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I. ABSTRACT

Measuring the overhead of memory management in soft-
ware applications is a hard problem due to the lack of a
baseline; it cannot be turned off, only replaced with a different
strategy with different tradeoffs. We present a straightforward
technique to approximate a baseline that relies on function-
first simulation and demonstrate its application with a Python
memory management overhead analysis.

II. MEMORY MANAGEMENT OVERHEAD ANALYSIS

The performance impact of userspace software memory
management is an ongoing concern and feeds a rich research
field around manual allocators [1], and automatic memory
management such as reference counting [2], [3] and Garbage
Collection (GC) [4]. These works rely on comparative studies,
as even estimating the absolute cost of software memory man-
agement techniques is famously difficult [5]. Understanding
the true cost of the direct, and indeed indirect, impact of
memory management techniques is crucial to correctly focus
the development of software and hardware improvements to
the areas that would make the greatest impact.

Memory managers introduce easy to measure overheads in
places where the application hands over control. For example,
a call to libc’s malloc() or free(), or the language run-
time pausing the application for a stop-the-world GC memory
reclamation. However, memory management strategies also
introduce “death by 1, 000 cuts” overheads in the form of
meta-data and bookkeeping across the entire application’s
execution. These types of operations have an first-order effect
of extra instructions and increased memory footprint, but also
introduce second order effects such as cache and branch pre-
dictor pollution. The first order effects of these "death by 1,000
cuts" overheads are already challenging to directly measure in
sampling based measurement approaches (Intel EMON, linux
perf), but can be directly measured in simulation if all such
bookkeeping regions are appropriately identified and marked.
The second-order effects could be estimated by omitting these
bookkeeping operations. However, excluding the bookkeeping
operations is not possible in functional simulation or native
execution without changing the program functionality and
correctness.

III. APPROACH

Our approach relies on functional-first simulators separating
the functional and timing concerns into two distinct simu-
lation models. Given an application annotated with memory
management region markers, the functional model executes
the full application as usual, but the instructions in marked
regions are excluded from the timing model. A benefit of this
straightforward approach is that it does not require functional
changes to the runtime or application code.

Collecting the metrics of instructions inside the marked re-
gions measures only the first-order effects of memory manage-
ment. To capture the second-order effects as well, we perform
two simulations: with and without marked region exclusion.
Taking the difference yields a lower bound measurement of the
memory management overhead for a variety of performance
metrics.

A. Limitations

We do not claim that this simulation-exclusion approach is
the definitive accurate measurement of memory management
overhead. Rather, this is a useful tool in the toolbox to
estimating memory management overheads. Directly mea-
suring memory management overheads is intractably hard
due to the absence of a clear zero-cost baseline. Memory
allocation strategies constantly trade off higher management
overhead against overall application performance gains, this
applies to both manual and automatic memory management
strategies [6].

This simple approach does not modify the runtime or its
data layout. As such, the objects will still reside in memory
locations determined by the original memory manager and the
object representation will still include the reserved space for
metadata, although accesses to it will not be observed by the
performance model. For example, a reference counted object
will still contain the counter slot, only its access instructions
are excluded from the timing model’s instruction stream.
What this approach measures is therefore still a lower bound
estimate.



IV. DEMONSTRATOR

A. Setup

We demonstrate the feasibility of our approach by applying
it to a set of Python benchmarks from the pyperformance
suite. The following results are only preliminary, a deeper and
broader analysis will be the topic of a future publication.

Our functional-first simulation setup uses an in-house sim-
ulator derived from Sniper [7] with a 4th-gen Intel Xeon
Scalable Processor (Sapphire Rapids) timing model. No scale-
down simulation is used here, meaning that the single-threaded
python benchmarks can make full exclusive use of the 105MB
LLC.

The functional model is the Pin-based Intel SDE emulator.
System calls are not emulated, however no such calls were
recorded in the benchmark’s region of interest.

The region exclusion feature is implemented in a straightfor-
ward way, filtering out instructions between region-exclusion
markers and taking into account region nesting. Python op-
erates a variety of allocation and reclamation strategies with
various bookkeeping functionality spread throughout the inter-
preter code. The markers allows all of these to be taken into
account. Around 100 regions were identified and marked in
the CPython v3.12 interpreter, encompassing reference count-
ing operations, tracing garbage collection, zero-initialization,
arena allocation and calls to the underlying libc allocator.

Four benchmarks with distinct workloads are selected from
the pyperformance suite: deepcopy, chaos, django template
and comprehensions. They are executed unmodified with a
custom runner script that injects the simulator’s region of
interest simulation markers for cache warmup and the detailed
simulation phases. This excludes Python startup, module im-
porting, etc. . . from the performance simulation, letting it run
the benchmark workload in a fully warmed up state.

B. Preliminary results

Generally, these early results on a handful of benchmarks
are not sufficient to make broad estimates about the memory
management overheads in Python. Nevertheless, the trend
across the analysed workloads points to a clear reduction in
total runtime.

Across all analysed workloads, the instruction count drops
significantly when excluding the memory management re-
gions, with the differences ranging from −15.8% to −20.9%
with a geometric mean of −20.2%. This reduction is in line
with expectations in earlier functional-only emulation exper-
iments. The timing model reports an equivalent reduction in
runtime of geomean −19.2%. Depending on the workload, the
change in instructions per cycle (IPC) swings between −2.6%
and +1.7%. Looking closer to the internal IPC bottleneck
metrics, we do observe a small shift from cycles spent waiting
for data caches (−1.6%) to waiting for dependent instructions
+1.2%.

It is interesting to note that the change in most performance
metrics varies wildly across the different workloads. For
instance, the deepcopy benchmark sees a significant −80.9%

geomean reduction in L2 and last-level cache miss rates,
whereas the comprehension and django template benchmarks
see an increase of respectively 18.1% and 23.1%. As the
excluded instructions are a common part of the runtime,
removing them from execution results in the inherent workload
performance profile to be magnified. The region-exclusion
simulation helped reveal the workload’s baseline performance
profile, an essential tool in the development of memory
management improvements.
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