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Abstract—Computer architects extensively use simulation to
steer future processor research and development. Simulating
large-scale multicore processors is extremely time-consuming and
is sometimes impossible because of simulation infrastructure con-
straints and/or simulation host compute and memory limitations.

This paper proposes scale-model simulation, a novel method-
ology to predict large-scale multicore system performance. Scale-
model simulation first constructs and simulates a scale model of
the target system with reduced core count and shared resources.
Target system performance is then predicted through machine-
learning (ML) based extrapolation. Scale-model simulation pre-
dicts 32-core target system performance based on a single-
core scale model with an average error of 8.0% and 15.8%
for homogeneous and heterogeneous multiprogram workloads,
respectively, while yielding a 28× simulation speedup.

Index Terms—Architectural simulation, performance predic-
tion, multi-core, machine learning, scale model

I. INTRODUCTION

Predicting performance for a future computer system is

a challenging and critical problem. The traditional approach

is to employ detailed architectural simulation. Unfortunately,

simulation is extremely time-consuming. In addition, simula-

tion infrastructures have their limitations and may not be able

to simulate a future large-scale system because of excessive

memory consumption, simulator infrastructure limitations, or

insufficient compute capability and/or memory capacity in

the simulation host system when simulating large numbers

of cores. Researchers and practitioners employ a variety of

techniques to tackle the simulation challenge. A widely used

solution is sampled simulation [1], [2]. Unfortunately, this

approach does not solve the simulation problem when it

comes to simulating increasingly large target systems. In

particular, we observe that simulating an 8-core, 16-core and

32-core target system using Sniper [3], a fast and state-of-

the-art parallel multicore simulator, takes 8, 17 and 43 hours,

respectively, on a powerful 36-core simulation host when

running multiprogram SPEC CPU workloads with (only) one

billion instructions per benchmark. The super-linear increase

in simulation time and complexity as a function of system size

is a major challenge for computer architects in academia and

industry.

In this paper, we propose scale-model simulation, a novel

paradigm to predict future system performance [4]. Scale-

model simulation combines architectural simulation with ma-

chine learning to predict performance for large-scale systems

based on detailed simulation of a scaled-down configuration

of the target system, called the scale model. Scale-model

simulation first simulates a scale model of the target system.

Performance for the target system is then predicted through

extrapolation. Scale models solve the two problems aforemen-

tioned: (1) scale models speed up the simulation of large-

scale systems: scale models are small enough to simulate in

reasonable amount of time while performance extrapolation is

instantaneous; and (2) scale models make simulation feasible

for large-scale systems that cannot be simulated on existing

infrastructure because of limitations in memory and compute

capacity.

Scale models are widely used in a variety of engineering

disciplines, including civil engineering (e.g., construction,

fluid dynamics), mechanical engineering (e.g., aerodynam-

ics, engine design), construction (e.g., architectural design,

city development), etc. The most familiar scale models are

miniatures, i.e., scaled-down versions of an original object. A

key property of a scale model is that it accurately maintains

relationships between various important aspects, but not nec-

essarily all aspects, of the original object. Scale models enable

demonstrating or studying some behavior of the original ob-

ject. To the best of our knowledge, scale models have not been

applied to the field of general-purpose computer architecture.

While building an exact miniature of a target system may be

hard in the context of processor architectures, if at all possible,

we leverage the idea of scale models to predict future computer

system performance.

The scale-model simulation paradigm can be decomposed

into two sub-objectives: (1) scale-model construction and (2)

scale-model extrapolation. The first objective relates to how

to construct a scale model of a (much) larger target multicore

system, so that it takes substantially less time to simulate than

the target system, yet enables an accurate prediction of the

performance of the large-scale target system. A scale model

is a scaled-down version of the target multicore system by

featuring a reduced number of cores, say by a factor F , relative

to the target system. The question is what to do with the

shared resources, in particular the last-level cache (LLC), NoC

and memory bandwidth. One option may be to not scale the

shared resources. Assuming no shared resource contention,

the performance of a single core in the scale model would

be similar to the performance of an individual core in the

target system. Of course, in reality, the actual performance

will be less because of shared resource contention. We find

for our suite of SPEC CPU2017 workloads, that not scaling

shared resources leads to largely inaccurate scale models

with an average 60% prediction error (and up to 94%) for

a single-core scale model versus a 32-core target system.

The alternative option is to proportionally scale the shared
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resources. In particular, when scaling the number of cores by

a factor F in the scale model relative to the target system, the

shared resources are also reduced proportionally by a factor

F , i.e., LLC capacity, NoC bisection bandwidth and memory

bandwidth are reduced by a factor F . We find that proportional

resource scaling leads to substantially more accurate single-

core scale models, with an average prediction error of 14.7%

and at most 32.2% relative to a 32-core target system.

Because the scale model is not an exact miniature of

the target system, the second objective relates to how to

extrapolate performance from the scale model to the target

system to further improve accuracy. Shared resources lead to

a variety of complex interactions at the system level, which the

scale models may or may not capture to a sufficient degree.

Scale-model extrapolation predicts the impact of contention

effects in shared resources on target-system performance based

on the simulated scale model. We propose and evaluate two

extrapolation methods that leverage Machine Learning (ML) to

infer prediction models that predict target-system performance

based on scale-model measurements. The two methods are

ML-based prediction and ML-based regression. The key differ-

ence between both methods is that ML-based regression does

not require simulation runs of the target system during training,

in contrast to ML-based prediction. ML-based regression can

thus be deployed when it is too time-consuming or even

impossible to run simulations of the target system. We explore

a variety of ML-based scale-model extrapolation techniques,

including decision trees, random forest and support vector

machines (SVM), and we find that SVM is most accurate. In

addition, we evaluate a number of regression methods (linear,

power and logarithmic), and find that logarithmic regression

is most accurate. Our evaluation using multiprogram SPEC

CPU2017 workloads demonstrates the high accuracy of scale-

model simulation. Considering a single-core scale model and

a 32-core target system, we report that for homogeneous

multiprogram workload mixes, SVM-based prediction yields

an average prediction error of 6.4% (20.8% max error).

SVM-based regression is slightly less accurate as it does not

involve target-system simulations during training. SVM-based

regression yields an average prediction error of 8.0% (26.4%

max error).

Scale-model simulation is more challenging for heteroge-

neous multiprogram workload mixes because of more diverse

interaction and contention effects. Nevertheless, we demon-

strate that scale-model simulation is also effective and accurate

for heterogeneous workload mixes. We report that SVM-based

prediction achieves an average prediction error of 13.2% (max

error of 27.5%) for SVM-based prediction, and 15.8% for

SVM-based regression (max error of 28.7%).

Scale-model simulation leads to substantial simulation

speedups. Training the prediction model is a one-time cost that

can be amortized across many predictions. Once the prediction

model has been trained, scale-model simulation is fast. It only

requires running a simulation of the application of interest

on the single-core scale model, which is substantially faster

than running a simulation of the target system, i.e., in our

experimental setup in which we use Sniper [3] on a high-end

36-core Intel PowerEdge R440 server, we find that simulating

a single-core scale-model is 28× faster than simulating the

32-core target system.

In summary, we make the following key contributions:

• We propose scale-model simulation, a novel methodology

to predict target-system performance based on scale-

model performance simulations.

• We find that shared resources are best proportionally

scaled in the scale model relative to the target system.

• We demonstrate that extrapolation can significantly im-

prove scale-model simulation accuracy.

• We propose and evaluate two ML-based extrapolation

techniques that do or do not rely on target-system simu-

lations during training.

• We evaluate scale-model simulation and demonstrate high

accuracy and simulation speed improvements for both

homogeneous and heterogeneous multiprogram workload

mixes for a 32-core target system based on single-core

scale-model simulations.

• We find that ML-based regression is almost equally ac-

curate as ML-based prediction while not requiring target-

system simulations during training, making ML-based

regression a more practical approach.

II. SCALE MODEL CONSTRUCTION

Scale-model architectural simulation involves two key con-

cerns: (1) how to construct the scale models, and (2) how

to build an accurate extrapolation model based on the scale

model predictions. We discuss the former in this section and

the latter in the next section.

A scale model is a scaled-down version of the large-

scale target system such that its performance is a (relatively)

accurate representation of the target system. More precisely,

the scale model needs to be configured such that its per-core

performance is similar to per-core performance in the target

system. The challenge when constructing scale models for

multicore processors is how to deal with shared resources.

One option is to simply scale the number of cores in the

scale model while keeping the shared resources as in the target

system — we refer to this approach as No Resource Scaling
(NRS). For example, a scale model consisting of a single core

would have access to the fully sized LLC capacity as well as

the same NoC and memory bandwidth as in the target system.

Another, more accurate, option is to proportionally scale the

shared resources with core count — we refer to this approach

as Proportional Resource Scaling (PRS). The intuition behind

PRS is to provide balanced scale models that exhibit similar

degrees of resource contention as in the target system. In

particular, when scaling the number of cores by a factor F , we

scale LLC capacity, NoC bandwidth and memory bandwidth

by the same factor F . In other words, we keep LLC capacity

per core constant and we keep interconnection and memory

bandwidth per core constant. In our setup, we assume 1 MB

of LLC per core, 4 GB/s NoC bisection bandwidth per core,

and 4 GB/s memory bandwidth per core. See Table I for how
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#cores LLC NoC DRAM

32 32 MB: 32 slices 128 GB/s: 4 CSLs, 32 GB/s per CSL 128 GB/s: 8 MCs, 16 GB/s per MC
16 16 MB: 16 slices 64 GB/s: 4 CSLs, 16 GB/s per CSL 64 GB/s: 4 MCs, 16 GB/s per MC
8 8 MB: 8 slices 32 GB/s: 2 CSLs, 16 GB/s per CSL 32 GB/s: 2 MCs, 16 GB/s per MC
4 4 MB: 4 slices 16 GB/s: 2 CSLs, 8 GB/s per CSL 16 GB/s: 1 MC, 16 GB/s per MC
2 2 MB: 2 slices 8 GB/s: 1 CSL, 8 GB/s per CSL 8 GB/s: 1 MC, 8 GB/s per MC
1 1 MB: 1 slice 4 GB/s: 1 CSL, 4 GB/s per CSL 4 GB/s: 1 MC, 4 GB/s per MC

TABLE I: Constructing scale models through Proportional Resource Scaling: LLC capacity in MB; on-chip interconnection

network in GB/s: number of cross-section links (CSLs) and bandwidth per CSL; main memory bandwidth in GB/s: number

of memory controllers (MCs) and bandwidth per MC.

we scale shared resources in our setup. Since we assume

a NUCA LLC with a 1 MB slice attached to each core in

our setup, we proportionally scale down LLC capacity as we

consider fewer cores in the scale model. Scaling bandwidth is

more complicated. We scale DRAM bandwidth by changing

both the number of memory controllers and bandwidth per

memory controller. Starting from the target system, we first

scale down the number of memory controllers from 8 (at 32

cores) to 1 (at 4 cores), and then scale down the amount of

bandwidth per memory controller. First scaling the number of

memory controllers and then scaling bandwidth per memory

controller once there is only single memory controller left,

enables more accurate scale models compared to first scaling

memory bandwidth per memory controller and then scaling

the number of memory controllers (as we will quantify in the

evaluation section). For the interconnection network, we scale

link bandwidth as the number of cross-section links reduces

with core count. In particular, scaling down from 32 to 16

cores, the number of cross-section links remains unchanged,

hence we have to halve bandwidth per link from 32 GB/s to

16 GB/s. In contrast, when moving from 16 to 8 cores, the

number of cross-section links halves from 4 to 2, hence we

maintain the per-link bandwidth at 16 GB/s.

III. SCALE MODEL EXTRAPOLATION

Scale model construction is only a first step. We need scale

model extrapolation to yield even more accurate target system

performance predictions. Scale-model extrapolation considers

scale-model simulation results to predict target-system perfor-

mance. We consider two extrapolation models in this work:

no extrapolation and ML-based prediction and regression.

A. No Extrapolation

The simplest way to predict target system performance is to

use the per-core performance observed in the scale model as a

prediction for per-core performance in the target system. This

approach implicitly assumes that the interference observed in

the shared resources in the scale model is similar to (or the

same as in) the target system. The scale model that we assume

is a single-core system with the shared resources proportion-

ally scaled following the PRS approach. The performance

measured for this single-core scale model then is the prediction

for per-core performance in the target system.

While we primarily focus on a single-core scale model in

this paper, it might be worth considering a two-core scale

model or a four-core scale model (again, with the shared

resources proportionally scaled). This typically leads to higher

accuracy. On the flip side, simulating a scale model with more

cores and larger shared resources takes longer. In other words,

increasing the size of the scale model leads to an accuracy

versus speed trade-off. The larger the scale model, the higher

the accuracy but the longer simulation takes. While we will

primarily focus on the results with a single-core scale model

— as it yields the highest possible simulation speedup — we

will also explore the accuracy versus simulation speed trade-

off by considering larger scale models in the results section.

B. Machine Learning-based Prediction and Regression

Leveraging Machine Learning (ML) enables achieving

higher accuracy compared to the No Extrapolation method. We

consider two ML-based approaches: ML-based Prediction and

ML-based Regression. Both methods involve a training phase

during which a performance model is trained. The training

phase incurs a one-time cost. The key difference between

both approaches is that ML-based Regression does not require

simulation runs of the target system during training, in contrast

to ML-based Prediction. This has important implications in

practice. In case it is impossible to simulate the target system

for some reason (too long simulation time or other simulator

limitations), one has to resort to ML-based Regression. Higher

accuracy is typically obtained through ML-based Prediction,

although that requires access to the target system. We now

explain both approaches.

1) ML-Based Prediction: ML-based prediction involves a

training phase in which a set of training benchmarks are run on

both the scale model and the target system, see also Figure 1.

We consider N benchmark mixes in our training set, with each

mix i (1 ≤ i ≤ N ) consisting of T benchmarks Bj , 1 ≤ j ≤
T . There are as many benchmarks per mix as there are cores in

the target system, namely T . We denote a performance number

P obtained on the single-core scale model with superscript ss
(P ss), on the multi-core scale models with superscript msX
(PmsX ), and on the target system with superscript t (P t).

On the single-core scale model, we measure performance

(i.e., IPC) and memory bandwidth utilization. The latter is

a function of the number of LLC misses per unit of time

and has a significant impact on resource contention in the
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Fig. 1: ML-based prediction involves a training and prediction

phase. The training phase requires simulation results for the
target system.

memory subsystem during co-execution with other bench-

marks. In other words, it provides a measure for how much

contention the particular benchmark is going to create on the

shared resources when co-executed with other benchmarks.

Our results confirm that considering both performance and

memory bandwidth utilization improves accuracy (as we will

quantitatively demonstrate in the evaluation section). The

performance and bandwidth utilization numbers on the single-

core scale model serve as independent variables to the ML

technique. More precisely, the input variables to the ML

model are per-core performance for each of the benchmarks

in the training mix (IPCss(Bj)), alongside the per-core

bandwidth utilization for the given benchmark (BW ss(Bj))
as well as the sum of the per-core bandwidth utilization

numbers for the co-running applications in the workload mix

(
∑T

k=1,k �=j BW ss(Bk)). On the target system, we measure

performance for each of the benchmarks in the multi-program

workload mix (IPCt(Bj)). Target system performance for

each of the benchmarks in the training mix serves as dependent

variables to the ML technique. Overall, the input to the ML

training phase consists of N × T data points as there are

N mixes and T benchmarks per mix. The end result of the

training phase is a performance model, denoted as modelt, that

predicts target-system performance of an application when co-

run with T − 1 other applications.

The prediction, or inference, phase involves simulating

a previously unseen application Aj (i.e., the workload of

interest) on the single-core scale model. The measured per-

formance and bandwidth utilization numbers serve as input

to the prediction model which then yields a prediction for

performance of the application of interest on the target system.

More specifically, the prediction model takes the IPC of the

Fig. 2: ML-based regression involves a training, prediction

and regression phase. The training phase requires simulation
results obtained for a number of multi-core scale models, but
not the target system.

application of interest on the single-core scale model as input

(IPCss(Aj)), alongside its bandwidth utilization on the scale

model (BW ss(Aj)) as well as the total bandwidth consump-

tion of the co-running applications in the workload mix. The

latter is computed as the sum of the bandwidth consumption

for each of the applications in the workload mix as observed in

the single-core scale model, i.e.,
∑T

k=1,k �=j BW ss(Ak). The

model modelt then predicts performance for application Aj

on the target system.

We consider different ML techniques in this work to

construct the prediction model, namely decision tree (DT),

random forest (RF) and support vector machines (SVM) using

the scikit-learn v1.0.1 framework.1 The DT algorithm is an

optimized version of the CART (Classification and Regression

Trees) algorithm which constructs binary trees by seeking for

the largest information gain at each node using Iterative Di-

chotomiser. RF includes a diverse set of decision trees to avoid

overfitting; this is done through two levels of randomization.

First, each tree in the ensemble is built for a random subset

from the training set. Second, when splitting a node during

the construction of a tree, the best split is found for either

all input features or for a random subset of features. We use

the radial basis function (RBF) as the SVM kernel to capture

non-linear performance scaling trends.

2) ML-Based Regression: As mentioned above, ML-based

prediction requires simulation runs of the target system during

1http://scikit-learn.org/
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training, which may be a significant impediment in practice.

ML-based regression overcomes this drawback by relying

on simulation runs of a variety of scale models instead,

which is typically easier to achieve in practice. ML-based

regression consists of three steps, see also Figure 2. In the first

step, ML-based regression leverages the ML-based prediction

method discussed above to train a number of prediction

models. These prediction models do not predict performance

for the target system, as under ML-based prediction, but

they predict performance for a number of multi-core scale

models ms1,ms2, . . . ,msR. Note that these scale models

feature multiple cores. The training phase involves measuring

performance and bandwidth utilization on the single-core

scale model, and measuring performance for the multi-core

scale models for each of the benchmarks in the training

workload mixes. The input to the training phase thus includes,

as independent variables, the performance (IPCss(Bj))
and bandwidth utilization (BW ss(Bj)) of each bench-

mark in the mix alongside the aggregate bandwidth utiliza-

tion of the co-running benchmarks (
∑T

k=1,k �=j BW ss(Bk)).
The dependent variables are the performance numbers for

each benchmark for the scale models ms1,ms2, . . . ,msR,

or IPCms1(Bj), IPCms2(Bj), . . . , IPCmsR(Bj). The ML-

based prediction method is used to train the prediction models

for the various multi-core scale models.

As a second step, once these prediction models have

been trained, we predict performance for a previously

unseen application of interest Aj on the multi-core

scale models ms1,ms2, . . . ,msR. The input to the mod-

els includes the application’s scale-model performance

(IPCss(Aj)), its bandwidth utilization (BW ss(Aj)) and

the aggregate bandwidth utilization of the co-runners

(
∑T

k=1,k �=j BW ss(Ak)). The models then predict perfor-

mance for application Aj on the scale models, namely

IPCms1(Aj), IPCms2(Aj), . . . , IPCmsR(Aj).
The third step involves regression to predict performance for

the target system based on the predicted performance numbers

for the multi-core scale models. We consider a number of

regression techniques, including linear, power-law and loga-

rithmic regression, to predict target-system performance. We

find that logarithmic regression yields the highest accuracy (a

quantitative evaluation is reported in the evaluation section).

IV. EXPERIMENTAL SETUP

1) Simulation Setup: We use Sniper v6.0, a parallel and

high-speed cycle-level x86 simulator for multicore systems,

using its most detailed cycle-level hardware-validated core

model [3]. Our target system is a 32-core processor, see

Table II. We simulate 4-wide out-of-order cores with a 3-

level cache hierarchy. The LLC is a 32 MB NUCA cache, and

we assume a 128 GB/s bisection bandwidth mesh NoC and

128 GB/s main memory system with 8 memory controllers.

Our simulation speed numbers are obtained by running

Sniper on a 36-core Intel PowerEdge R440 server. This server

is dual-socket machine with 18 cores per socket, 24 MB LLC

per socket, 384 GB of memory.

Processor

Number of cores 32 cores
Core frequency 4.0 GHz
Issue width 4-wide
ROB size 128 entries
Branch predictor hybrid local/global predictor
Max. outstanding 48 loads, 32 stores, 10 L1-D misses

Cache Hierarchy

L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 256 KB per core, 8 way, 8 cycle
LLC shared 32 MB, 64 way, 30 cycle

NUCA, 32 slices, 1 MB/slice, 1 slice/core

NoC

Mesh topology 4×8
Bandwidth 128 GB/s bisection bandwidth

DRAM

Memory controllers 8
Bandwidth 128 GB/s aggregate bandwidth

TABLE II: Target system.

2) Workloads: We consider both homogeneous and het-

erogeneous multiprogram workload mixes in the evaluation.

The benchmarks are taken from SPEC CPU2017 and we

consider 1B-instruction simulation points per benchmark as

identified by the SimPoint methodology [1]. The homoge-

neous workloads assume co-running instances of the same

benchmark, all starting at (slightly) different offsets. The

heterogeneous workload mixes are randomly composed. We

finish the simulation and measure performance when the first

benchmark in the workload mix has reached the end of its

simulation point.

We make sure that the training set is completely disjoint

from the evaluation set in all of our experiments. For the

homogeneous workload mixes, we use a cross-validation setup

in which we use N − 1 benchmarks for training the models

when evaluating prediction accuracy for the N th benchmark,

with N = 29 for SPEC CPU2017. There are hence 28 training

benchmarks to train a model to predict performance for the

29th benchmark. We use the prediction and extrapolation

models to predict performance for the previously unseen

application of interest on the target system when co-run with

additional (T − 1) copies of the application of interest.

For the heterogeneous workload mixes, we consider 8

randomly chosen benchmarks in the evaluation set while using

the 21 remaining benchmarks in the training set. The reason

for limiting the evaluation to 8 benchmarks is to limit overall

simulation time for training. The number of training mixes is

chosen such that the total amount of training data is constant,

i.e., we consider a total of 320 training results to train an ML

model. For ML-based prediction, this means that we consider

N = 10 training mixes with T = 32 benchmarks each,

yielding a total of N×T = 320 training results. For ML-based

regression, when training an ML model for an M -core scale

model, we consider O training mixes, so that we have a total

of O ×M = 320 training mixes. In particular, when training
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Fig. 3: Evaluating scale model construction using homogeneous workload mixes: NRS versus PRS with scaled LLC

capacity, scaled DRAM bandwidth, and both. Proportional Resource Scaling (PRS) in which all shared resources are scaled
proportionally leads to the most accurate scale models.

a model for a two-core scale model, we consider 160 training

mixes, yielding 320 training results; when training a model

for a quad-core scale model, we consider 80 training mixes,

again yielding 320 training results; etc. Prediction is done for

a previously unseen application of interest which we simulate

on the single-core scale model. We predict performance for

the application of interest on the target system when co-run

with 10 random heterogeneous mixes of previously unseen

applications from the evaluation set; we report the average

prediction error across these 10 mixes for each of application

of interest.

V. EVALUATION

We now evaluate scale model simulation. We first evaluate

scale-model construction, and then evaluate scale-model ex-

trapolation. We quantify accuracy using the following absolute

prediction error metric: error =
∣
∣
∣
IPCpredicted−IPCactual

IPCactual

∣
∣
∣.

IPCactual is the IPC of the application of interest on the

target system — in our setup, this is the IPC of a single

benchmark instance in a 32-instance multi-program workload.

IPCpredicted is the predicted IPC of the application of interest

on the target system based on measurements obtained through

simulation of the scale model. In case of No Extrapolation,

the predicted IPC on the target system is the IPC obtained

on the scale model. In case of ML-based Prediction and

Extrapolation, the predicted IPC is provided by the ML model

when given the performance metrics for the scale model as

input. We assume a single-core scale model in all of our

experiments unless mentioned otherwise.

A. Scale Model Construction

We consider the following four scale-model construction

techniques: (1) No Resource Scaling (NRS), i.e., the shared

resources in the scale model are sized identically to the target

system, (2) Proportional Resource Scaling (PRS) in which we

only scale the LLC in the scale model (i.e., DRAM bandwidth

in the scale model is the same as in the target system), (3) PRS

with scaled DRAM bandwidth only (i.e., LLC capacity is the

same in the scale model and target system), and (4) PRS with

scaled LLC size and DRAM bandwidth. (We evaluated NoC

scaling as well but found it to have (virtually) no effect for

the workloads considered in this work, hence we exclude it

from the discussion.)

Figure 3 reports prediction error for the single-core scale

model, i.e., we consider a scale model with a single core

to predict per-core performance in the 32-core target system.

The benchmarks are sorted by their LLC MPKI from left to

right. The benchmarks on the left-hand side are thus compute-

intensive for which NRS and PRS perform equally well.

However, memory-intensive benchmarks appearing on the

right-hand side experience contention in the shared resources

and hence require that the scale models feature proportionally

scaled-down shared resources. Overall, NRS is generally inac-

curate with an average absolute error of 60% and up to 94%.

PRS is more accurate, especially for memory-intensive work-

loads: scaling the LLC brings down the average error to 51.3%,

while scaling DRAM bandwidth reduces the average error

to 40.5%. Scaling both LLC capacity and DRAM bandwidth

has synergistic effects, bringing down the prediction error to

14.7% on average and at most 32.2% (milc). Proportionally

scaling all shared resources leads to a scale model that is a

relatively accurate representation for per-core performance in

the target system.

B. Scale Model Extrapolation

While PRS leads to relatively accurate scale models, we

can do even better through scale model extrapolation. No

Extrapolation uses performance obtained for the scale model

as a prediction for per-core performance in the target system

— this is effectively PRS with scaled resources from the

previous section. We further consider ML-based Prediction and

ML-based Regression; we consider three ML techniques —

Decision Tree (DT), Random Forest (RF) and Support Vector

Machines (SVM) — and we use logarithmic regression for the

Regression approach.

Figure 4 reports the prediction error for these techniques

assuming homogeneous workload mixes. ML-based Prediction

brings down the average absolute prediction error by a signif-

icant margin compared to No Extrapolation (average error of

14.7% and up to 32.2%). SVM is the most accurate ML-based
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Fig. 4: Evaluating scale model extrapolation using homogeneous workload mixes: No Extrapolation versus ML-based Prediction

and Regression. SVM-based prediction yields the highest accuracy (6.4% average absolute prediction error), while SVM-based
regression (SVM-log) is only slightly less accurate (8.0% average absolute prediction error).
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Fig. 5: Evaluating scale model extrapolation using hetero-

geneous workload mixes. The SVM-based Prediction method
yields the highest accuracy (13.2% average prediction error),
while SVM-based Regression (SVM-log) is only slightly less
accurate (15.8% average prediction error).

Prediction technique with an average error of 6.4% (maximum

error of 20.8%). DT yields an average absolute prediction error

of 9.3% (and up to 29.1%), whereas RF leads to an average

error of 8.3% (and up to 21.3%). ML-based Regression is

slightly less accurate than ML-based Prediction as it does

not require simulating the target system during training. Yet,

accuracy is still high and SVM with logarithmic regression

(SVM-log) yields the highest accuracy among the ML-based

Regression techniques with an average absolute prediction

error of 8.0% (and at most 26.4%). While ML-based prediction

outperforms ML-based prediction in general, the inverse is

true for some benchmarks. This is the case when performance

across scale models (with 2, 4, 8 and 16 cores) follows a

predictive trend line — favoring regression. If on the other

hand, the relative performance delta between the one-core

scale model and the 32-core target system is relatively easy

to predict, i.e., the relative delta is fairly similar to previously

seen training examples, then prediction is most accurate.

C. Heterogeneous Workload Mixes

So far, we considered homogeneous workload mixes. Fig-

ure 5 reports prediction error for the various prediction tech-

niques under heterogeneous workload mixes. The results are

consistent with the homogeneous workload mixes, i.e., ML-

based Prediction is slightly more accurate than ML-based Re-

gression, and SVM is the most accurate ML approach. We do
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Fig. 6: STP prediction error for ML-based regression across a

total of 80 heterogeneous workload mixes. SVM-log predicts
system throughput (STP) with an average prediction error of
3.8% and at most 13.0%.

note higher prediction errors for the heterogeneous workload

mixes compared to the homogeneous workload mixes due to

more complex and diverse interactions between co-running

applications: average prediction error of 15.8% (max 28.7%)

for SVM-log versus 13.2% (max 27.5%) for SVM, versus

27.8% (max 44.7%) for No Extrapolation.

These per-application performance predictions can be used

to predict system throughput (STP) on the 32-core target

system. STP is computed as the sum of normalized IPC values

(IPC on the target system divided by IPC on the single-

core scale model) across all applications in the workload

mix [5]. Figure 6 reports the STP prediction error (sorted) for

ML-based regression for a total of 80 heterogeneous mixes.

SVM-log is the most accurate regression approach with an

average error of 3.8% versus 5.6% for DT-log and RF-log.

Interestingly, the STP prediction errors are lower than the per-

application prediction errors reported above. The reason is that

STP is computed as the sum of normalized IPC values, hence

over- and underestimations offset each other.

D. Simulation Speedup

Scale-model simulation yields a substantial simulation

speedup because simulating a scale model takes considerably

less time than simulating the target system. And in some cases,
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Fig. 7: Prediction error versus simulation speedup. SVM-based
prediction and regression achieve high prediction accuracy
while yielding high simulation speedups.

it might not even be possible to simulate the target system, due

to simulator infrastructure and/or simulation host constraints.

Once scale-model simulation results are available, predicting

target-system performance is almost instantaneous provided

that the ML model has been trained offline.

Figure 7 reports prediction error versus simulation speedup

compared to simulating the 32-core target system. The No

Extrapolation curve consists of 5 data points. The data point on

the far right refers to the case where the scale model is a single-

core system. Moving to the left, we have a dual-core, quad-

core, octo-core and finally a 16-core scale model. Prediction

accuracy generally improves as we move towards larger scale

models2, while simulation speedup decreases considerably.

The ML-based prediction techniques, SVM and SVM-log, rely

on a single-core scale model simulation only, and hence yield

the highest possible simulation speedup, namely 28×. Overall,

the conclusion is that ML-based prediction and regression is

accurate while yielding high simulation speedups.

E. Sensitivity Analyses

We now perform a couple analyses to evaluate the sensitivity

of the proposed scale-model simulation methodology. We

consider the homogeneous workload mixes throughout.

1) Memory bandwidth scaling: Recall from Section II that

we explored two options for how to proportionally scale

down memory bandwidth from the target system to the scale

model. One option (‘MC-first’, our default) is to first scale

the number of memory controllers (while keeping memory

bandwidth per memory controller constant) and then scale

memory bandwidth per memory controller when there is only

single memory controller left. An alternative option (‘MB-

first’) is to first scale down memory bandwidth per memory

controller from 16 to 4 GB/s while keeping the number of

2The dual-core scale model is more accurate than the quad-core scale model
due to how memory bandwidth is scaled down, see also Table I. Both the
‘MC-first’ and ‘MB-first’ scaling methods (discussed in Section V-E1) lead
to similar trend anomalies, albeit at different core counts.
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Fig. 8: Evaluating memory bandwidth scaling alternatives

under PRS. ML-based regression achieves higher accuracy by
first scaling the number of memory controllers (‘MC-first’)
compared to first scaling memory bandwidth per memory
controller (‘MB-first’).

memory controllers constant, and then scale down the number

of memory controllers from 8 to 1. Figure 8 reports prediction

error for the various scale models under MC-first and MB-first.

We find that first scaling the number of memory controllers

yields the highest accuracy, especially for the ML-based

regression techniques. In particular, for SVM-log, the average

prediction error reduces from 9.3% to 8.0%; the improvement

in accuracy is even more substantial for DT-log: reduction in

average prediction error from 14.1% to 9.5%.

2) Regression: As aforementioned in Section III-B2, we

evaluated three regression approaches following a linear model

(y = a · x+ b), a power model (y = a · xb) and a logarithmic

model (y = a · ln(x) + b), in which x is the number of

cores and y is performance. We use least squares regression

to obtain the parameters a and b that yield the best fitting

curve. Figure 9 reports the accuracy for these three regression

techniques under SVM-based regression. Logarithmic regres-

sion outperforms the power and linear models by a significant

margin for most of the benchmarks, and leads to the lowest

average prediction error: 10.7% (linear), 8.9% (power) and

8.0% (logarithmic).

3) ML model inputs: The proposed scale-model simulation

methodology uses performance (IPC) and bandwidth utiliza-

tion as input to the ML models, see Section III. Figure 10

reports the average prediction error for the different ML-based

prediction and regression methods when comparing using both

performance and bandwidth utilization as input versus using

performance only. Using both performance and bandwidth uti-

lization improves the prediction error by a significant margin

compared to using only performance. In particular, for SVM-

log, the average prediction error reduces from 9.5% to 8.0%.

4) Multi-core scale-models under regression: As discussed

in Section III-B2, the ML-based regression techniques use a

number of multi-core scale models to drive the regression.

So far, we assumed four multi-core scale models with 2, 4,

8 and 16 cores. Figure 11 reports the prediction error when

changing the number of multi-core scale models to 2 (dual-

and quad-core scale models), 3 (dual-, quad- and octo-core

scale models) and 4 (our default). Reducing the number of

multi-core scale models might be of interest if the goal is
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Fig. 9: Linear, power and logarithmic regression under SVM. Logarithmic regression yields the lowest prediction error.
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Fig. 10: Varying the input variables to the ML-based extrapola-

tion techniques. Considering both performance and bandwidth
utilization as input variables leads to improved accuracy
compared to using only performance as input.

to reduce model training time. Remarkably, the error is only

slightly higher when limiting the number of multi-core scale

models. The average prediction error equals 11.0% (2 and 4-

core scale models) to 9.7% (2, 4 and 8-core scale models) to

8.0% (2, 4, 8 and 16-core scale models).

5) Memory bandwidth utilization: We focused on predict-

ing performance throughout the result section. Scale-model

simulation can also be used to predict other metrics, such as

bandwidth utilization. This is done by considering bandwidth

utilization (rather than performance) as the dependent variable

when training the ML models, see also Section III. Figure 12

reports the prediction error for predicting memory bandwidth

utilization. The result is in line with the previously reported

accuracy numbers: SVM is the most accurate prediction ap-

proach (8.7% average error) and SVM-log is the most accurate

regression approach (11.3% average error).

6) Multi-threaded workloads: While the evaluation in this

work is limited to multi-program workloads consisting of

single-threaded applications, applying and extending the pro-

posed methodology to multi-threaded workloads is left for fu-

ture work. We believe that scale-model simulation as proposed

in this work might be easily applied to data-parallel multi-

threaded workloads in which all threads execute the same

code (on different data elements) and there is very little or

no communication between threads. We expect scale-model

simulation to perform similarly for such workloads as for the

homogeneous workload mixes considered in this work. Apply-

ing scale-model simulation to multi-threaded workloads with

inter-thread communication and synchronization (e.g., critical

sections) requires additional research. We believe that speedup

stacks [6], [7] provide an opportunity to develop a scale-model

simulation methodology for general multi-threaded workloads.

A speedup stack quantifies how various bottlenecks (i.e.,

synchronization, coherence, imbalance, on-chip network and

memory bandwidth congestion, etc.) scale with system size.

By quantifying how these individual bottlenecks scale (or do

not scale) across a range of scale models, we might be able to

make a prediction for multi-threaded application performance

on the target system. This is left as part of future work.

VI. RELATED WORK

The most closely related work by Eyerman et al. [8]

proposes scale models for an experimental Intel processor,

called PIUMA (Programmable Integrated Unified Memory

Architecture), that is specifically designed for the efficient

execution of graph analytics workloads. The lack of resource

sharing among processor cores makes the development of

scale models for this type of architecture relatively easy.

More specifically, the PIUMA architecture does not have

shared caches; each core has a dedicated memory controller;

and a highly scalable interconnection network provides high

bandwidth and low latency to each individual core. In contrast,

the cores in a general-purpose multi-core processor share the

LLC, NoC and memory subsystem.

Machine learning (e.g., neural networks [9] and spline-

based regression [10]) was previously proposed to explore

single-core and multi-core design spaces, however, predicting

performance for larger-scale target systems fell out of reach

for these models. Analytical models have been proposed for

multi-core processors for both multiprogram workloads [11],

[12] and multi-threaded workloads [13]. An inherent challenge

for such models is how to analytically model overlap effects as

well as timing-sensitive events in large target systems; scale-

model simulation addresses this challenge through extrapola-

tion. Hoste et al. [14] and Piccart et al. [15] determine the

optimum platform among a set of previously benchmarked

platforms for an application of interest. Other prior work

predicts performance across architecture paradigms: Baldini

et al. [16] and Ardalani et al. [17] propose machine-learning
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Fig. 11: Prediction error as a function of the number of multi-core scale models used for SVM-log regression. The prediction
error only slightly increases with a reduced number of multi-core scale models.
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Fig. 12: Prediction error for predicting memory bandwidth utilization. SVM and SVM-log predict memory bandwidth utilization
with an average error of 8.7% and 11.3%, respectively.

based methodologies to predict GPU performance based on

CPU implementations.

Scaling down the workloads to speed up simulation has

received considerable attention in the literature. Sampling is

a widely used methodology to select representative regions of

execution of an unchanged workload. Prior work has proposed

sampling for single-threaded workloads [1], [2] as well as

for barrier-synchronized workloads [18] and general multi-

threaded workloads [19], [20]. Alameldeen et al. [21] propose

a methodology for scaling down commercial workloads in both

size and runtime, allowing commodity machines to simulate

much more powerful server systems.

Raising the level of abstraction is yet another, comple-

mentary, way to speed up simulation. One-IPC models as-

sume that a single instruction is executed per cycle in the

absence of miss events such as cache misses and branch

mispredictions [22], [23]. Interval simulation [24] models the

impact of miss events on performance through mechanistic

analytical modeling. ZSim [25] and Sniper [26] implement

high-abstraction simulation models for superscalar processors.

While these high-abstraction models significantly speed up

simulation, they do not fundamentally solve the simulation

challenge of large-scale target systems.

Estimating the impact of interference in shared resources

in multicore processors has been an active field of research,

see for example [27]–[30]. Unfortunately, this prior work does

not predict system performance for a target system that is

substantially larger than the scale model(s).

VII. CONCLUSION AND FUTURE WORK

This paper proposed scale-model simulation, a novel

methodology that combines architectural simulation of scale

models with machine learning to predict the performance of a

larger-scale target system. We provide results that demonstrate

the effectiveness of scale-model simulation using both homo-

geneous and heterogeneous multiprogram workload mixes to

predict 32-core target system performance based on single-

core scale model simulation runs. We find that it is critical

to proportionally scale the shared resources when construct-

ing scale models. Leveraging ML techniques to construct

extrapolation models further improves scale-model simulation

accuracy. We find that ML-based regression, which does not

rely on target-system simulations during training, achieves an

average prediction error of 8% for homogeneous multiprogram

workload mixes and 15.8% for heterogeneous mixes. Because

scale-model simulation makes these predictions based on

single-core scale model simulations, scale-model simulation

leads to a 28× simulation speedup compared to simulating

a 32-core target system using Sniper on a high-end 36-core

simulation host system.

We believe that the idea of scale-model simulation opens

up a range of opportunities for future work. Extending and
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evaluating scale-model simulation for multi-threaded work-

loads requires extending the methodology to account for NoC,

coherence and synchronization effects. Scale-model simulation

could also be explored and applied to other architecture

paradigms including throughput processors such as GPUs.

Scale-model simulation might also have a potential use case

for steering procurement and purchasing decisions: scale-

model simulation could be used to provide performance pre-

dictions for next-generation processors and systems.
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