
Efficient Measurement of Data Flow
Enabling Communication-Aware Parallelisation

Peter Bertels
peter.bertels@ugent.be

Wim Heirman
wim.heirman@ugent.be

Dirk Stroobandt
dirk.stroobandt@ugent.be

Department of Electronics and Information Systems
Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

ABSTRACT
As multicore chips scale to higher processor counts, commu-
nication between cores becomes more and more important.
Indeed, when a single application is split up among mul-
tiple cores, which are connected through a relatively slow
network, the amount of communication that is required will
have an essential effect on performance. Therefore, if the
application can be partitioned in such a way that commu-
nication between threads is minimised, or that placement
on non-uniform networks can be performed with regards to
communication, a significant performance boost can be ob-
tained. But to do this effectively, communication streams
inside the application must be known. In this paper, we in-
troduce a profiling tool for Java that can measure data flows
between methods. It constructs a communication graph,
which combines a traditional call graph with data flow in-
formation.

The overhead of profiling is brought down by a factor of 15
through the use of reservoir sampling. We prove that this
can be done with a limited decrease in accuracy.

This way, we can quickly estimate communication flows,
which forms the critical information that allows an efficient
communication-aware parallelisation to be made.

Categories and Subject Descriptors
D.4.8 [Software Engineering]: Performance—measurements,
simulation, stochastic analysis

General Terms
Data-flow; profiling

1. INTRODUCTION
As multicore chips scale to higher processor counts, com-
munication between cores becomes more and more impor-
tant. On a typical multicore architecture one can distin-
guish several levels of communication, each with different

performance characteristics: threads executed on the same
core communicate by means of shared memory in an on-chip
cache or in in an off-chip memory only reachable through
the network; threads executed on different cores can only
use the relatively slow network connection. This essential
difference between internal and external communication as
well as the amount of inter-thread communication have a
crucial impact on the final performance when a single ap-
plication is split up among multiple cores. Therefore, if the
application can be partitioned in such a way that commu-
nication between threads is minimised, or that placement
on non-uniform networks can be performed with regards to
communication, a significant performance boost can be ob-
tained. But to do this effectively, communication streams
inside the application must be known.

In this paper, we introduce a profiling tool for Java that can
measure data flows between methods. It constructs a com-
munication graph, which combines a traditional call graph
with data flow information. This combined view gives the
programmer the basic information needed for the paralleli-
sation process in which several methods in the application
will be combined into threads: computational requirements,
dependencies and data flow measurements.

Our main contribution is the communication graph: an ex-
tension of a call graph with information on the inherent com-
munication flow in the application, defined in Section 2. The
weights of each node in our communication graph indicate
the required computational power for this method; this in-
formation is used by the programmer to constrain the num-
ber of nodes put together in a single thread. The edges of
the call graph represent dependencies which will determine
the possible scheduling of the application on multiple cores.
New in our approach is the effectively measured amount of
communication between methods. This additional informa-
tion enables a truly communication-aware parallelisation.

The amount of communication within a program is indepen-
dent of the implementation. Indeed, parallelisation does not
change the inherent communication, it only influences the
ratio of internal and external communication, which in turn,
influences performance. Because of this implementation in-
dependence, we can measure the inherent communication
during the execution of the program on a simple, single core
processor.

In this paper we do this by profiling Java programs. Java



is well-suited for program analysis and for profiling. The
multi-threaded nature of the language offers the opportunity
to model concurrent behaviour. This gives us the opportu-
nity to not only profile the original single-threaded applica-
tion, but to also profile the application after (or even during)
the parallelisation process. This way the programmer can
have direct feedback on the reduction in communication cost
he has realised by appropriately parallising the application.
Section 3 explains how Java programs are profiled in order
to build the communication graph. It should be mentioned
that although the work in this paper is implemented com-
pletely in Java, the underlying principles are portable to C
as well. Changing the Java profiler to a native x86 profiling
framework will do.

Profiling the Java program causes a huge increase in ex-
ecution time due to the extensive bookkeeping: we have
to keep track of every memory read or write. To reduce
this overhead we implement reservoir sampling [5]. This
sampling method enables communication estimation with a
pre-specified accuracy and acceptable overhead. Section 4
introduces reservoir sampling and discusses its accuracy and
practical limitations.

Our approach is evaluated on the SPECjvm98 benchmark
suite [4]. Section 5 shows the most important properties of
the resulting communication graphs. This section also shows
how reservoir sampling could reduce the profiling overhead
by a factor of 15 on average and we give experimental results
for the obtained accuracy.

A comparison with related work is made in Section 6 and in
Section 7, concluding remarks follow.

2. COMMUNICATION GRAPH
Within programs, data flows from producers to consumers.
That is, some methods in a program calculate values and
store them in memory, i.e. these methods produce the data.
Other methods need to use this data and read it from mem-
ory. These methods are consumers. Each producer-consumer
pair leads to communication in the final implementation.
Therefore we will call this inherent communication. This
communication will be measured and captured in a commu-
nication graph.

We assume that this inherent communication, available in
the original program, will remain in the final implementa-
tion after parallelisation. Methods in the executable speci-
fication will be grouped into threads and mapped onto (dif-
ferent) cores on the multicore architecture, but as long as
the underlying algorithm remains, the communication be-
tween methods will not change. Therefore our communica-
tion graph will be completely implementation independent.
When the programmer changes the program, e.g. while per-
forming specific optimisations in order to further reduce the
communication, the initial assumption does not hold any-
more and the communication graph has to be rebuilt.

2.1 Example
As an introduction, a simple example of a Java program and
its communication graph is given in Figure 1. A rigorous
definition follows in the next subsection.

public class Example {
public static void main(String[] args) {

int array[] = new int[12];
fillArray(array);
printArray(array);
shiftArray(array);
printArray(array);

}

private static void fillArray(int[] array) {
for (int i = 0; i < array.length; i++)

array[i] = (i+1)*(i+1);
}

private static void printArray(int[] array) {
System.out.print("array: ");
for (int i = 0; i < array.length; i++)

System.out.print(array[i] + " ");
System.out.println();

}

private static void shiftArray(int[] array) {
int temp = array[0];
for (int i = 0; i < array.length-1; i++)

array[i] = array[i+1];
array[array.length-1] = temp;

}
}

(a) Java code of class Example

main

fillArray

12

printArray1 printArray2

shiftArray

12

12

(b) Communication graph (solid line) and the Call graph
(dotted line)

array: 1 4 9 16 25 36 49 64 81 100 121 144
array: 4 9 16 25 36 49 64 81 100 121 144 1

(c) Console output

Figure 1: Java code and its communication graph.



The main method of the Example class creates an array of
12 integers, which is filled with 1, 4, 9, 16, . . . by fillArray.
When the printArray method is called for the first time
to print these numbers to the console, method printAr-

ray consumes the values which were produced by method
fillArray. This can be seen in the communication graph
as a solid edge with label 12 from node fillArray to node
printArray1.

After filling and printing the array, main calls the shiftAr-

ray method to shift the values in the array. The shifted array
is then printed by a second call of printArray. This makes
method shiftArray a consumer of the values produced by
fillArray and a producer for the new values used by the
printArray method. The communication graph therefore
contains two more solid edges: an edge from fillArray to
shiftArray and another one from shiftArray to printArray2.

It should be noticed that the two calls to method printArray

are represented in the communication graph by two different
nodes printArray1 and printArray2. As can be seen from
Figure 1 (b), our communication graph also contains a call
graph. Edges of the call graph are represented as dotted
lines.

2.2 Communication Graph
The communication graph G is a directed graph, defined by
a set of nodes V and two sets of directed edges: E1 and E2.

The vertices in V represent communicating partners. These
communicating partners are producers and/or consumers of
data. They form the finest granularity for our profiling. In
the previous example, each method invocation introduced
a new communicating partner in the graph G. Sometimes
a coarser view of the execution is more appropriate. Sev-
eral alternatives for grouping producers and consumers into
communicating partners will be discussed in the next sub-
section.

The edges in set E1 are weighted edges. These edges repre-
sent the amount of data flowing between two communicating
partners, measured in bytes of the complete the runtime of
the application. The non-weighted edges in E2 represent the
call graph of the program. Each edge points from a caller
to a callee.

In this paper we present a methodology to build the com-
munication graph during the execution of a program. It
should be mentioned that this graph is a representation of
the communication during this specific execution. For non-
deterministic programs the result may vary from execution
to execution.

This definition of a communication graph, brings us to a
definition of producer-consumer pair. A pair of communi-
cating partners (p, c) is a producer-consumer pair when: the
producer p has written some data d in memory and later
on the consumer c had read this same data d without any
other communicating partner has written to d in between
the production and the consumption.

This definition is useful for single-threaded applications as
well as for multi-threaded applications in which the producer

and the consumer might be in different threads.

2.3 Practical Considerations
The communication graph is built by analysing the execu-
tion of a Java program. In Java the producers and con-
sumers of data are individual bytecode instructions, which
are interpreted by the Java Virtual Machine. This enables us
to measure local data flow between these bytecodes. This
local information is neglected nevertheless, because global
data flow between methods is more important for paralleli-
sation than local data flow.

In order to capture global data flow in the communication
graph, we decided to consider methods as the finest granu-
larity for the profiling. This means that one communicat-
ing partner surveys information about the data production
and consumption of one invocation of a certain method.
For small programs, as the above example, this may be a
good choice, but for larger programs this granularity is too
fine and this results in an unmanageable number of nodes.
The number of method invocations in the programs of the
SPECjvm98 benchmark suite can be found in Table 1.

To keep the communication graph manageable, we have to
raise the abstraction level by reducing the number of nodes.
This is done by grouping several nodes into bigger nodes.
For this grouping we implemented various alternatives that
are based on one of the following important properties of
the Java language.

Hierarchy Java programs inherently have a hierarchical
structure. Methods are declared within classes, which
are part of packages. These abstraction levels can
be used by our profiler too. As explained earlier the
finest level is that where individual method invocations
have their own node in the communication graph. At
the method level, all invocations of the same method
are grouped in one communicating partner. At class
level even all methods declared in the same class are
grouped. The abstraction can be raised further by
grouping all methods declared in the same package.
The resulting number of nodes in the entire communi-
cation graph for these three abstraction levels (method-
level, class-level and package-level) is shown in Table 1.

Call Tree Apart from the statical grouping using the Java
class hierarchy, our profiler can also perform a dynamic
grouping of nodes based on the call graph. Instead of
creating a new node in the communication graph for
each invocation of every method, the call tree mode of
our profiler will group all method invocation with the
same call stack in a single node.

Concurrency Java can express concurrent behaviour by
implementing parallel threads. Our profiler is initially
meant for profiling single-threaded applications, but
it can also measure communication between different
threads. Each thread is then considered as a communi-
cating partner and has thus its own node in the com-
munication graph. This gives us the opportunity to
profile the application after (or even during) the paral-
lelisation process. This way the programmer can have
direct feedback on the reduction in communication



object

field0

field1

field2

field3

global map

shadow1

producer0

producer1

producer2

producer3

CommID1

CommID2

array

a[0]

shadow2

producer0a[0]

a[1]

...

a[N]

producer0

producer1

...

producerN

CommID3

Figure 2: Objects and the corresponding shadow
objects.

cost realised by performing communication-related op-
timisations. Since the SPECjvm98 benchmark is single-
threaded, this way of grouping is not included in Ta-
ble 1.

It is also possible to extend these possible granularity levels
to loop-level profiling where individual loops can be treated
as communicating partners. Although it is a logical exten-
sions, this loop-level profiling is not yet implemented.

3. PROFILING THE JAVA PROGRAM
3.1 Basic Idea
We want to build the graph defined in the previous section
while running a Java program. We do this by instrumenting
the Java code in order to capture every single read or write
operation and to perform special actions to build the graph.

The basic idea of our approach is that every data field for
each object in the Java heap memory is annotated with a
reference to the communicating partner which has written
the current value of this field. Whenever a read operation
occurs in the program (consumption of data) we need to add
an edge in the communication graph. This edge connects the
communicating partners of the producer and the consumer
of the data. The consumer apparently is the method which
performed the read operation; the producers can be quickly
identified by means of the last-writer information which was
annotated when the field was written.

Note that this approach requires us to instrument every
write operation which causes a huge overhead in execution
time. The annotations of the last writer to each data field
in memory causes an overhead in memory consumption.

3.2 Data Structures Used for Profiling
Two important data structures are introduced to enable this
profiling. First, there is CommID objects representing commu-
nicating partners. Secondly, for each object or array in the
Java Virtual Machine (JVM), a Shadow object is created.
These shadow objects contain information about the pro-
ducers of the data in every field in the object or every index
in the array.

Figure 2 shows a concrete example with an object and an
array. As can be seen in this figure, the profiler maintains a
global map, which maps object or array references to their

corresponding shadow object. Every field in the shadow
object links to a communicating partner represented by its
CommID object.

It should be mentioned that this CommID objects are also
used as nodes in the final communication graph.

3.3 Instrumentation
In order to perform the profiling, special instrumentation
code has to be inserted in the original Java program. We
are instrumenting the Java code at runtime, which enables
us to instrument the Java program as well as all standard
libraries used by this program. This is an important advan-
tage because methods in the standard libraries are respon-
sible for a significant fraction of the total communication in
the system.

Moreover our instrumentation is targeted directly on the
Java bytecode, the lowest abstraction level within the JVM.
Therefore not a single byte of communication in the pro-
gram, is hidden for our profiler. Notwithstanding the low
abstraction level, the Java bytecode still contains the high
level structure of the program as well as type information
for the data that is used.

4. RESERVOIR SAMPLING
Every producer-consumer pair in the program has to be
analysed by our profiler. Due to the large number of read
and write operations this causes a huge overhead in execu-
tion time as well as in memory consumption. By reducing
the amount of producer-consumer pairs to be analysed, the
overhead can be reduced considerably.

A read operation in the program directly leads to a producer-
consumer pair. The aim of the sampling method is thus to
select a limited number of read operations to be taken into
account for building the communication graph with an ac-
ceptable accuracy. In this paper we propose to apply reser-
voir sampling [5] to achieve this aim. Section 4.1 explains
the general principle of reservoir sampling as well as some
important properties of this technique.

Although sampling reduces the overhead, it results in errors
in the communication graph. Through the fact that reser-
voir sampling selects a uniform random sample of producer-
consumer pairs in the program, we can guarantee the error
to be within a specified confidence interval. A statistical
discussion is given in Section 4.2.

4.1 The Principle of Reservoir Sampling
The aim of reservoir sampling is to reduce the amount of
measurement data by randomly selecting a limited number
of samples from the original set, without the need to know
the size of the data set beforehand.

Reservoir sampling works as follows: initially, the first n
samples of the original set are placed in the reservoir. Start-
ing from sample n + 1 every sample is evaluated one at a
time. A random decision is made whether or not to add this
sample m to the reservoir. If so, a random sample 0 6 a < n
is chosen from the reservoir and this sample a is replaced
by sample m. This algorithm leads to a set of exactly n



Table 1: Number of nodes in the communication graph, for different levels of hierarchical grouping.
benchmark method invocations method-level class-level package-level
201-compress 225,989,456 804 209 27
202-jess 134,689,951 1242 335 123
205-raytrace 307,946,068 952 226 28
209-db 75,641,171 818 202 27
213-javac 120,091,066 1591 341 27
228-jack 65,609,073 1048 247 27

samples, independent of the size of the data set. It can be
proven [5] that these n samples form a uniform and random
sample set.

In the beginning most records are selected to be stored in
the reservoir, but as the algorithm continues, more and more
records are skipped, i.e. the probability of a record to be put
in the reservoir decreases during the run of the algorithm.
We implemented an extension to the basic principle, algo-
rithm L described in [2]. Instead of randomly deciding, for
each record individually, whether it should be added to the
reservoir, algorithm L directly makes a random decision of
the number of records to be skipped each time a record is
selected. This enables speeding up the reservoir sampling
process without sacrificing the statistical properties. Indeed,
Li [2] proves that the probability distribution of algorithm
L is the same as the original algorithm.

4.2 Statistical Discussion
The most important advantage of reservoir sampling over
other techniques, is the fact that it provides a uniform ran-
dom sample set. This allows following analysis.

The aim of our profiling is to estimate the amount of data
flowing over every edge in the communication graph. In the
non sampled version we can obtain absolute values, for the
sampled version we want to estimate the relative importance
of each edge, the fraction of the total communication which
is going over this edge.

Let Fe be the fraction of communication going over edge
e. This fraction can be calculated as f/N , where f is the
total number of producer-consumer relations on this edge e
and N is the total number of producer-consumer relations
in the complete communication graph G. The estimation
F̂e of Fe will be calculated as c/n, where c is the number of
producer-consumer pairs on edge e in the sample set with
size n.

According to [6] the large sample confidence interval for F̂e

is given by

F̂e ± zα/2
s√
n

, (1)

where s is the sample standard deviation. The sample vari-
ance s2 can be computed as

s2 =
n

∑n
i=1 x2

i −
(∑n

i=1 xi

)2

n(n− 1)
. (2)

In our case xi are either 1 (producer-consumer relation is
on edge e) or 0 (producer-consumer relation is on another

edge). Therefore our sample variance s2 can be written as

s2 =
nc− c2

n(n− 1)
, (3)

which makes that

s√
n

=

√
(c/n)(1− c/n)

n− 1
=

√
F̂e(1− F̂e)

n− 1
. (4)

The expected relative error r for a given α% confidence in-
terval can be defined as

r = zα/2

√
F̂e(1− F̂e)

n− 1
/F̂e. (5)

This expression can be rearranged in order to calculate the
number of samples n necessary to obtain a given relative
error r, for an expected accuracy Fe. This results in:

n > zα/2
1− Fe

r2Fe
. (6)

The following particular example illustrates this approach.
In order to obtain, with 95% probability (zα/2 = 1.96), an
estimation that is accurate to within 5%, of the bandwidth
for edges, representing a fraction of at least 0.1% of the
total communication graph (Fe > 0.1%), we need at least
1,535,048 samples.

It should be mentioned that this statistical discussion only
covers important bandwidths in the system. Communica-
tion over edges representing smaller bandwidths (Fe < 0.1%)
can only be estimated accurately when all producer-consumer
pairs are taken into account. A sampled approach, reservoir
sampling or any other sampling technique, cannot guaran-
tee any accuracy at all for such small bandwidths. However,
small bandwidths barely influence the communication cost
so this approximation should have no effect on the overall
system performance.

5. RESULTS
We evaluated our approach with the SPECjvm98 benchmark
suite. The six programs were run on an Opteron 242 with
clock frequency 1.6 GHz and 4 GiB RAM memory.

In our first experiment we measured the communication
graph for the SPECjvm98 programs. We did a full profiling
with the finest granularity, i.e. every method invocation was
measured separately. Table 1 illustrates the extensiveness of
the resulting communication graphs.



1000

1200

1400

1600

1800

2000

sl
o

w
d

o
w

n
 f

a
ct

o
r

samp1k

samp10k

samp100k

samp1m

0

200

400

600

800

1000

0 5 10 15 20 25

sl
o

w
d

o
w

n
 f

a
ct

o
r

original execution time (s)

Figure 3: Relative slowdown factor in function of
the original execution time

In a second experiment we used reservoir sampling for profil-
ing the same communication graphs. We found that reser-
voir sampling can drastically reduce the overhead in exe-
cution time for the profiling: a reduction by factor of 15
on average. These results are shown in Table 2. Column
original in this table gives the original execution time for
running the benchmarks. Column instr shows the overhead
introduced by the instrumentation framework, this is a rel-
ative factor. For these instrumentation overhead results a
Java agent was written that intercepts all classes, interpretes
the bytecodes with ASM, and reassembles the classes with-
out modification. The relative overhead in execution time
for a full, non-sampled profiling is presented in the fourth
column full. The next columns show the relative overhead
for the reservoir sampled approach with different reservoir
sizes: from 1000 samples in column samp1k up to 1 million
samples in column samp1m.

Table 3 presents absolute figures for the total average mem-
ory use of the original execution of the benchmarks. Rel-
ative figures are included for the overhead introduced by
the instrumentation, for the full profiling as well as for the
reservoir sampled approach.

The sampled approach reduces the overhead drastically. The
sampling overhead decreases as the program runs longer.
Because each of the six benchmark programs has a different
execution time, we can plot the slowdown factor in func-
tion of the original execution time in Figure 3. We did this
for four different sizes of the sampling reservoir. The out-
lier in this graph is the program 202-jess which has rela-
tively more memory read/write operations than the other
programs in the benchmark suite. Because of this, 202-jess
benefits more from the ever increasing number of samples
that can be skipped in the reservoir sampling algorithm.

To conclude this section, we evaluated the accuracy of this
sampling method. Figure 4 compares the measured rela-
tive error (MRE) on the communication graph with the pre-
dicted relative error obtained in Section 4.2. This measured
relative error is defined as

MRE =

√√√√ 1

M

M∑
i=1

F̂e,i − F̂e,i

Fe,i

2, (7)where Fe,i is the actual relative weight of edge i in

100%

120%

140%

160%

180%

200%

re
la

ti
v
e

 e
rr

o
r

measured (SPECjvm98)

predicted (theoretical)

0%

20%

40%

60%

80%

100%

1000 10000 100000 1000000

re
la

ti
v
e

 e
rr

o
r

size of the sample set

Figure 4: Relative error in function of the size of
the sample set.

the communication graph G, F̂e,i is the estimated relative
weight of edge i in the sampled graph. Only the M most
important edges where e,i > 0.1% are taken into account in
this equation.

This comparison proves that the predicted accuracy is also
achieved in practice. The solid curve in this figure presents
the predicted error for a 95% confidence interval, for band-
widths representing more than 0.1% of the total bandwidth
in the full communication graph. This explains the notice-
able gap between the measured errors and the predicted er-
ror. Most edges in the communication graph represent more
than 0.1% of the total bandwidth and therefore they can be
estimated more accurately.

6. RELATED WORK
This section presents other graphs representing data flow in
a program. Some of these represent a static view of the pro-
gram, others depict information on the dynamic behaviour
of the program. This distinction is crucial as it determines
the possible use of the graphs.

Static Data Flow Graphs (SDFG), for instance, allow com-
pilers to statically analyse data dependencies between state-
ments in a code fragment. This static analysis enables the
compiler to make sound decisions on, among other, the reg-
ister allocation and optimisation. For concurrent Java code
the Multithreaded Dependence Graph (MDG), an exten-
sion of the SDFG, is introduced by Zhao who used the
MDG for program slicing [7]. Although SDFGs could pos-
sibly be used for parallelisation, they lack dynamic infor-
mation on communication streams in the application, in
contrast to our communication graph which truly facilitates
communication-aware parallelisation.

Nethercote and Mycroft presented Redux [3], a profiling tool
that builds a dynamic data flow graph while running a pro-
gram. This is similar to our communication graph, but it dif-
fers in the abstraction level: Redux measures data flow on a
low abstraction level, namely between individual x86 assem-
bly instructions. For communication estimation in the con-
text of parallelisation, our intention, measuring at a higher
abstraction level is more useful: the use of Java enables us
to capture high level type information for the edges in the
communication graph. This is impossible for Redux as this



Table 2: Overhead in execution time for SPECjvm98 benchmark programs
benchmark original instr full samp1k samp10k samp100k samp1m
201-compress 7.22 s 3.20x 24,692x 902x 1131x 1252x 1391x
202-jess 3.79 s 12.14x 6,432x 876x 929x 930x 971x
205-raytrace 3.62 s 4.48x 8,691x 1,662x 1,672x 1,703x 1,743x
209-db 13.51 s 2.12x 2,204x 165x 173x 174x 187x
213-javac 22.94 s 1.69x 919x 141x 156x 145x 150x
228-jack 14.15 s 2.59x 857x 110x 134x 146x 178x

Table 3: Overhead in memory use for SPECjvm98 benchmark programs
benchmark original instr full samp1k samp10k samp100k samp1m
201-compress 8,8 MiB 0.85x 8.16x 11.55x 10.51x 15.91x 21.42x
202-jess 10.1 MiB 0.89x 5.33x 33.72x 35.24x 35.83x 35.28x
205-raytrace 6.7 MiB 1.31x 13.77x 79.29x 75.08x 63.78x 69.63x
209-db 8.4 MiB 0.95x 14.68x 19.09x 12.31x 18.16x 25.51x
213-javac 8.1 MiB 1.10x 13.79x 50.72x 46.78x 50.14x 45.41x
228-jack 4.7 MiB 1.68x 10.59x 27.78x 29.37x 29.51x 36.93x

information is lost after compilation to x86 assembly. An-
other difference between Redux and our profiler, is the fact
that we are able to handle library functions as well.

The ATOMIUM profiling tool described in [1], is used to
measure bandwidths to arrays. This information is used to
explore a custom memory hierarchy for the system. ATOM-
IUM works on x86 Linux programs; the target implemen-
tation is an embedded system. Although this is similar to
our profiler, there is a fundamental difference: the ATOM-
IUM tools measure communication to memories but loose all
information about the concrete relation between producing
and consuming methods which are communication through
these memories. This makes our communication graph more
general: from our graph we can deduct all information con-
tained in the ATOMIUM data flow graphs. . .

7. CONCLUSIONS
On current multicore and future manycore platforms, the
amount of inter-core communication that is required by an
application will have an essential impact on the overall per-
formance of the system. Communication-aware parallelisa-
tion is necessary in order to minimise the communication
overhead.

In this paper we have proposed the communication graph
as a valuable instrument which can help the programmer
to perform such a communication-aware parallelisation. We
have introduced a profiling tool for Java that can measure
communication streams between methods. Our profiler con-
structs the proposed communication graph, which combines
a traditional call graph with data flow information. Exper-
imental results show that such a communication graph is
huge for real-world applications. We proposed several tech-
niques for grouping nodes in this graph to make it smaller
and therefore more comprehensible.

Profiling Java programs in order to construct the commu-
nication graph incurs an overhead in execution time. We
successfully brought down this overhead by a factor of 15

through the use of reservoir sampling. Moreover we could
statistically prove that this can be done with a limited de-
crease in accuracy.

This way, we can quickly estimate communication flows,
which forms the critical information that allows an efficient
communication-aware parallelisation to be made.

Acknowledgements.
This research has been supported by a PhD grant of the In-
stitute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen). This research
was also morally supported by the FlexWare (IWT/060086)
and OptiMMA (IWT/060831) projects.

8. REFERENCES
[1] F. Catthoor, E. de Greef, and S. Wuytack. Custom

Memory Management Methodology: Exploration of
Memory Organisation for Embedded Multimedia System
Design. Kluwer Academic Publishers, USA, 1998.

[2] K.-H. Li. Reservoir-sampling algorithms of time
complexity O(n(1 + log(N/n))). ACM Transactions on
Mathematical Software, 20(4):481–493, 1994.

[3] N. Nethercote and A. Mycroft. Redux: A dynamic
dataflow tracer. Electronic Notes in Theoretical
Computer Science, 89(2):1–22, October 2003.

[4] SPEC JVM Client98 Suite. Industry-standard
benchmark for measuring Java Virtual Machine
performance. In http://www.spec.org/, USA, 1998.

[5] J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37–57,
March 1985.

[6] R. E. Walpole and R. H. Myers. Probability and
Statistics for Engineers and Scientists. Prentice Hall,
1993.

[7] J. Zhao. Multithreaded dependence graphs for
concurrent java program. In PDSE 1999: Proceedings of
the International Symposium on Software Engineering
for Parallel and Distributed Systems, page 13,
Washington, DC, USA, 1999. IEEE Computer Society.


