and
camera position results in 12 scenarios. In each of these

scenarios, the player moves around during a number of
image frames. Our profiler measures the communication
flow incurred by the wavelet decoding during the rendering
of each frame. This experiment was done using a sequential
version of the 3D-WSS application, we measured commu-
nication between each of the major functional blocks. This
should allow us to accurately predict the communication
requirements of a future parallel implementation, where
these functional blocks will be distributed over different
processors and executed in a pipelined fashion.

C. Functional decomposition
We marked the major code regions in the WSS source

code, according to a functional decomposition given by the
program’s author in [3]. We also placed markers at the
start of each new frame. While PinComm can just as easily
work on unmarked applications, marking code regions of
interest already removes uninteresting functions from the
communication graphs. This graph is shown in Figure 1,
for both the first and second frames. The region’s width and
horizontal position denote their starting point and length,
measured in running instruction counts. Each arrow denotes
a major communication stream (containing at least 1% of
the total inter-region communication for the frame) of data
produced by the origin region (in this frame or a previous
frame), and consumed by the target region (in this frame).
In the first frame (Figure 1, top), a first major stream
totaling some 275 kB originates from main2 and runs to
WssDecode which reads the object data from memory,
performs the Wavelet decoding, and writes decoded vertex
data back to memory. In the second communication stream,
totaling over 2 MB of data, the decoded vertices (which
are clearly much bigger than the original data fed into
WssDecode) are used by the Prepare code region.

Figure 1 (bottom) shows the results for the second frame.
In this frame most of the objects have already been decoded
by WssDecode and the results are cached. The computa-
tion time of WssDecode is therefore significantly shorter
than in the first frame. Note that Figure 1 shows relative
durations, the absolute instruction count drops from 8.3M
instructions for the first frame to only 180k for the second
one. Several other, lower-intensity communication streams
now become visible. Also note that, in Figure 1 (bottom),
the communication from WssDecode to BuildPareto is
part of a feedback algorithm that crosses frame boundaries
– obviously BuildPareto in frame two cannot read from
frame two’s WssDecode region since it is executed at a
later stage in the render pipeline. Likewise, the arrow from
Render to itself denotes data generated by the Render
region which is reused across iterations.

2This region contains, in addition to the actual C main() function, all
code not explicitly assigned to other regions. This includes the function
where object data is read from file, which accounts for most of the
communication visible originating from the main region.

555000222

!"#$

%&&'()*+(

,-.//0
12()34#&

56#7+8"9(:*

89(;"9(

,0<=>?@

A($+(9

!"#$

!"#$%&#'

()*+

,-#./0"1#23

45+*
(6+)

7''8#$3/#
(((4

01#9"1#

+(6):

;#$/#1
:(<)*+6

Figure 1. Communication graph after marking of the major
code regions CheckVis[ibility], BuildPareto, WssDecode,
Prepare[Render] and Render. Region lengths (as node widths,
proportional to the region’s dynamic instruction count) and large inter-
region communication flows (marked on each edge, in bytes) are shown,
for frames #1 (top) and #2 (bottom).

D. Communication patterns

We can now, for the major communication streams in
WSS (those visible in Figure 1), determine their behavior in
different iterations of the program. We already noticed from
Figure 1 that both the per-region runtimes and the commu-
nication magnitudes are very different in the first frame than
they are in subsequent frames. The main difference is the
length of the WssDecode function. In the first frame, all
visible objects have to be decoded, which takes a significant
amount of time. These decoded objects are stored in local
memory; in subsequent frames only newly-visible objects
need to be decoded.

Figure 2 shows the magnitudes for each of the major inter-
regional communication flows, and its evolution throughout
the program, for a 13-object scene, all frames and two of
the camera viewpoints (C1 and C2). By far the largest inter-
regional communication stream runs from WssDecode into
Prepare. The graph shows that the WssDecode function
in the first frame for each camera position generates the bulk
of the data (the decoded object data) to be used during the
rest of the program. Since this single communication stream
by far outweighs all other inter-regional streams, we can
conclude that, when optimizing the on-chip communication
behavior of the WSS application, the placement of the
WssDecode and Prepare functionality will be the most
important parameters. Clearly, both should – if possible from
a computational load point of view – be placed on the same
processor. Yet, both are also the longest executing functional

100

1k

10k

100k

1M

10M

C1 C2

WssDecode > Prepare
WssDecode > WssDecode

Render > Render
Prepare > WssDecode

WssDecode > BuildPareto
WssDecode > Render

Prepare > Render
others

Figure 2. Inter-regional communication magnitudes, for camera positions
C1 and C2, all frames and a 13-object scene

!"#$

%&&'()*+(
(!"#$!

%&('"&(
(")*(

!+#
,-&#"$./(*((

0$

("(1+

Figure 3. Communication using shared memory and CTriangle classes,
in addition to the known streams from Figure 1, for C2, 13 objects,
frame #1.

regions. Therefore, separate cores will almost certainly be
used to implement both functions, which makes inter-core
communication unavoidable. The architecture should thus
be dimensioned in such a way that it can accommodate the
WssDecode-to-Prepare communication stream.

E. Communication through shared memory

Since the communication from WssDecode to Prepare
is not only intense, but involves a relatively large and long-
lived data structure, it is conceivable that this data structure
will be stored in a separate memory block or in off-chip
memory – and thus incur extra on-chip network traffic.
To quantify the magnitude of this extra traffic we marked
the CTriangle class, which is the object type commu-
nicated from WssDecode to Prepare, for inclusion as
a separate node in the graph. Figure 3 shows the major
communication flows (in kB) between all participating nodes
(the code regions without large communication streams
have been omitted from this graph for clarity). In addition
to the streams known from Figure 2, we now see that
WssDecode does indeed store a significant amount of local
data in CTriangle objects (amounting to around 32 MB
in total). The WssDecode to Prepare communication
stream visible in Figure 2 will thus incur two data flows
on the on-chip network, one from WssDecode to the
external memory controller and one back into the node
executing the Prepare function. The magnitude of both
these communication streams are again provided by our
profiler’s results, and can be read from Figure 3.

555000333

IV. APPLICATIONS

The data gathered by PinComm can be used mainly in
two ways: when partitioning the application into threads, and
when mapping the threads onto processors. Both can be done
both on- and offline, although usually partitioning will be
done at design time (implementations with a variable number
of threads can move some of the decisions to the runtime
scheduler), while mapping and scheduling are more often
done at runtime to provide adaptation to different hardware
platforms, changing workloads, etc.

A. Communication-aware parallelization

The communication graph can be used to aid in paral-
lelization of an application. The runtime length annotated
call tree clearly shows which functions require the most ex-
ecution time, and are therefore candidates for parallelization
– either by assigning (groups of) functions to separate pro-
cessors in a functional parallelization (such as pipelining), or
by parallelizing loops in one or more of the longer functions.

The added value of our profiler comes at the point when,
in this otherwise standard way of parallelization, there is
a choice in how functions are clustered onto processors.
Traditionally, the only metric here is to keep the workload of
all processors the same, so that load imbalance and its asso-
ciated synchronization cost is minimized. But this clustering
problem usually has several solutions with similar cost. By
considering communication between functions, as visible
in our communication graph, a more general cost function
can be constructed that also accounts for the estimated
delay caused by interprocessor communication. By finding
a clustering solution with minimal cost, on-chip network
bandwidth and its associated power usage can be minimized,
while performance is increased through the avoidance of
communication latency. This technique can be visualized on
the communication graph (see Figure 4): communication
arrows cut by the partitioning (solid lines) cause inter-
processor network traffic, whereas communication internal
to a cluster (dashed arrows) can be handled by processor-
local caching. Using this more detailed cost metric, one can
often find that solutions that looked similar from a purely
load-balance point of view will perform very differently due
to their differing communication loads, and that in some
cases the introduction of a significant load-imbalance can
actually improve performance.

Note that our profiler does not necessarily see all data
dependences. Smaller communication streams are removed
from the communication graph but they can still result in
data or control dependences which may prohibit paralleliza-
tion. Moreover, since the graph is constructed based on
profiling information, it only contains the communication
present during the execution of the input set(s) used. No
guarantees can be made for other inputs, which may induce
new communication streams and thus more dependences.

!"#$

"

2

3

45

6
7

8

2

47

!"#$

"

2

3

45

6

7

8

2

47

Figure 4. Two possible partitionings of functions a, b, c and d onto
two processors using a pipelined parallelization model. Communication
arrows cut by the partitioning (solid lines) cause inter-processor network
traffic, arrows internal to a cluster (dashed lines) denote communication
that can be handled by processor-local caching. In the topmost graph, the
communication cost (sum of all cut (solid) arrows) is 22. The alternative
partitioning of the bottom graph, while resulting in a slight load imbalance,
has a communication cost of only 7.

The programmer performing parallelization should therefore
still prove that all dependences are honored.

B. Communication-aware scheduling

Task Concurrency Management [4] is an effective method-
ology for run-time management of embedded resources.
This methodology uses scenarios, which are clusters of run-
time behaviors based on the system cost metrics on the
target architecture. For each scenario, an optimal mapping is
found at design-time, while at run-time the specific mapping
for the current scenario is used. This way, a large effort
can be made at design-time to reduce the resource and
energy requirements, while being adaptive to the specific
run-time circumstances with a very low run-time overhead.
The mapping here refers to the scheduling (in time) and
assignment (in space) of resources to the tasks.

When a methodology such as TCM is applied to ever
larger multi-core architectures, knowledge of on-chip com-
munication is needed to provide additional optimizations.
At the design-time phase, the explored TCM mappings
can be further optimized to minimize the communica-
tion flows through a communication-aware mapping which
places highly communicating threads on the same processor,
or on a pair of processors with a fast on-chip network
connection between them. At run-time, the selected mapping
configuration consists of the configuration of the network:
just as the processors’ voltages, frequencies and cache sizes
are set dynamically depending on the scenario, an on-
chip network can be configured for optimal (minimizing
energy, etc.) support of the expected communication flows.

555000444

radix

 0 5 10 15 20 25 30
Producer thread

 0

 5

 10

 15

 20

 25

 30

C
on

su
m

er
 th

re
ad

lu.cont

 0 5 10 15 20 25 30
Producer thread

 0

 5

 10

 15

 20

 25

 30

C
on

su
m

er
 th

re
ad

dedup

 0 10 20 30 40 50 60 70 80 90
Producer thread

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

C
on

su
m

er
 th

re
ad

Figure 5. Spatial communication behavior: inter-thread communication during the entire parallel phase of the program for a selection of SPLASH-2 and
PARSEC benchmark applications.

We have provided the communication-aware design-time
exploration of mapping solutions based on the GECode
constraint programming model [5].

To prove the effectiveness of our communication-aware
mapping, we applied this methodology on the 3D-WSS
application for each of the 12 scenarios identified in it [6].
When compared to a state-of-the-art TCM design-time ex-
ploration [7], our approach found better optimal pareto
curves of mapping points, which are with ∼29% energy
consumption savings and ∼15% improvement in perfor-
mance. This exploration of mapping solutions has resulted
in over 30% in energy savings at run-time for the 3D-WSS
application. More information on these results can be found
in [8].

C. Multi-threaded application characterization

Once an application has been parallelized, PinComm can
be used to visualize communication between its threads. In
this example we will look at a selection of benchmarks from
the SPLASH-2 [9] and PARSEC [10] parallel benchmark
suites. A communication characterization of these applica-
tions has been done in [11]. These results were obtained
using Simics, which is a detailed full-system, cycle-accurate
simulator. It requires the set-up of a virtual machine and in-
curs a significant slowdown (up to a factor of 100,000 times
slower than running the same application natively). With
PinComm on the other hand, virtually the same results can
be obtained, but with a lot less set-up work (Pin can directly
instrument native binaries on a host machine) and a much
more manageable slowdown (although, since all memory
read and write operations need to be intercepted, still a factor
of about 1,000 slower than real-time). Moreover, PinComm
natively supports running on a multi-threaded host, which is
at this time not yet possible for most architectural simulators.

Figure 5 shows the communication between threads, for a
selection of applications from the SPLASH-2 and PARSEC

!"#$%&'()

*+,-

.

/

0.

0/

1.

1/

2.
3
"4
56
,
-&
%7
&-
'#

Figure 6. Temporal communication behavior: time and place of consump-
tion of data produced by thread 1.

 0

 100

 200

 300

 400

 500

 600

 700

fft radix lu.cont swaptions

Bytes / 1k instructions

Granularity (bytes)
4

16
64

256
1024

Figure 7. Total inter-thread communication measurement as affected by
the memory address granularity setting.

suites. These can be compared directly to Figures 4 and 5
in [11]. In Figure 6, we plot the temporal communication
behavior of data produced by thread 1 (see Figure 6 in [11]).

Next, in Figures 7–9 we quantitatively analyze the total
amount of inter-thread communication (expressed in bytes
per 1000 instructions). Figure 7 shows how the this measure-
ment is affected by the memory granularity setting. Increas-
ing this granularity brings down the memory consumption
of the profiler tool significantly, however, depending on the
access pattern of the application, an increase in perceived
communication can be caused, similar to false sharing.

555000555

 0
 100
 200
 300
 400
 500
 600
 700
 800

fft radix lu.cont swaptions

Bytes / 1k instructions (cached)

Granularity (bytes)
4

16
64

256
1024

Figure 8. Inter-thread communication characterization when assuming
perfect caching.

 0

 10

 20

 30

 40

 50

 60

fft radix lu.cont swaptions

Bytes / 1k instructions (cached)

Threads
2
4
8

16
32
64

Figure 9. Inter-thread communication characterization (with perfect
caching), when changing the number of threads

For Figure 8, in addition to the last-written-by table,
we keep track of which data words have already been
read by a given thread, and only count the first read of
each word as actual communication. This gives a more
realistic view of the magnitude of communication to expect
when running the program on an architecture that caches
remote reads. This extra bookkeeping requires a lot of
memory though: the number of items to store is now in
the order of number of data blocks × average number of
consumers per data block. For inter-thread communication
the number of possible consumers is relatively low so this
extra memory usage is manageable, but it can quickly
become excessive when more elaborate visualizations are
enabled. When compared to Figure 7, Figure 8 shows a
significant reduction in communication, especially for the
lu.cont benchmark, which would clearly benefit from
caching remote read operations.

Finally, Figure 9 shows the variation in the amount
of communication when running the benchmarks with the
same data set size using an increasing number of threads.3
PinComm’s results here clearly show the increase in com-
munication, which will, on a platform with insufficient
communication resources, limit performance long before
Amdahl’s law comes into effect.

3We did not include results for swaptions with high thread counts
since the amount of work performed by the medium input set does not
remain constant when running with more than 16 threads.

V. RELATED APPROACHES

A. Static analysis

As mentioned in Section I, several tools and method-
ologies exist that can statically predict communication in
regularly structured programs. Usually, some form of poly-
hedral model is imposed, in this case all dependencies – and
all communication – can be computed analytically. Several
important applications do fall into this class of programs, or
at least their most important kernels can be described in this
way. Still, other often-used constructs including pointers,
such as linked lists, cannot be described in this way [12].

B. Architectural simulation

A common way to extract communication behavior of
a program is through simulation of a parallel architecture,
and instrumenting the network simulation component to log
all network packets. This can be done using a (full-system)
simulator, or through the shortcut of running an instrumented
binary natively and sending all memory accesses through a
simulated cache hierarchy. This latter technique is followed
in CMP$im [2], which is, just like PinComm, based on the
Pin instrumentation tool.

This approach has two conceptual drawbacks compared
to a DDFG profiler. First, it requires a parallel program, and
can therefore never help in constructing an optimized paral-
lelization, only in validating it. Secondly, it is architecture
dependent, since the cache hierarchy and coherence protocol
have a major influence on the observed communication.4
Finally, especially the simulation approach is much more
computationally intensive. This restricts its use to smaller
data sets which can exhibit communication patterns that are
not always representative for the behavior of larger data sets.

C. Redux

Redux [13] is also a DDFG profiler, based on the ValGrind
instrumentation tool. It builds a very detailed data-flow graph
that shows all dependencies down to register level. While
this can be very instructive for research or educational
purposes, its extreme level of detail results in an exploding
complexity of the DDFGs for even the simplest programs
which restricts its use to very small programs or small parts
of larger programs. In contrast, our approach sacrifices some
detail for a much higher speed, which allows us to include
the whole program with a realistic input set size. To this end,
we only account for dependencies that go through memory
and group them on a function call or even higher level.

4Note that in [11] most of this architectural dependence was avoided
by logging memory accesses rather than network packets, and keeping a
last-written-by table just as PinComm does – the results in [11] therefore
also represent inherent communication rather than the observed network
communication under a specific cache architecture.

555000666

D. Profile-driven auto-parallelization
In [14], Tournavitis et al. describe an auto-parallelization

methodology based on profiling information. Their profiler
constructs a control and data flow graph (CDFG) which is
obtained by recompiling a (single-threaded) program using
the CoSy compiler and adding instrumentation at the IR
level. This metholology focuses on dependency analysis, and
thus on the detection of parallelism, whereas the amount of
communication is only of secundary importance.

PinComm can, in addition to giving hints about how to
parallelize, help to gain insight into the communication be-
havior of parallel applications and of compositions thereof.
This information can be used in off- and online scheduling,
as we described in Section IV-B.

VI. CONCLUSIONS

On-chip communication is becoming more and more im-
portant in CMP and MPSoC settings. To visualize commu-
nication inside programs, even before they are parallelized
and mapped onto a specific multiprocessor architecture,
we developed PinComm. This is a communication profiler
which measures dynamic data-flow graphs (DDFGs) for both
sequential and parallel binary programs, and can present
results in a way that is meaningful for the developer:
communication can be viewed between major code regions,
through banks of shared memory, and between threads
– the later one allows validation of a proposed parallel
implementation. Using this new source of knowledge, new
applications become possible, such as communication-aware
parallelization, mapping, and adaptive configuration of on-
chip network resources.

ACKNOWLEDGMENTS

This research is supported by the “Optimization
of MP-SoC Middleware for Event-driven Applications”
(OptiMMA) project, grant 060831 of the Flemish Govern-
ment Agency for Innovation by Science and Technology
(IWT-Vlaanderen).

REFERENCES

[1] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in Proceedings of the 2005 ACM SIGPLAN
conference on Programming Language Design and Implemen-
tation (PLDI ’05). Chicago, Illinois, Jun. 2005, pp. 190–200.

[2] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “CMP$im: A
Pin-based on-the-fly multi-core cache simulator,” in Proceed-
ings of the Fourth Annual Workshop on Modeling, Bench-
marking and Simulation (MoBS), co-located with ISCA 2008,
Beijing, China, Jun. 2008, pp. 28–36.

[3] N. Tack, G. Lafruit, F. Catthoor, and R. Lauwereins, “Pareto
based optimization of multi-resolution geometry for real
time rendering,” in Web3D ’05: Proceedings of the Tenth
International Conference on 3D Web Technology. New York,
NY, USA: ACM, 2005, pp. 19–27.

[4] F. Thoen and F. Catthoor, Modeling, Verification and Explo-
ration of Task-Level Concurrency in Real-Time Embedded
Systems, 1st ed. Kluwer Academic Publishers, 1999.

[5] Gecode Team, “Gecode: Generic constraint development en-
vironment,” 2006, available from http://www.gecode.org.

[6] N. R. Miniskar, E. Hammari, and F. Catthoor, “Scenario based
mapping of dynamic applications on MPSoC: A 3D graphics
case study,” in SAMOS, 2009, pp. 48–57.

[7] C. Wong, P. Yang, and F. Catthoor, “Task concurrency man-
agement methodology to schedule the MPEG4 IM1 player
on a highly parallel processor platform,” in CODES, 2001.

[8] N. R. Miniskar, R. Wuyts, W. Heirman, and D. Stroobandt,
“Energy efficient resource management for scalable 3D
graphics game engine,” IMEC, Tech. Rep., Sep. 2009.

[9] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and method-
ological considerations,” in Proceedings of the 22th In-
ternational Symposium on Computer Architecture, Santa
Margherita Ligure, Italy, Jun. 1995, pp. 24–36.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implica-
tions,” in Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, Toronto,
Canada, Oct. 2008.

[11] N. Barrow-Williams, C. Fensch, and S. Moore, “A com-
munication characterization of SPLASH-2 and Parsec,” in
IEEE International Symposium on Workload Characteriza-
tion, Austin, Texas, Oct. 2009, pp. 86 – 97.

[12] M. D. Ernst, “Static and dynamic analysis: Synergy and du-
ality,” in WODA 2003: ICSE Workshop on Dynamic Analysis,
Portland, OR, USA, May 2003, pp. 24–27.

[13] N. Nethercote and A. Mycroft, “Redux: A dynamic dataflow
tracer,” Electronic Notes in Theoretical Computer Science,
vol. 89, no. 2, pp. 1–22, October 2003.

[14] G. Tournavitis, Z. Wang, B. Franke, and M. F. P. O’Boyle,
“Towards a holistic approach to auto-parallelization,” in Pro-
ceedings of the 2009 ACM SIGPLAN conference on Program-
ming Language Design and Implementation (PLDI), 2009.

555000777

