
Simulating Wrong-Path Instructions in Decoupled
Functional-First Simulation

Stijn Eyerman, Sam Van den Steen, Wim Heirman, Ibrahim Hur
Intel Corporation

{Stijn.Eyerman, Sam.Van.den.Steen, Wim.Heirman, Ibrahim.Hur}@intel.com

Abstract—Wrong-path speculative execution on an out-of-
order processor core has no impact on an application’s function-
ality and correctness, but it can impact performance by changing
the state of caches and predictors. Not modeling wrong-path exe-
cution in performance simulation leads to performance projection
errors up to 22% for our setup. However, wrong-path execution
is challenging to model for common functional-first simulators,
because the functional simulator is not aware of branch predictor
misses and only provides correct-path instructions.

We propose and evaluate multiple wrong-path modeling tech-
niques for functional-first simulators, each with a different
accuracy versus simulation speed balance. The novel instruction
reconstruction with convergence exploitation technique proves to
be the best balanced technique, with about 3× lower error than
no wrong path modeling and about 2 to 3× faster simulation
than full wrong path emulation.

I. INTRODUCTION

Processor performance simulation is an indispensable tool
for architectural research, processor design, and to project
performance in the context of procurement contracts. Due to
the complexity of current processors and the tiny timescale,
efficient and accurate processor simulation is a challenge,
both in terms of implementation effort and simulation speed.
Processor simulation can be divided into two tasks: functional
and performance simulation. The goal of functional simulation
is to construct the correct dynamic instruction stream and
to extract data of each instruction that is needed by the
performance simulator (instruction address, type, source and
destination registers, data address, etc.). The performance
simulator processes this data and simulates the performance
of each instruction in each of the processor structures (cores,
caches, network, memory, etc.).

Although other combinations theoretically exist, there are
two common ways to implement a processor simulator: inte-
grated functional and performance simulation, and decoupled
functional-first simulation [2]. An integrated implementation
emulates an instruction’s functionality when it is in its actual
execution stage in the performance model (execute-at-execute).
Integrated simulation is more accurate than decoupled simu-
lation, because it can adapt the instruction stream on micro-
architectural events, such as branch predictor misses or load
replays. Due to its execute-at-execute model, it also more ac-
curately models the performance impact of memory operation
synchronization. A drawback of integrated simulation is that
it is less flexible: for example, the simulator knows that a
branch is mispredicted only when it is actually executed and

not yet at the fetch stage, so perfect branch prediction cannot
be simulated.

Functional-first simulation has a separate functional sim-
ulator that runs ahead of the performance model, using a
queue of instructions between the functional and performance
simulator. Functional-first simulators are easier to implement
and maintain, because they consist of two separate tools.
They are also more flexible: you can reuse the same per-
formance simulator for different functional simulators (e.g.,
different ISAs) or use the same functional simulator for
different performance simulators (e.g., use an x86 emulator
for an Intel architecture performance simulator and for an
AMD architecture performance simulator). Furthermore, only
a small fraction of the instruction opcodes in an ISA is
used for most of the dynamic instructions of an application
[3]. Therefore, not modeling the rarely used opcodes in
the performance simulator does not impact accuracy much,
while for a functional simulator, it is crucial to model all
opcodes, because a single unmodeled instruction can lead
to functionally incorrect execution or an application crash.
Implementing the performance simulator independent of the
functional simulator therefore does not require worrying about
this completeness. Lastly, the decoupling of the functional
and performance simulator enables them to run in parallel.
An integrated simulator triggers instruction emulation one by
one, leading to de facto sequential functional and performance
simulation. This makes functional-first simulation faster than
integrated simulation [2].

An important accuracy deficit of decoupled simulation is
the inability to faithfully simulate wrong-path instructions,
i.e., the instructions fetched after a branch misprediction until
the misprediction is detected and the correct path restored.
Although wrong-path instructions are flushed before they are
retired and do not impact the architectural state, they can have
an impact on performance, in particular through caches [24].
Wrong-path instructions access the instruction and data caches,
thereby potentially bringing in new data and evicting older
cache lines. If the newly inserted data is later used by a
correct-path instruction, the correct-path instruction will take
less time because the data is already cached. On the other
hand, if the correct path accesses data evicted by the wrong-
path instructions, its execution time will be longer because the
data needs to be refetched to the cache.

Many processor simulators do not model wrong-path exe-
cution (see Section VI-A) because it complicates the simulator

-25%

-20%

-15%

-10%

-5%

0%

bc bfs cc pr sssp tc

E
rr

or
 o

f
no

 w
ro

ng
 p

a
th

 m
od

e
lin

g

Fig. 1. Performance estimation error of no wrong path modeling for the GAP
benchmarks.

implementation and because prior work indicates that wrong-
path execution has not a large performance impact [11].
Branch predictors also have become highly accurate for com-
monly evaluated workloads, such as the SPEC benchmarks.
However, we find that even for recent core configurations,
wrong-path modeling can have a big impact on accuracy,
and we expect this impact to increase for two reasons: First,
emerging workloads, such as graph analysis [17], sparse neural
networks [33] and graph neural networks [32], are more irreg-
ular than the established benchmarks. They have higher branch
miss rates due to data-dependent branches and higher cache
miss rates caused by sparse accesses. There is also a trend that
regular dense workloads (such as HPC workloads and dense
neural networks) are executed on GPUs and accelerators,
leaving the irregular sparse applications as the main CPU
workloads [6]. Secondly, high performance cores still trend
towards increasing instruction depth and width (larger reorder
buffers, more functional units), which increases the amount
of speculative instructions. Furthermore, the increasing gap
between core and memory speed leads to longer resolution
times for mispredicted branches that depend on main memory
accesses, increasing the time spent in wrong-path execution.

Figure 1 shows the performance estimation error of not
modeling wrong path execution on a recent high-performance
core configuration for the GAP benchmarks (see Section IV
for our experimental setup). All errors are zero or negative
(average -9.6% and up to -22%), meaning that not modeling
the wrong path underestimates performance. This is because
the GAP benchmarks show a high degree of convergence,
where the wrong path starts prefetching data in the cache for
the upcoming correct path code. Pagerank (pr) has no impact,
because it has no conditional branches in its inner loop, and
Triangle Count (tc) is mainly compute bound. In the results
section, we also evaluate the SPEC CPU 2017 benchmarks.
Some of them (mainly the regular FP benchmarks) are not
impacted by wrong-path modeling, but a significant fraction
(especially the INT benchmarks) also have negative errors, 2%
on average and up to -9.7%.

In this paper, we discuss and evaluate three techniques to
model the impact of wrong-path execution in a functional-
first simulator. The first technique reconstructs the instructions
along the wrong path and simulates the instruction cache,

branch predictor and functional unit usage of these instruc-
tions. However, it cannot reconstruct the register contents
along the wrong path, meaning that memory addresses that
depend on register contents are unknown and that data cache
accesses cannot be simulated. The second technique tries to
also reconstruct register data—and thus memory addresses—,
by using advanced features of the functional simulator, such as
machine state checkpoints and instruction injection. This tech-
nique more accurately simulates the wrong-path performance
impact, but it is much heavier to execute, reducing simulation
speed with one to two orders of magnitude. The last technique
uses the first technique for its low overhead, and tries to recon-
struct memory addresses by detecting convergence between
the wrong and correct path. Although this technique cannot
reconstruct addresses if there is no convergence, it does cover
the converging paths case, which has significant wrong-path
performance impact.

The contributions of this paper are:
• Qualitative and quantitative discussion on the impact of

not modeling wrong-path execution in functional-first
simulators.

• Proposing three novel techniques to (partially) model
the impact of wrong-path execution on performance in
functional-first simulators.

• Evaluation of the three techniques, showing higher ac-
curacy and limited simulation speed overhead for the
wrong-path instruction recovery technique with memory
address reconstruction using convergence detection: error
reduces with a factor 3×, while simulation speed is 2× to
3× higher than the speed of the most accurate wrong-path
emulation technique.

The next section discusses the characteristics of functional-
first simulation. Next, we explain our proposed techniques to
model wrong-path execution in a functional-first simulator.
After explaining our experimental setup, we show simulation
accuracy and speed results from our experiments. We conclude
that the convergence exploitation technique considerably im-
proves accuracy while not slowing down simulation speed as
much as full wrong-path emulation.

II. FUNCTIONAL-FIRST SIMULATION

Functional-first decoupled processor simulation consists of
two separate engines: a functional simulator and a performance
simulator. The functional simulator is responsible for correctly
running an application and providing instruction details to
the performance simulator. It can use dynamic binary instru-
mentation (e.g., Pin [22], DynamoRIO [10]), emulation (e.g.,
Qemu [8], Simics [23]), or a trace interpreter (for pre-recorded
instruction traces). The performance simulator models the
timing of the instructions in the processor pipelines, caches,
memory, etc. It uses the instruction data from the functional
simulator (instruction address, disassembled instruction, mem-
ory addresses) to accurately model the different components
of a processor.

An important characteristic of functional-first simulation is
that the functional simulation runs ahead of the performance

simulation. The functional simulator pushes instructions in a
queue, which are consumed by the performance simulator. To
ensure performance simulation is not delayed by the functional
simulator, multiple instructions (tens up to thousands) are
queued between the functional and performance simulator.
This runahead can impact the accuracy of the performance
model in multiple ways:

• Branch prediction is simulated in the performance simu-
lator. When a branch is simulated and wrongly predicted,
the instruction queue from the functional simulator con-
tains the next correct-path instructions, and the functional
simulator is already processing multiple instructions in
the future. Wrong-path instruction execution can there-
fore not be modeled. Instead, the performance simulator
halts instruction fetch until the branch is executed (in
simulation time), after which correct-path fetch restarts
(with some extra latency to model squashing instructions
and restoring register rename state).

• For parallel applications with inter-thread synchroniza-
tion, synchronization instructions are functionally exe-
cuted before their performance simulation. The exact
timing of synchronization instructions can impact the
performance and/or the control flow of an application,
for example in a work-stealing parallel application. Ap-
plications that are sensitive to synchronization instruction
timings might therefore not be modeled accurately.

This paper handles the wrong-path simulation issue. The
goal is to model the micro-architectural and corresponding
performance impact of executing wrong-path instructions as
accurately as possible in a functional-first simulator, in partic-
ular the state of instruction and data caches.

III. WRONG-PATH RECONSTRUCTION IN
FUNCTIONAL-FIRST SIMULATION

We developed three techniques for wrong-path reconstruc-
tion in functional-first simulation. The first technique recon-
structs the instructions without emulating their functionality.
This means that data-dependent information (e.g., memory
addresses) is not reconstructed and cannot be used in the
performance model (e.g., for modeling the data cache). The
second technique performs fully functional emulation of the
wrong path, including reconstructing the data and memory
addresses. This is the most accurate method, but also the
slowest (slowdown of 2× to 100×). The last technique uses
the first technique as baseline, and tries to reconstruct mem-
ory addresses based on convergence between the wrong and
correct path. It is almost as fast as the first method, while
reconstructing most of the memory addresses in converging
code, where wrong-path execution has the largest performance
impact.

We describe our techniques based on the simulator we
used to implement them: Sniper [12] with Intel Pin [22] as
functional simulator. Most of the techniques can also be used
on other functional-first simulators, but in particular the second
wrong-path emulation technique uses specific Pin features,

which are potentially not supported by other functional simu-
lators.

A. Instruction Reconstruction using Code Cache

The instructions provided by the functional simulator are
correct-path instructions only, because the functional simulator
does not model the branch predictor. It is only when the
branch predictor is simulated in the performance model that
the branch misprediction is detected. The branch predictor
model provides the wrong-path target: the next instruction
if the branch is predicted not taken, the branch target if
the branch is predicted taken, or the predicted target for an
indirect branch. If a particular static branch instruction is
executed multiple times (e.g., in a loop) and has multiple
outcomes, the functional simulator has at some point provided
instruction streams for several paths (taken and non-taken for
a conditional path, multiple targets for an indirect branch).
Therefore, we implement a code cache between the functional
and performance simulator, keeping the information of past
emulated instructions. This cache is indexed by the instruction
address, and keeps the instruction decode information: instruc-
tion address, instruction type, input and output registers.

In case a branch is wrongly predicted, the performance
model looks up the start of the wrong path in the code cache.
If it is not present, it resorts to default branch misprediction
modeling: halting fetch until the mispredicted branch has
finished its execution stage. If it is present, the instruction
is fetched from the code cache and sent through the simulated
pipeline, along with the subsequent instructions. When a
wrong-path branch is fetched, it is also predicted, and the
predicted target is used to continue the wrong path. If at some
point, the requested instruction is not in the code cache, the
wrong-path reconstruction is stopped and fetch is halted until
the resolution of the initial mispredicted branch.

Because we only reconstruct the instruction information and
do not emulate the functionality of the reconstructed wrong-
path instructions (calculations and memory data), we can only
use data-independent information in performance simulation,
including:

• the instruction address: for modeling instruction cache
accesses,

• branch instruction type: for modeling branch prediction
(in combination with the instruction address),

• instruction type: for modeling functional unit utilization
and buffer occupation (ROB, load/store queue, etc.),

• input and output registers: for modeling dependences
between instructions.

However, we cannot reconstruct data-dependent information,
of which data memory addresses are most important to the per-
formance model. In particular, we cannot model data cache and
TLB accesses, load-store forwarding, address disambiguation,
etc.

Data cache and TLB accesses typically have the largest
impact on performance, because they change the state of
the cache, which could have an impact on future correct-
path instructions. The impact could be positive if wrong-

path instructions “pre-fetch” data in the cache for correct-
path instructions, or negative if their cache accesses cause the
eviction of useful data needed by the correct path. From our
experiments (see Figure1), we found that the positive effect
has the largest impact: wrong-path instructions eventually
converge with the correct path and access caches with the
correct memory address. When the correct-path instruction
executes later on, it finds the data already in cache and it can
proceed much quicker than when the wrong-path access is not
modeled. Therefore, the next technique also aims to recover
data addresses to correctly model this behavior.

B. Functional Wrong-Path Emulation

For accurate wrong-path simulation, the performance simu-
lator needs to know the addresses of the data that the instruc-
tions access on the wrong path. This can only be achieved by
actually emulating the wrong-path: simulating the calculations
and loaded memory data of the wrong-path instructions. In a
functional-first simulation model, the performance simulator
cannot do functional emulation, so we need to implement this
in the functional simulator. For Pin, the functional simulator
we use in our setup, we start by taking a checkpoint of the
current register state, to be able to resume execution after the
branch miss is detected. Next, we use the ’PIN ExecuteAt’
method1 to redirect execution to the wrong path and start
emulating the wrong path. Stores, as well as exceptions, need
to be suppressed since the functional state (memory and OS
state) should not be affected by the wrong path. In a user-
level functional simulator such as Pin, we need to end the
wrong path on system calls, because kernel code cannot be
instrumented. Store data could be kept in a separate structure
to enable forwarding the data to future loads, but because the
wrong path is usually short, store-to-load forwarding does not
occur frequently. Once we are done executing down the wrong
path, we restore the register checkpoint and continue along the
correct path.

To decide when to head down the wrong path, the functional
simulator contains a copy of the branch predictor model and
initiates a list of wrong-path instructions when a misprediction
is modeled. The wrong path is always followed for one reorder
buffer (ROB) size worth of instructions (plus the frontend
pipeline buffers). The timing simulator can then follow the
wrong path until the initial branch miss is detected, and discard
the unneeded instructions of the wrong path.

This technique models the impact of wrong-path execution
most accurately, but it heavily reduces simulation speed by
a factor of 5× and more. Taking a checkpoint, redirecting
functional simulation, injecting instructions and restoring the
checkpoint cause a big overhead on the functional simulator.
It is also an implementation and debugging challenge to avoid
application crashes, since many unexpected things can happen
on a wrong path (including exceptions, invalid instructions,
and other weirdness that a binary instrumentation tool such

1https://software.intel.com/sites/landingpage/pintool/docs/98690/Pin/doc/
html/group CONTEXT.html

branch

W
X
Y
Z

A: converge point
B
C
D

Fig. 2. One-sided branch; the 2 possible paths after the branch are WXYZ-
ABCD and ABCD. Instruction A is the convergence point. In a one-sided
branch, the convergence point is always the first instruction of one of both
paths, which could be the correct or wrong path.

as Pin may not be prepared to handle). Lastly, the functional
simulation frontend needs to support this feature. For example,
a trace frontend cannot implement this, because the trace only
contains correct-path instructions.

C. Wrong-Path Memory Address Reconstruction for Converg-
ing Code

The main conclusion of the two described techniques is
that light-weight wrong-path simulation does not model the
effect with the largest impact (data cache prefetching), while
an accurate technique has too much overhead. Because wrong-
path simulation has the highest impact for applications with
converging code, this last technique targets wrong-path data
cache access modeling for converging code. It exploits the
fact that the functional model runs ahead of the performance
model, so we can take a peek in the future correct-path
instructions to find the memory addresses accessed by the
converged wrong-path instructions. These addresses are used
during wrong-path simulation to more faithfully simulate
wrong-path data cache behavior.

This technique uses the code cache from the first technique.
Additionally, it checks whether the wrong and correct path
converge at some point, and whether the memory instructions
after the convergence point are control and data independent
of the instructions before the convergence point. The latter
check is necessary because addresses may change when they
depend on non-converged code. An important pitfall of this
technique is to be overly optimistic: using addresses from
correct-path instructions during wrong-path simulation will by
construction cause a cache hit when the correct path instruction
is simulated. Therefore, we should be cautious to only use
these addresses when it is certain that the addresses match, i.e.,
when the instruction control flow converges and the memory

D C B A Z Y X W

F E D C B A

performance
sim

functional sim

code cache

dirty regs

wp_sim?

Fig. 3. Wrong path convergence detection and address reconstruction (instructions are the same as in Figure 2; ABCD is the correct path, WXYZABCD
is the wrong path). When the performance model detects a branch miss (1), the code cache generates wrong-path instructions (in italic) (2). Next, it is
checked whether the correct path or wrong path start converges (3) (in this example, the convergence point is the start of the correct path). Meanwhile, the
registers written in the other path before the convergence point are collected (4). From the convergence point, both the correct and wrong path are scanned
for convergence and data addresses are copied if the instructions match and are data-independent from the pre-convergence code (5). When this is finished,
wrong-path simulation starts (6), until the performance model simulates the execution of the mispredicted branch and instruction fetch is steered back to the
correct path (7).

instruction is control and data independent of non-converging
code.

1) Convergence detection: On a branch miss, we detect
convergence by going over the future wrong-path and correct-
path instructions and by looking for matching instructions.
Because of the optimism pitfall and because the wrong path
is limited by the reorder buffer (ROB) size, we conservatively
check for convergence. We only detect convergence for one-
sided branches, see Figure 2. This means that we only check
if the first instruction of the wrong path matches with an
instruction at most ROB size instructions in the correct path or
if the first correct path instruction matches with an instruction
in the wrong path. In other words, if the branch is taken
and wrongly predicted not taken, we check whether the fall-
through path finally reaches the branch target, or reversely, if
the correct fall-through path reaches the start of the wrong
path (the branch target). As a result, we need to do at most 2
times ROB size comparisons, i.e., comparing the first wrong-
path instructions with ROB size correct-path instructions, and
comparing the first correct-path instructions with at most ROB
size wrong-path instructions.

2) Independence check: If convergence is detected, we need
to check which correct-path instructions after the convergence
point are data independent of the wrong-path and correct-
path instructions before the convergence point. Thereto, we
build a list of written registers in the correct and wrong
path before the convergence point. Next, we go over the
correct path after the convergence point and check whether
the instruction pointers match with the instructions along
the wrong path after the convergence point. When we find
a memory operation that matches with the wrong path and
that is data-independent of the pre-convergence code (through
register dependences), we copy the memory address to the
wrong-path instruction information. This address is then later
used in cache simulation when that wrong-path instruction
models its memory access. Note that we only check for register
dependences, not for through-memory dependences. Keeping
track of memory dependences has a higher overhead, because
you need to keep a list of all store addresses, compared to a
limited register file size list for register dependences.

Figure 3 summarizes the steps taken by the simulator on a
branch misprediction.

3) Overhead and limitations: Convergence-based wrong-
path memory address recovery has an impact on converging
code only and models only the positive prefetching impact of
wrong-path data cache accesses. It also adds some overhead:
at each branch miss, the future wrong-path and correct-path
code is searched for convergence. If not enough instructions
are in the queue between the functional and performance
simulator, convergence checking can either be skipped or a
message can be sent to the functional simulator to generate
more instructions, adding time overhead. Nevertheless, the
simulation speed is only slightly lower than that of the instruc-
tion reconstruction technique, and much higher than that of the
functional wrong path emulation. We evaluate the simulation
speed overhead of this technique in the results section.

We limit the convergence check cases to single-side
branches (if-then, no if-then-else) which means we could miss
convergence for some branches, leading to an underestimation
of the performance gain. On the other hand, we do not check
for through-memory dependences, which could lead to an
overestimation. We made both choices to limit the overhead
of convergence detection, and found that they already provide
substantial accuracy gains for applications with converging
code.

IV. EXPERIMENTAL SETUP

We implemented the three wrong-path modeling techniques
in an in-house version of Sniper [12]. We perform simulations
with 4 simulator versions:

1) No wrong-path modeling (default)
2) Instruction reconstruction wrong path modeling
3) Wrong path modeling with instruction reconstruction

and memory address reconstruction by exploiting con-
vergence

4) Wrong path emulation
We want to evaluate each technique in how accurately it
models the impact of wrong-path execution on performance.
Because we don’t have an integrated simulator that has the ex-
act same performance model as our simulator—except for the

wrong-path modeling—to use as a reference, we assume that
wrong path emulation (option 4) is the most accurate model.
Therefore, we define error as the performance estimation
difference with wrong path emulation. Note that functional
wrong-path emulation is not always able to reconstruct all
wrong-path instructions (e.g., it needs to stop on a system
call, or the injection fails for some reason), so the actual
error against fully correct wrong-path modeling might be
different from the number we report. However, we assume
the reported numbers are a good indication of the impact
of wrong-path execution on performance and of how close
the other techniques are to correctly modeling wrong-path
execution. We also measure simulation speed to compare the
four options.

As benchmarks, we use the GAP benchmark suite [7],
composed of high-performance CPU implementations of graph
analytics kernels. Graph analytics is used for big data semantic
analysis by getting insights out of a large set of data and their
relations. They impose important challenges to current proces-
sor architectures: very large data sets, data dependent branches
and sparse irregular data accesses. The GAP benchmarks have
characteristics that stress wrong-path modeling: high branch
miss rate, high data cache miss rate and converging code. The
latter is caused by the recurring structure of graph applications:
the same function is applied to all vertices (or edges), and
each function application is independent. After applying the
function to one vertex, the code jumps to the next vertex,
so if a branch miss occurs while processing the first vertex,
code converges on the next vertex. Usually, the functions are
relatively simple, so multiple function applications reside in
the same reorder buffer, leading to convergence within a ROB
size number of instructions.

The GAP benchmarks are heavily impacted by wrong-path
modeling, and as such amplify the accuracy gain obtained
by wrong-path modeling. They also have converging code,
benefiting our convergence based technique. Applications that
are insensitive to wrong-path modeling should not be impacted
by our techniques, but applications that have a negative wrong-
path impact and/or are not converging will only see accuracy
gains for the unfeasibly slow wrong path emulation technique.
To cover a larger application range, we also include results
for the SPEC CPU 2017 benchmarks [1] (all SPECrate INT
and FP benchmarks). To limit simulation time, we simulate a
single 1 billion instruction sample per benchmark-input pair,
gathered using the SimPoint method [26] (34 sampled traces
in total).

Because wrong-path modeling is a core-internal model, we
perform single-core simulations. We configure our simulator
similar to a P-core of an Intel Alder Lake system (also known
as Golden Cove microarchitecture) [27]. Table I shows the
simulated core configuration parameters. We downscale the
LLC and memory bandwidth to reflect the available LLC
capacity and memory bandwidth per core in common SKUs.

TABLE I
SIMULATED PROCESSOR CONFIGURATION

Frequency 2.5 GHz
ROB size 512
dispatch width 6
commit width 8
L1 I-cache 32KB, ass 8
L1 D-cache 48 KB, ass 12
L2 cache 2 MB, ass 16
branch predictor TAGE-SC
LLC size 1.9 MB
memory bandwidth 5.3 GB/s
memory latency 50 ns

V. ACCURACY AND SPEED EVALUATION

A. Accuracy of Approximate Wrong-Path Simulation

Wrong-path emulation is the most accurate simulation tech-
nique, but infeasibly slow for most practical simulation stud-
ies (up to 100x for very branch-miss-intensive applications).
Therefore, we developed approximate wrong-path modeling
techniques, namely wrong path instruction reconstruction and
address reconstruction by exploiting convergence. Figure 4
shows the error of no wrong-path modeling (nowp), instruction
reconstruction (instrec) and convergence exploitation (conv).
Note that the nowp results are the same as in Figure 1.

For the GAP benchmarks, instruction reconstruction has a
very small or no impact on error reduction. These applications
have a low instruction memory footprint and are therefore
not sensitive to instruction cache interference by wrong-path
instructions. Convergence exploitation, on the other hand, sig-
nificantly decreases the error for benchmarks that had a strong
negative error. By detecting convergence and reconstructing
memory addresses, we faithfully model the positive interfer-
ence effect of converging wrong-path instructions prefetching
data for the correct path. For Betweenness Centrality (bc),
the error turns positive, meaning that part of the positive
interference was offset by negative interference. Because the
convergence exploitation technique only models positive inter-
ference, the negative interference effect now becomes visible.
The average error is 9.6% for no wrong path modeling,
9.7% for instruction reconstruction and 3.8% for convergence
exploitation.

The SPEC benchmarks are split into the integer (INT,
triangles) and floating-point (FP, circles) benchmarks. The no
wrong path results (bottom) show that most FP benchmarks
are around 0% error, while the error distribution for the INT
benchmarks is much larger. SPEC FP benchmarks mainly
consist of regular number-crushing code with no hard-to-
predict branches, while INT benchmarks are less regular and
have data-dependent branches, explaining the larger impact of
wrong-path modeling.

For the instruction reconstruction technique (middle), a
few benchmarks, such as gcc, shift from negative towards
0% error. These benchmarks have a higher instruction cache
miss rate than average, and wrong-path execution prefetches
instructions into the instruction cache, leading to fewer correct-
path instruction cache misses and therefore higher perfor-

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

bc bfs cc pr sssp tc

E
rr
or

nowp instrec conv

gcc
xz

gcc
xz

gcc
xz

-12% -10% -8% -6% -4% -2% 0% 2% 4%
Error

nowp INT no wp FP instrec INT instrec FP conv FP conv INT

(a) GAP benchmarks (b) SPEC benchmarks
Fig. 4. Error of wrong path modeling techniques for the GAP benchmarks (left) and SPEC benchmarks (right; distribution per technique; error ranges with
many points have larger Y-value ranges). No wrong path model = nowp, instruction reconstruction = instrec, convergence exploitation = conv.

mance. However, the largest negative errors remain: 24% of
the benchmarks still have a negative error (<−0.5%), with 5
having an error below -2% (up to -9.7%).

The convergence exploitation technique (top) solves these
outliers: only 15% remain with a negative error, with one
outlier to -3.3%; 82% now have an error around 0% (was 64%
with no wrong path modeling) and one (xz) has a positive
error that is slightly higher than for no wrong path modeling.
The increase in positive error is expected: the convergence
technique targets positive interference and does not model
negative interference. Benchmarks where negative and pos-
itive interference (partially) compensate for each other now
show larger positive errors, with xz as the most pronounced
example. However, the net accuracy gain is positive: more
benchmarks are close to 0% and the average error decreases
by a factor 4 for the SPEC INT benchmarks: from 1.97% (no
wrong-path modeling) to 0.49% (convergence exploitation).
The SPEC FP benchmarks’ average error is 0.20% across all
techniques.

In conclusion, benchmarks where wrong-path interference
has a large impact, such as the GAP benchmarks, see a large
accuracy improvement of using convergence exploiting wrong
path modeling (average error reduces from 9.6% to 3.8%). A
more diverse set of benchmarks with less pronounced wrong-
path interference sensitivity move from a negatively skewed
error distribution to a more narrow distribution around 0%,
and an average error reducing from 1.97% to 0.49%.

B. Simulation Speed

One of the main benefits of functional-first simulation is its
simulation speed, as the functional simulator and performance
simulator run in parallel and are loosely synchronized (using
the intermediate instruction buffer). All three wrong-path
models slow down simulation because they need to simulate
more instructions than the baseline no wrong path model.
Instruction reconstruction is the most light-weight technique,
followed by convergence exploitation, which is instruction
reconstruction extended with convergence and independence
checking. Wrong path emulation is the slowest technique due
to the heavy-weight emulation in the functional simulator. In
addition, it is also the hardest technique to implement.

TABLE II
FRACTION OF WRONG PATH INSTRUCTIONS RELATIVE TO CORRECT PATH

INSTRUCTIONS.

instrec conv wpemul
bc 240% 117% 69%

bfs 160% 86% 35%
cc 236% 53% 19%
pr 12% 12% 5%

sssp 166% 135% 66%
tc 50% 33% 18%

To evaluate simulation speed, we recorded the simulation
time for all simulations, and normalized them to the no wrong
path model, which is the fastest technique. For the SPEC
benchmarks, which are mainly not or lightly branch miss
heavy, the average slowdown for the instruction reconstruction
technique is 1.12× (up to 4.8×), the convergence exploitation
technique is on average 1.13× slower (up to 4.1×), and for
the wrong path emulation, the slowdown is 2.1× on average
and up to 16.2×. The GAP benchmarks are very branch miss
heavy, spending up to 75% of their execution time in wrong-
path execution. Therefore, wrong path modeling has a much
larger impact on simulation speed: an average 3.2× slowdown
for instruction reconstruction (up to 6.2×), 4.0× on average
for convergence exploitation (up to 5.1×) and a 13.1× average
slowdown for wrong path emulation, with an outlier of 157×.

The reconstruction techniques do not touch the functional
simulator, so their slowdown is caused by the performance
simulator (reconstructing wrong path and simulating wrong-
path instructions). The slowdown of the wrong path emulation
technique is caused by the functional simulator, because the
performance simulation model is the same as for the other two
techniques and both simulators execute in parallel.

We conclude that the convergence exploitation technique
provides the best accuracy-simulation speed balance of the
proposed wrong-path modeling techniques: it is only slightly
slower than instruction reconstruction, while significantly re-
ducing the error for applications that are sensitive to wrong-
path modeling.

TABLE III
LOW-LEVEL METRICS FOR THE CONVERGENCE EXPLOITATION

TECHNIQUE. FRACTION OF BRANCH MISSES WHERE CONVERGENCE IS
FOUND (CONV FRAC); AVERAGE NUMBER OF INSTRUCTIONS UNTIL THE

CONVERGENCE POINT (CONV DIST); FRACTION OF WRONG PATH MEMORY
OPERATIONS WHOSE ADDRESSES ARE RECOVERED USING CONVERGENCE
EXPLOITATION (ADDR RECOVER); FRACTION OF WRONG-PATH L2 MISSES
THAT ARE COVERED BY THE CONVERGENCE EXPLOITATION TECHNIQUE

VERSUS THE WRONG PATH EMULATION TECHNIQUE (WP L2 MISS).

Conv frac Conv dist Addr recover WP L2 miss
bc 98% 30.1 34% 44%

bfs 93% 13.7 34% 24%
cc 92% 6.9 44% 73%
pr 75% 24.9 31% 0%

sssp 62% 28.4 31% 32%
tc 90% 7.6 54% 9%

C. In-Depth Analysis

To gain further insight into the different wrong-path mod-
eling techniques, we recorded different metrics during simu-
lation. Table II shows the fraction of wrong-path instructions
executed by the wrong-path models for the GAP benchmarks.
It is relative to the correct path instruction count, so 100%
means that there are as much wrong-path instructions exe-
cuted as there are correct-path instructions. The high numbers
indicate the importance of wrong-path modeling for the GAP
benchmarks, with up to 2.4× more wrong-path instructions
than correct-path instructions. Pagerank (pr) is an exception
because it has no data-dependent conditional branch in its
inner loop.

If we compare the different techniques, it might be counter-
intuitive that instruction reconstruction (instrec) executes more
wrong-path instructions than convergence exploitation (conv),
which in its turn executes more wrong-path instructions than
wrong-path emulation (wpemul). Instruction reconstruction
does not model memory accesses, so each memory operation
is modeled as a cache hit. That means that the wrong-path
proceeds faster compared to accurately modeling cache misses
and their latency, as done by the wrong-path emulation and
(partially) by the convergence exploitation technique. There-
fore, during the branch miss resolution time, i.e., the time
it takes to execute the dependence path to the branch and
the branch itself, more instructions can be executed in the
instruction reconstruction model than in the other models.
The convergence exploitation technique models the memory
operations that can be reconstructed accurately, including their
latency to access caches and memory. Therefore, it executes
fewer wrong-path instructions than the instruction reconstruc-
tion technique, but more than the (most accurate) wrong-
path emulation model, because not all memory addresses can
be recovered. These numbers again show that convergence
exploitation is closer to correct wrong-path modeling than
instruction reconstruction, with a limited simulation speed
overhead.

Table III shows further details on the convergence exploita-
tion technique for the GAP benchmarks. The first column is
the fraction of branch misses where convergence is detected,
i.e., the start of the correct or wrong path is found later on

in the other path. Again, the high numbers show that GAP
benchmarks have a lot of convergence, with up to 98% of the
branches converging. This is because their inner loop typically
goes over the neighbors of a specific vertex and applies the
same function on all of them independently. If there is a branch
misprediction in that function, the execution will eventually
jump to the next iteration of that loop, providing a convergence
point.

An additional factor contributing to the impact of conver-
gence is that the functions applied to a vertex’ neighbors
are relatively simple and thus short in terms of instruction
count. That is shown in the second column, which indicates
the average number of instructions between the branch and
the convergence point (of the path where the first instruction
is not the convergence point). It shows that after 7 to 30
instructions, the paths converge and the remaining instructions
in the ROB (up to 512) are all potentially the same, providing
a large opportunity to prefetch correct data to the caches. Of
course, mispredictions could also occur along the wrong path,
making both paths diverge again, but the numbers show the
large potential for convergence.

The address recover column shows the fraction of memory
instructions along the wrong path for which we are able to re-
cover the addresses by exploiting convergence. This fraction is
much lower than the fraction of branches where convergence is
found. Memory operations that depend on the non-converging
code are not recovered, as well as memory operations that
lay on a path that diverges further after the convergence point,
because of a misprediction along the wrong path. So the deeper
in the wrong path, the less likely can the memory address
be recovered. However, it is more important to recover the
addresses close to the branch miss, because these will have the
most impact on cache hits. Memory operations deeper in the
wrong path are less crucial. Triangle count (tc) has remarkably
more addresses recovered. This benchmark has a low cache
miss rate, and the branches do not depend on instructions that
have a cache miss, so its resolution time and depth of wrong
path is much lower than for the other applications. The closer
a memory operation is to the mispredicted branch, the higher
the probability that it can be recovered, explaining the higher
recover fraction.

The last metric compares the amount of misses in the
L2 cache along the wrong path between the convergence
exploitation technique and wrong path emulation (baseline).
This number is more important than the amount of addresses
that are recovered, because these misses will change cache
content and prefetch data for the correct path. For most
benchmarks, a large fraction of misses is recovered, especially
those that see a large performance swing for the convergence
exploitation technique. Pagerank spends few time in wrong
path and triangle count has fewer cache misses in the wrong
path, explaining their low number. Note that the overall cache
miss rate does not change significantly across the techniques:
no or only few additional misses are introduced during wrong-
path simulation, the converging misses along the wrong path
are turning correct-path misses into hits.

VI. RELATED WORK

A. Functional-First versus Integrated Simulation
As discussed in the introduction, the two most common

types of processor simulators are decoupled functional-first
and integrated (often called timing-directed) simulation. Ex-
amples of functional-first simulators are Sniper [12], COTSon
[5], MARSS [25], CMPSim [20] and ChampSim [19]. These
simulators do not model wrong-path execution by default.
ASIM [16] and gem5 [9] are integrated simulators, where the
instruction function is emulated exactly when it is executed
in the timing simulation model (execute-at-execute). An in-
between form is execute-at-fetch [21]: the instructions are
emulated when they are fetched in the timing model. This
is similar to functional-first, but without letting the functional
simulator run ahead to the timing model. This makes it easier
to redirect the instruction stream on a branch misprediction
(which is detected at the fetch stage), but it reduces simulation
speed because the functional and performance simulator now
run in lockstep, heavily reducing the potential of parallel
simulation. The abundance of functional-first simulators com-
pared to integrated simulators is an indication that they are
easier to implement. Akram and Sawalha [2] composed a list
of processor simulation tools, with most timing simulators
using the functional-first technique. They also mention the
performance benefit of functional-first simulators compared to
integrated simulators.

To speed up simulation, several papers propose FPGA-
accelerated performance simulation [14], [31]. Because an
FPGA-based functional simulator is complex to implement,
FAST [14] executes it on the CPU. The functional model sends
instruction data to the FPGA model, adopting the functional-
first simulation model. To model wrong-path execution, the
functional simulator is able to roll back to the mispredicted
branch and emulate wrong-path instructions. This is similar
to our wrong-path functional emulation technique. The slow-
down of this technique versus not modeling wrong path is
not reported. RAMP [31] integrates both the functional and
performance model on an FPGA, but they model in-order cores
without branch prediction, which have no speculative wrong-
path execution.

B. Importance of Wrong-Path Simulation
The performance impact of wrong-path execution has been

recognized before. While Cain et al. [11] claim that wrong-
path execution has a negligible impact on performance, Mutlu
et al. [24] report up to 10% error when not modeling wrong-
path execution in simulation. The main difference between
both studies is the memory latency: Cain et al. assume 70
cycles, while Mutlu et al. model at least 250 cycles. If a branch
misprediction depends on a cache miss (and thus memory
access), the memory access latency determines the branch
resolution time and therefore the time spent in wrong-path
execution. We find that wrong-path modeling has indeed a low
impact for most of the commonly used SPEC benchmarks,
but it can have a much larger impact for other emerging
applications, such as graph analysis.

Sendag et al. [29], [30] find that in a multicore processor,
wrong-path cache accesses can have an even larger impact
by interfering in the cache coherence policy, leading to more
coherence traffic, state changes and writebacks. They also
propose a technique to reduce the impact of wrong-path
execution. We have only evaluated single core execution, but
our wrong-path simulation techniques also apply to multicore
simulation.

Chandra et al. [13] show that wrong-path execution has
an even larger impact on power consumption than on per-
formance. They propose an offline trained model to predict
wrong-path power consumption during trace-based simulation,
which cannot simulate wrong-path execution. They do not
model the performance impact of wrong-path execution.

C. Exploiting Convergence

Our convergence exploitation technique uses convergence
between the wrong and correct path to reconstruct memory
addresses without functionally emulating the wrong path.
Several researchers point to the potential of this convergence
to improve the performance of an out-of-order processor:
converging control- and data-independent instructions on the
wrong path are not flushed and refetched, only the instructions
that truly depend on the mispredicted branch are flushed.
Rotenberg and Smith [28] were the first to describe this
mechanism for trace processors. Collins et al. [15] describe
how convergence can be detected in hardware and describe two
techniques to exploit convergence to improve performance. Al
Zawawi et al. [4] propose a novel ROB-less design, based
on re-execution buffers to execute control and data dependent
instructions after a mispredicted branch. Eyerman et al. [18]
use hint instructions to guide the processor to flush only
branch-miss dependent instructions.

VII. CONCLUSIONS

Wrong-path instruction execution can have a big impact
on performance, especially when wrong-path instructions
eventually converge with correct-path instructions and start
fetching useful data to the caches. However, simulating the
wrong path in a functional-first simulator—a common simu-
lation paradigm with high simulation speed and flexibility—is
challenging, because the functional simulator only simulates
correct-path instructions. We propose and explore multiple
techniques to model wrong-path instruction execution in a
functional first simulator, from instruction reconstruction using
a code cache to full-blown wrong path emulation. In particular,
we propose a novel technique that looks for converging code
in the correct and wrong path, which enables reconstructing
memory addresses along the wrong path, crucial for modeling
the impact of wrong-path execution on cache state. We find
that this technique forms an interesting balance between
accuracy and simulation speed: it reduces error from 9.6% to
3.8% for the branch-miss-heavy GAP benchmarks and from
1.97% to 0.49% for the more diverse SPEC INT benchmarks.
At the same time, it is 1.9 to 3.5× faster than wrong-path
emulation.

REFERENCES

[1] “SPEC CPU 2017.” [Online]. Available: https://www.spec.org/cpu2017
[2] A. Akram and L. Sawalha, “A survey of computer architecture sim-

ulation techniques and tools,” Ieee Access, vol. 7, pp. 78 120–78 145,
2019.

[3] A. Akshintala, B. Jain, C.-C. Tsai, M. Ferdman, and D. E. Porter, “X86-
64 instruction usage among C/C++ applications,” in Proceedings of the
12th ACM International Conference on Systems and Storage, 2019, pp.
68–79.

[4] A. S. Al-Zawawi, V. K. Reddy, E. Rotenberg, and H. H. Akkary,
“Transparent control independence (TCI),” in 34th Annual International
Symposium on Computer Architecture (ISCA), 2007, pp. 448–459.

[5] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“Cotson: infrastructure for full system simulation,” ACM SIGOPS Op-
erating Systems Review, vol. 43, no. 1, pp. 52–61, 2009.

[6] M. Arora, S. Nath, S. Mazumdar, S. B. Baden, and D. M. Tullsen,
“Redefining the role of the CPU in the era of CPU-GPU integration,”
IEEE Micro, vol. 32, no. 6, pp. 4–16, 2012.

[7] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available: http:
//arxiv.org/abs/1508.03619

[8] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
annual technical conference, FREENIX Track, vol. 41, no. 46. Califor-
nia, USA, 2005, pp. 10–5555.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[10] D. Bruening and T. Garnett, “Building dynamic instrumentation tools
with dynamorio,” in Proc. Int. Conf. IEEE/ACM Code Generation and
Optimi zation (CGO), Shen Zhen, China, 2013.

[11] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti, “Precise
and accurate processor simulation,” in Workshop on Computer Architec-
ture Evaluation using Commercial Workloads, HPCA, vol. 8, 2002.

[12] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Trans. Archit.
Code Optim., vol. 11, no. 3, pp. 28:1–28:25, Aug. 2014.

[13] S. Chandra, R. Jayaseelan, and R. Bhargava, “Speculative path power es-
timation using trace-driven simulations during high-level design phase,”
in 2016 IEEE 34th International Conference on Computer Design
(ICCD), 2016, pp. 630–637.

[14] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat, “Fpga-accelerated simulation technologies
(fast): Fast, full-system, cycle-accurate simulators,” in 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
2007). IEEE, 2007, pp. 249–261.

[15] J. D. Collins, D. M. Tullsen, and H. Wang, “Control flow optimization
via dynamic reconvergence prediction,” in 37th International Symposium
on Microarchitecture (MICRO-37’04). IEEE, 2004, pp. 129–140.

[16] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert et al., “Asim: A performance
model framework,” Computer, vol. 35, no. 2, pp. 68–76, 2002.

[17] S. Eyerman, W. Heirman, K. Du Bois, J. B. Fryman, and I. Hur, “Many-
core graph workload analysis,” in SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis, 2018,
pp. 282–292.

[18] S. Eyerman, W. Heirman, S. Van Den Steen, and I. Hur, “Enabling
branch-mispredict level parallelism by selectively flushing instructions,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’21, 2021, pp. 767—-778.

[19] N. Gober, G. Chacon, L. Wang, P. V. Gratz, D. A. Jimenez,
E. Teran, S. Pugsley, and J. Kim, “The championship simulator: Ar-
chitectural simulation for education and competition,” arXiv preprint
arXiv:2210.14324, 2022.

[20] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “Cmp$im: A pin-based
on-the-fly multi-core cache simulator,” in Proceedings of the Fourth
Annual Workshop on Modeling, Benchmarking and Simulation (MoBS),
co-located with ISCA, 2008, pp. 28–36.

[21] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-level simulator
for highly detailed microarchitecture exploration,” in 2009 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software.
IEEE, 2009, pp. 53–64.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan
notices, vol. 40, no. 6, pp. 190–200, 2005.

[23] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[24] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt, “An analysis of the
performance impact of wrong-path memory references on out-of-order
and runahead execution processors,” IEEE Transactions on Computers,
vol. 54, no. 12, pp. 1556–1571, 2005.

[25] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: A full system
simulator for multicore x86 cpus,” in 2011 48th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2011, pp. 1050–1055.

[26] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 1, pp. 318–
319, 2003.

[27] E. Rotem, A. Yoaz, L. Rappoport, S. J. Robinson, J. Y. Mandelblat,
A. Gihon, E. Weissmann, R. Chabukswar, V. Basin, R. Fenger et al.,
“Intel alder lake cpu architectures,” IEEE Micro, vol. 42, no. 3, pp.
13–19, 2022.

[28] E. Rotenberg and J. Smith, “Control independence in trace processors,”
in 32nd ACM/IEEE International Symposium on Microarchitecture (MI-
CRO), Nov 1999, pp. 4–15.

[29] R. Sendag, A. Yilmazer, J. Y. Joshua, and A. K. Uht, “The impact
of wrong-path memory references in cache-coherent multiprocessor
systems,” Journal of Parallel and Distributed Computing, vol. 67, no. 12,
pp. 1256–1269, 2007.

[30] R. Sendag, A. Yilmazer, J. J. Yi, and A. K. Uht, “Quantifying and
reducing the effects of wrong-path memory references in cache-coherent
multiprocessor systems,” in Proceedings 20th IEEE International Par-
allel & Distributed Processing Symposium. IEEE, 2006, p. 10.

[31] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson,
and K. Asanović, “Ramp gold: an fpga-based architecture simulator
for multiprocessors,” in Proceedings of the 47th Design Automation
Conference, 2010, pp. 463–468.

[32] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[33] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,
T. Chen, and Y. Chen, “Cambricon-S: Addressing irregularity in sparse
neural networks through a cooperative software/hardware approach,” in
51st IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2018, pp. 15–28.

https://www.spec.org/cpu2017
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619

	Introduction
	Functional-First Simulation
	Wrong-Path Reconstruction in Functional-First Simulation
	Instruction Reconstruction using Code Cache
	Functional Wrong-Path Emulation
	Wrong-Path Memory Address Reconstruction for Converging Code
	Convergence detection
	Independence check
	Overhead and limitations

	Experimental Setup
	Accuracy and Speed Evaluation
	Accuracy of Approximate Wrong-Path Simulation
	Simulation Speed
	In-Depth Analysis

	Related Work
	Functional-First versus Integrated Simulation
	Importance of Wrong-Path Simulation
	Exploiting Convergence

	Conclusions
	References

