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Abstract
To alleviate the memory bandwidth bottleneck in Large Language
Model (LLM) inference workloads, weight matrices are stored in
memory in quantized and sparsified formats. Hence, before tiles
of these matrices can be processed by in-core generalized matrix
multiplication (GeMM) hardware engines, they need to be dequan-
tized and de-sparsified. This is currently performed in software
with vector operations. Unfortunately, this approach delivers only
modest performance. Moreover, it is hard to understand how to
improve the system, as the overall GeMM performance depends
on the interaction between memory resources, vector units, and
hardware matrix engines.

This paper addresses the problem of improving the performance
of these environments. For this, it first develops the novel Roof-
Surface performance model, a 3D model that provides clear insights
into how memory resources, vector units, and hardware matrix en-
gines interact to deliver compressed GeMM performance. Then, it
proposes DECA, a new near-core ML-model decompression acceler-
ator. DECA offloads tile de-sparsification and dequantization from
the CPU, producing ready-to-use tiles for in-core GeMM engines.
Finally, it introduces a new ISA extension that enables out-of-order
invocation of the near-core accelerator. With this extension, accel-
erator and core computations can interleave and overlap with high
performance. Our evaluation shows that, in a simulated 56-core
Xeon 4 server with HBM, DECA accelerates the execution of com-
pressed GeMMs by up to 4x over the use of optimized Intel software
kernels. Further, DECA reduces the next-token generation time of
Llama2-70B and OPT-66B by 1.6×—1.9×.
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1 Introduction
Large Language Models (LLMs) are an important Machine Learning
(ML) workload, excelling at tasks such as chatbots, translation, text
summarization, and content creation [44, 81, 84, 89]. LLMs use
transformers [73] and mainly consist of multi-head attention and
fully connected (FC) layers. The largest models contain trillions
of parameters (weights) in the FC layers [1, 87]. During inference,
the batch sizes are typically small and weights have low reuse—
stressing the memory bandwidth of modern platforms [82].

GPUs are regarded as the standard platform for LLM inference
because of their high compute and memory bandwidth. However,
recent advances introduced by Intel Xeon 4 servers (codenamed
Sapphire Rapids (SPR)) [5], make CPUs an attractive option for
LLM inference. Such processors are equipped with an in-core gen-
eralized matrix multiplication (GeMM) engine called TMUL [37].
The TMUL serves the same purpose as the GPU Tensor Cores [53].
It is programmed with the AMX ISA extensions [37] to perform
GeMMs on matrix tiles. The result is an order of magnitude increase
in GeMM computational throughput compared to relying solely
on vector SIMD units. Further, SPR servers can be equipped with
High Bandwidth Memory (HBM), increasing the available memory
bandwidth by 3-4× over their DDR-based counterparts.

In SPR CPUs, we observe that, similar to GPUs [82], LLM infer-
ence is memory-bandwidth bound. The large GeMMs in the FC
layers account for more than 90% of the next token generation time
for LLama2-70B [72]. Such GeMMs have low arithmetic intensity
and require loading a large number of weights from main mem-
ory. To a large extent, accelerating LLM inference on CPUs means
speeding-up these large GeMMs.
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Compressing deep neural network (DNN) models [13, 47] with
techniques such as low-bit weight quantization [21] and sparsifi-
cation/pruning [34, 79, 90] can improve GeMM performance. The
amount of data that needs to be loaded from memory is reduced,
leading to significant speedups in memory-bound kernels. Sadly,
like systolic arrays [41] and Tensor Cores [79], the TMUL cannot
handle arbitrary quantization schemes or sparse patterns. It expects
well-formed dense input tiles (i.e., zero values must be included),
either in BF16 [43] or INT8 format.

To benefit from both model compression and TMUL GeMM
throughput, Intel has recently introduced specialized kernels in the
libxsmm framework [32]. Libxsmm uses a sequence of vector in-
structions (AVX) to read compressed tiles from memory, de-sparsify
and/or dequantize them, and feed them to the TMUL AMX unit.
This cooperative processing mode involves two different computa-
tional domains (vector and matrix), each with its own instructions
(AVX and AMX), and functional units (SIMD units and TMUL).

We profiled the performance of the libxsmm kernels for different
quantized and sparsified workloads. Our analysis shows that, al-
though these kernels are very effective for moderately compressed
GeMM data and with the relatively low-bandwidth DDR memory,
their performance degrades with HBM. This degradation cannot
be explained using a traditional two-dimensional (2D) roofline per-
formance model [78] that only considers the memory bandwidth
and the TMUL throughput as bounding factors.

To understand how to effectively accelerate kernels involving
three different resources (memory, matrix, and vector resources),
we introduce a novel three-dimensional (3D) performance model
that we call Roof-Surface. This model constructs a roof-surface
separating achievable from non-achievable performance. It offers
greater performance explainability than its traditional 2D roofline
counterpart, accurately attributing the libxsmm performance limita-
tion to the AVX vector decompression sequence. The Roof-Surface
model suggests that overcoming the decompression inefficiencies
would require a prohibitive scaling of CPU core resources.

To address this problem, this paper proposes DECA, a new near-
core accelerator of ML model decompression. DECA offloads tile de-
sparsification and dequantization from the CPU, producing ready-
to-use tiles for the TMUL. DECA can be programmed to handle
quantized number formats with any number of bits between 1 and
8, supports any level of unstructured sparsity, and supports group
quantization [21]. The DECA microarchitecture performs decom-
pression by utilizing a pipeline with advanced vector operations.
Importantly, we use the Roof-Surface model to: (1) make decisions
about the vector pipeline microarchitecture and (2) perform design
space exploration and derive a well-balanced DECA design.

We also observe that if CPU cores use regular memory-mapped
load/store instructions to communicate with DECA, the communi-
cation latency gets exposed and hurts performance. Consequently,
we introduce a new ISA extension to CPU cores that hides the CPU-
DECA communication latency by invoking DECA out-of-order. We
call this extension Tile External Preprocess and Load (TEPL).

Our evaluation for two different low-bit quantization formats
(BF8 and MXFP4) and different unstructured sparsity levels shows
that DECA is very effective. In a simulated 56-core SPR with HBM,
DECA accelerates the execution of compressed GeMMs by up to
4x over the optimized Intel libxsmm software kernels. In addition,

by speeding-up the FC layers, DECA reduces the next-token gener-
ation time of Llama2-70B and OPT-66B [86] by 1.6×—1.9× over the
software-only solution, and by 2.5×—3.3× over the uncompressed
baseline model.

This paper’s contributions are:
• The Roof-Surface 3-D performance model that models the inter-
action between vector units, matrix units, and memory. Its use
extends beyond CPUs and LLM decompression.
• The DECA near-core accelerator, designed to accelerate the de-
sparsification and dequantization of compressed ML models.
• The Tile External Preprocess & Load (TEPL) extension that enables
out-of-order invocation of near-core accelerators.
• A simulation-based evaluation of the performance of DECA for
compressed GeMMs and LLM inference.

2 Background
2.1 LLM Inference
Large Language Models (LLMs) consist of different layers, such as
Embedding layers, Fully-Connected (FC) layers, and Attention lay-
ers [73]. LLM inference has two phases [60]. The first one encodes
the input tokens and generates the first token (prompt phase). The
second one generates the next output tokens (generation phase).
In this work, we focus on executing the low arithmetic-intensity
generation phase efficiently since, for many practical use cases, it
dominates the end-to-end LLM inference time [82].

GPUs are regarded as the standard platform for LLM infer-
ence [60, 71] because of their high compute and memory band-
width. However, there has been increasing research and industrial
interest in making CPUs better at machine learning (ML), by ei-
ther incorporating extensions or small accelerators on the CPU
die [23, 24, 39, 54, 57, 66]. In particular, recent advances such as
HBM and in-core GeMM engines [5] make CPUs attractive for LLM
inference. For this reason, in this paper, we focus on LLM inference
on modern CPU servers. We mainly target batch sizes from 1 to 16,
which are typical in local interactive inference. Larger batch sizes
in CPUs increase the inference latency without proportional gains
in throughput (Appendix 12.1).

2.2 Model Compression
For low arithmetic-intensity LLMFC layers, compressing theweight
matrices reduces data movement and, therefore, can directly im-
prove performance in both GPUs and CPUs. There are two main
ways to compress an ML model [28, 29, 90]:
•Quantization involves storing weights in a lower-bit format, e.g.,
FP8 or FP4 instead of FP16. Multiple quantization schemes exist [45,
48, 75, 88]. Some of them additionally split weights in groups and
introduce a per-group scaling factor (i.e., group quantization) to
achieve higher accuracy. In our work, we evaluate two types of
weight quantization: BF8 (8-bit brain floating point) andMXFP4 [63].
The latter uses a 4-bit floating point and group quantization with a
shared scaling factor for every 32 weights. MXFP4 has been shown
to not degrade LLM accuracy [63].
• Sparsification consists of eliminating (i.e., pruning) weights that
do not contribute much to the model’s accuracy [6, 34, 46]. Unstruc-
tured sparsity does not impose restrictions on which weights can be
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removed, while structured sparsity requires the sparsity to follow a
certain pattern. The former achieves higher accuracy for the same
sparsity level [15, 49]. In this work, we assume unstructured spar-
sity, and use a bitmask-based sparse format to avoid storing zeros.
To reconstruct the position of the nonzeros in the original weight
matrix, the bitmask has as many bits as the number of elements in
the matrix, where the ‘1’ bits indicate the location of the nonzeros.
The nonzeros are stored consecutively in a nonzero array. Recently
proposed LLM weight pruning methods such as SparseGPT [15]
have achieved unstructured sparsity levels of up to 60-70% with-
out significant loss in accuracy. For traditional ML models like
ResNet50 [30], sparsity of up to 95% is easy to achieve [62].

Models may be both sparse and quantized [29]. Let us define the
density factor 𝑑 as the fraction of weights that are nonzeros. Then,
starting from a dense BF16 model, a 𝑄 bit quantized model with
density factor of 𝑑 reduces the model size by a factor of 16/(𝑄 ×
𝑑 + 1), where the ‘1’ comes from the bitmask bit. We refer to this
factor as the compression factor—as we assume that the footprint of
activations is negligible. Later, to decompress a sparse and quantized
model, one must read the compressed weights, the bitmasks, and
the scaling factors (if group quantization is used). These three data
structures are stored as separate arrays in memory.

The compression process is executed offline (e.g., after training).
In this paper, we assume an already compressed model that we
want to use online for inference.

2.3 Matrix Extensions
There are several hardware extensions to improve the efficiency of
matrix multiplication on CPUs [4, 12, 35, 77]. In this work, we use
Intel’s Advanced Matrix Extensions (AMX) [35]. AMX extends a
core’s registers with 8 matrix registers, called Tile Registers. Each
one can hold up to 16 rows, with 64 bytes of data per row that can
be interpreted as 32 2-byte elements (BF16) or 64 1-byte elements
(INT8). Each tile register can contain up to 1 KB of data.

Each core has the tile registers and a matrix multiplication
(TMUL) unit. To load/store data to/from the tile registers, AMX
includes tload/tstore instructions. The TMUL multiplies tiles in the
tile registers. For example, assume that an LLM generation phase
uses a batch size of 𝑁 ≤16 and BF16. A tile register can contain a
weight tile𝑊 with𝑀 = 16 rows and 𝐾 = 32 columns. Another tile
register can contain an activation tile 𝐴 with 𝑁 rows and 𝐾 = 32
columns. The TMUL can then perform the operation 𝐴 ×𝑊𝑇 , to
produce an 𝑁𝑥𝑀 output tile. A TMUL operation can be launched
every 16 cycles, regardless of the N value. It performs a total of
𝑁 × 𝐾 ×𝑀 = 𝑁 × 32 × 16 = 512𝑁 fused multiply-adds (FMAs)—or
equivalently 32𝑁 FMAs per cycle. For N>16, the TMUL throughput
saturates at 512 FMAs per cycle, since the activation tile can hold
no more than 16 rows. Any mention of FLOPs in this work refers
to FMAs.

2.4 GeMM Decompression
The TMUL does not handle sparse data and, similar to other GeMM
engines [41, 53], can only handle data in very specific data formats
(i.e., BF16 and INT8). If a GeMM contains compressed weights,
decompression is needed to produce tiles that conform to the TMUL
requirements. Unlike compression, decompression is performed
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Figure 1: Weight offline compres-
sion and online decompression.

1 ............
2 //Decompress Ti+1
3 for(r=0 to 16):
4 {
5 //Decompress
6 //row r of Ti+1
7 //using AVX VectorOps
8 ...
9 }
10
11 //GeMM Ti
12 //using AMX MatrixOps
13 TLoad Ti
14 TComp Tout, Ti
15
16 //Decompress Ti+2
17 //GeMM Ti+1
18 ............

Figure 2: Libxsmm com-
pressed GeMM kernel
pseudocode.

online. Thus, it can impact performance. Figure 1 shows the process
of offline compression of weights and their online decompression.

To partially hide the decompression overhead and attain high per-
formance in compressed GeMM kernels, Intel recently introduced
a software solution integrated in the Libxsmm framework [32]. As
shown in Figure 2, the solution involves a decompression sequence
handled using AVX vector operations, and a GeMM operation ex-
ecuted using AMX matrix operations. Libxsmm adopts a smart
method to overlap the execution of the two: software allocates a
double software buffer, and tries to keep it in the L1 cache. The
output of the AVX decompression sequence for tile Ti+1 is writ-
ten in one of the two software buffers. At the same time, AMX
instructions load data from the other software buffer that contains
Ti, which has been previously decompressed by the AVX sequence.
The execution of AMX and AVX instructions overlap in the pipeline,
while dependencies are naturally honored.

The decompression sequence uses vector operations such as per-
mutes for the decompression, and masked vector expands to insert
zeros in the appropriate positions of the nonzero array. Although
we omit the specifics, the first takeaway is that decompression is
done using AVX, utilizing a different "domain" (i.e., separate instruc-
tions and functional units) than AMX. The second takeaway is that
the AVX dynamic instructions vastly outnumber the AMX ones,
since AMX uses tile-sized operands (1KB), while AVX operates on
cache-line sized ones (64B, one tile row). Overall, dozens of dynamic
AVX instructions are needed per AMX instruction. As a result, the
decompression loop increases the total dynamic instructions of the
kernel by more than an order of magnitude.

3 Motivation

3.1 GeMMs in FC Layers Dominate Inference
Table 1 shows the fraction of the “next-token” time spent in the
GeMMs of the different Fully Connected (FC) layers of Llama2-
70B [72] on an SPR server with either DDR5 or HBM. We show
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results for an uncompressed model with BF16 weights, with differ-
ent numbers of input tokens and batch sizes (𝑁 ). The rest of the
time is spent on kernels such as attention, for which weight com-
pression does not apply. We see that the time spent in such GeMMs
is over 95% for DDR5 and 85–90% for HBM. Hence, accelerating
these GeMMs can greatly improve the next-token time.

Table 1: Contribution of FC layer GeMMs to next-token time.
Memory DDR (260GB/s) HBM (850GB/s)

Input Tokens 32 128 32 128
Batch size (N): 1 97.4% 97.5% 89.8% 89.5%

4 97.3% 97.1% 89.4% 88.9%
16 96.6% 95.5% 88.3% 85.9%

3.2 GeMMs in FC Layers are Bandwidth Bound
We show the roofline models for one of the large GeMMs of the
FC layers in LLama2-70B for an SPR with either DDR5 (Figure 3a)
or HBM (Figure 3b), and N=16. We use the TMUL FLOPS limit
(Section 2.3) for the maximum achievable GeMM FLOPS in the
compute-bound area. Further, when calculating the Arithmetic
Intensity (AI) in FLOPs per memory byte, we only consider the
footprint of the weight matrices. We neglect the footprint of the
activation matrices because it is much smaller than the one of the
weight matrices for small values of N. In both graphs, the leftmost
circle labeled as ‘BF16’ is our baseline uncompressed execution. We
see that this execution is memory-bandwidth bound in both cases
due to a low AI. This motivates model compression, to reduce the
amount of data that needs to be read from memory.
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Figure 3: Traditional rooflines for a GeMM with N=16.

3.3 Compressed GeMMs can be Inefficient
The other data points in Figure 3 represent compressed models
with 4-bit quantization (MXFP4) or with 8-bit quantization (BF8)
with density levels (i.e., the fraction of nonzeros) ranging from
5% to 100%. For example, BF8_20% is for BF8 and density 20%. As
the compression factor increases, the amount of data fetched from
memory decreases, and the AI goes up. As a result, the circles move
to the right. For each design point, we show two circles: one at the
Observed performance, and one on the roofline for the same AI. We
call the latter Optimal performance.

We see that, as we increase the compression factor, the Observed
and Optimal points increasingly diverge. In the DDR5 graph, the

divergence appears at BF8_5%. However, in the HBM graph, all
the compressed models are below their Optimal performance; at
BF8_5%, the ratio between Optimal and Observed performance is
5.25x. This means that performance is limited by some inefficiency
that is not captured by the roofline model. By manual profiling, we
find that the root cause is the overhead of the AVX decompress
instruction sequence. Effectively, the AVX SIMD processing units
of the cores are unable to keep up with the memory bandwidth
and/or the throughput of TMUL.

Given the importance of LLM workloads, some form of hard-
ware support to minimize the decompression overhead could be
justified. However, one has to be cautious when making changes
in the resource-constrained CPU setting. The roofline model does
not tell us the required vector throughput improvement needed
for the kernels to shift from being bounded by vector processing
to being bounded by memory or matrix computation. There is a
danger of constructing hardware solutions that are either under-
provisioned or overprovisioned. To avoid this danger, we need a
new model that can guide the system design to efficiently eliminate
the decompression overhead in compressed GeMMs.

4 The Roof-Surface Model
To guide the system design for kernels that involve matrix, vector,
and memory operations, we develop a new performance model that
captures their interaction. This model is called Roof-Surface and
has a three-dimensional (3D) visualization.

4.1 The 3D Roof-Surface Performance Model
When multiple interacting factors can affect performance, the slow-
est factor ends up determining the performance. In our case, the
factors are memory, vector, and matrix operations. To understand
which one is the slowest, we should first express how fast (1) mem-
ory can provide compressed tiles (MEM), (2) vector hardware can
process compressed tiles (VEC), and (3) matrix hardware can pro-
cess decompressed tiles (MTX).
Memory can provide compressed tiles at a rate of𝑀𝐵𝑊 /𝐵𝑦𝑡𝑒𝑠𝑡𝑖𝑙𝑒
tiles per second, where 𝑀𝐵𝑊 is the memory bandwidth in bytes
per second and 𝐵𝑦𝑡𝑒𝑠𝑡𝑖𝑙𝑒 is the number of bytes in a compressed
tile. Since a compressed weight tile will be used for a single TMUL
matrix operation, we refer to 1/𝐵𝑦𝑡𝑒𝑠𝑡𝑖𝑙𝑒 as the matriX-to-Memory
arithmetic intensity or 𝐴𝐼𝑋𝑀 . It expresses how many matrix op-
erations can be executed per byte loaded from memory, and it
is very similar to the traditional arithmetic intensity used in the
rooflines of Figure 3. The main difference is that its units are ma-
trix operations per byte and not FLOPs per byte. In our setting,
compression schemes with higher compression factors (Section 2.2)
have a higher 𝐴𝐼𝑋𝑀 . Overall, the MEM rate in compressed tiles per
second is𝑀𝐵𝑊 ∗𝐴𝐼𝑋𝑀 .
The Vector Hardware decompresses tiles at a rate of𝑉𝑂𝑆/𝑉𝑂𝑡𝑖𝑙𝑒 ,
where VOS is the number of vector operations per second that
can be executed by the architecture, and 𝑉𝑂𝑡𝑖𝑙𝑒 is the number of
vector operations needed per tile. VOS is the vector throughput and
is an architecture-dependent parameter. For example, for our SPR
system, it is given by the product of the processor frequency (f ), the
number of cores (𝑐), and the number of SIMD units per core.𝑉𝑂𝑡𝑖𝑙𝑒

is a kernel-dependent parameter. Since only the weight matrix in a
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GeMM needs to be decompressed,𝑉𝑂𝑡𝑖𝑙𝑒 effectively expresses how
many vector operations are needed per matrix operation. We refer
to 1/𝑉𝑂𝑡𝑖𝑙𝑒 as the matriX-to-Vector arithmetic intensity or 𝐴𝐼𝑋𝑉 ,
since it expresses how many matrix operations can be executed
per vector operation. Overall, the VEC rate in tiles per second is
𝑉𝑂𝑆 ∗𝐴𝐼𝑋𝑉 .
The Matrix Hardware can perform MOS matrix operations per
second. MOS depends on the architecture and not on the kernel.
For example, in SPR systems, it is given by 𝑓 ∗ 𝑐/16, since each core
has a TMUL that can perform a tile multiplication every 16 cycles.
Overall, the MTX rate in tiles per second is simply MOS.
The Final Performance is determined by the lowest tile process-
ing rate among the three rates considered. Specifically, the number
of tiles per second (TPS) that the architecture can process is:

𝑇𝑃𝑆 =𝑚𝑖𝑛{𝑀𝐵𝑊 ∗𝐴𝐼𝑋𝑀 ,𝑉𝑂𝑆 ∗𝐴𝐼𝑋𝑉 , 𝑀𝑂𝑆} (1)
We can easily get the rate of FLOPs per second (FLOPS) by re-

calling from Section 2.3 that a TMUL tile operation corresponds to
512∗𝑁 FMAs. Thus:

𝐹𝐿𝑂𝑃𝑆 = 512 ∗ 𝑁 ∗𝑚𝑖𝑛{𝑀𝐵𝑊 ∗𝐴𝐼𝑋𝑀 ,𝑉𝑂𝑆 ∗𝐴𝐼𝑋𝑉 , 𝑀𝑂𝑆} (2)
We call this equation the Roof-Surface equation. Any of the three

terms inside themin clause can be the one limiting performance. For
a given architecture (i.e., fixed MBW, VOS, and MOS), there are two
kernel-dependent variables inside the min clause: 𝐴𝐼𝑋𝑀 and 𝐴𝐼𝑋𝑉 .
These are the kernel’s “signature”—if two kernels have the same
signature, they have the same projected performance. In contrast,
in the roofline model, the kernel signature is just one variable:
the traditional FLOP-to-memory AI. Now, the illustration of the
performance model can no longer be done in the two dimensions
of Figure 3: FLOPS as a function of FLOP-to-memory AI. Instead,
we need three dimensions: FLOPS (z dimension) as function of the
𝐴𝐼𝑋𝑀 (x dimension) and 𝐴𝐼𝑋𝑉 (y dimension).
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Figure 4: The 3D Roof-Surface model (N=16).

Figure 4 shows the result of plotting Equation 2 (for N=4,HBM)
in three dimensions to form the Roof-Surface plot. A Roof-Surface
plot has three regions, depicted in different colors. In each of the
regions, a different term of the Roof-Surface Equation is the smallest

one, and thus bounds performance. The operation points below
the blue subsurface are bound by the MTX factor, the ones below
the green subsurface are bound by the MEM factor, and the ones
below the orange subsurface are bound by the VEC factor. Kernel
performance is depicted by points in the 3D space. The achievable
performance is bounded by the overall surface, rather than by a
line like in the roofline model. For this reason, we call the model
Roof-Surface. Points above the overall surface are not achievable.

Figure 4 shows four points that correspond to the observed per-
formance of different compression schemes. We see that the MXFP4
and BF8_5% points are very near to the top of the corresponding tan-
gent triangles (i.e., almost exactly on the orange subsurface). This
visually reveals that they are bounded by vector operations. The
other two points, namely BF16_30% and BF16_10%, are primarily
bounded by memory bandwidth and vector operations, respectively.
However, since these points are slightly below the roof surface, for
these kernels, non-plotted factors such as memory latency or cache
latency are also leaving some performance on the table.

Table 2: Performance limits predicted by the roofline (R-L)
and Roof-Surface (R-S) models, and the real measured perfor-
mance for kernels with different compressions in TFLOPS.

MXFP4 BF8 BF8_50% BF8_30% BF8_20% BF8_10%
R-L 25.2 13.3 21.2 31.2 40.8 59.2
R-S 11.5 13.3 16.1 16.1 16.1 16.1
Real 10.6 10.0 13.0 13.5 13.6 13.5

BF8_5% BF16_50% BF16_30% BF16_20% BF16_10% BF16_5%
R-L 70 11.8 18.4 25.2 40.8 59.2
R-S 16.1 11.8 18.4 23.0 23.0 23.0
Real 13.7 9.2 12.3 15.4 16.3 16.75

To gain further insight, Table 2 shows, for kernels with different
compression schemes, the performance limits predicted by the
roofline model (R-L) and the Roof-Surface model (R-S), and the real
measured performance. We see that, for almost all kernels, the Roof-
Surface produces relatively accurate performance bounds, while the
roofline is often way off. For kernels BF8, BF16_50%, and BF16_30%,
the performance bounds predicted by R-L and R-S are the same.
The reason is that these kernels are classified as MEM-bound by
both models.

4.2 The 2D Bounding Region Diagram
We now introduce a 2D representation of the Roof-Surface plot
that is easier to visualize. We call it the Bounding Region Diagram
(BORD). BORD is the projection of the roof surface on the xy plane.
A BORD does not depict FLOPS information, but identifies which
one of the plotted factors bounds the performance of a given kernel.

Figures 5a, 5b, and 5c show the BORD for some variants of the
SPR architecture. In the general case, a BORD divides the plane in
three regions, bound by memory, vector, or memory operations.
As shown in Figure 5a, the equations of the lines separating the
three regions are: 𝑦 = (𝑀𝐵𝑊 /𝑉𝑂𝑆) ∗ 𝑥 , 𝑥 = 𝑀𝑂𝑆/𝑀𝐵𝑊 , and
𝑦 = 𝑀𝑂𝑆/𝑉𝑂𝑆 .

The BORD in Figure 5a corresponds to SPRwith HBM. The figure
shows the positions of different compressed GeMM kernels that use
BF16 or BF8with different density levels, orMXFP4. Some of the BF8
and MXFP4 points were shown in Figure 3b. We observe that the
vast majority of kernels are VEC-bound. To reach the performance
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(a) BORD for HBM SPR (b) BORD for DDR SPR (c) BORD for HBM SPR with 4x VOS

Figure 5: Bounding Region Diagrams (BORD). The batch size is N=16.

of the roofline in Figure 3b, these points must be pushed away from
the VEC-bound region.

Figure 5b shows the BORD for SPR with DDR, which has a
smaller MBW value. Now, the area of the MEM-bound region in-
creases. The MTX-bound region is no longer visible for the 𝐴𝐼𝑋𝑀

and𝐴𝐼𝑋𝑉 value ranges plotted in the BORD. The BORD also shows
that all of our kernels except BF8_10% and BF8_5% are in the MEM-
bound area. This explains why most of the kernels in Figure 3a
reach the roofline.

Finally, Figure 5c shows the BORD when we take the HBM
SPR variant and increase the vector throughput (VOS) by 4x, in
an attempt to eliminate the vector bottleneck. When compared to
Figure 5a, we see that the area of the VEC-bound region decreases
and the MEM-bound region covers more kernels. However, even a
4x VOS increase is not enough to make all kernels not VEC-bound.

We find that, in the HBM SPR variant of Figure 5a, over 95% of
the dynamic instructions of the cores typically perform tile decom-
pression, and that cores are already using 40–80% of their commit
slots. Hence, increasing the VOS by 4x would require not only a 4x
increase in the number of SIMD AVX units, but also a prohibitive
increase in the core’s superscalar width [58]. Alternatively, increas-
ing the SIMD AVX vector width by at least 4x is also undesirable,
as it requires significant pipeline changes (e.g., redesigning wider
versions of all the vector instructions, adding new register files,
etc.). Further, feeding the core with vectors so large would require,
at a minimum, increasing the number of ports in the L1 cache. This
would in turn hurt the L1 access latency and the core’s cycle time,
affecting the core’s performance for general-purpose workloads.
We further evaluate the limitations of traditional CPU scaling in
Section 8.

Appendix 12.2 shows the effect of the batch size on the Roof-
Surface, while Section 9 discusses how the Roof-Surface generalizes
to other use-cases or architectures.

5 DECA Overview and Out-of-Order Invocation
The previous analysis reveals that, to hide the decompression over-
heads with a conventional solution, one would need a very ex-
pensive scaling of the resources of a general-purpose core. This
motivates us to proposeDECA, a near-core decompression accelerator

for ML models. DECA offloads vector processing for decompression
from the cores. In this section, we describe DECA’s integration and
then introduce a new mechanism and ISA extensions for efficiently
overlapping the operation of CPU cores and DECA accelerators.

5.1 DECA Placement & System Integration
We envision each CPU core to have an associated DECA accelerator
as shown in Figure 6. At a high level, DECA has a processing
element (PE), control registers, and tile output (TOut) registers.
It has a memory-mapped interface that allows the core to write
commands and read data. The core uses privileged stores to the
control registers to configure the PE to perform decompression of
tiles with a given quantization scheme and with or without sparsity.
These stores also fill some look-up tables (LUTs) that DECA employs
for efficient dequantization (Section 6).

CPU Core

L1

L2

DECA PE

L

L

C

S

L

I

C

E

Ctr

Regs

TOut

Regs

to other NoC tiles 

and memory

Core reads/writes DECA

registers

DECA reads 

memory NoC

Router

DECA 

ACCELERATOR

Figure 6: DECA placement next to a core.

The DECA PE reads a compressed tile from memory, processes
it, and then writes the decompressed tile to the TOut registers.
Then, the CPU core reads the TOut registers and uses the data
to execute the GeMM using AMX instructions. The PE accesses
memory through the L2, issuing both regular loads (but never stores)
and prefetch requests, generated by a prefetcher integrated in the PE.
DECA shares the L2 TLB with the core like prior work [19, 24, 66]
and, therefore, uses the virtual space of the CPU core.

CPU writes to the L1 propagate to DECA with the mechanism
used for a 2-core cluster with a shared L2 [2]. CPU writes to L1
change the cache line’s state at the inclusive L2, so if DECA tries
to read a line written by the CPU, the updated copy will be moved
from the CPU’s L1, to the L2, and eventually to DECA.
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DECA can potentially be used by multiple processes. One way to
handle this would be to save and restore the DECA state on context
switches. Alternatively, we propose that DECA retains its state
across context switches and only when a new process attempts to
use DECA, a trap to the OS saves the state and reconfigures DECA.
Further, in the case of SMT, the OS ensures that only one thread per
core has DECA access, and traps otherwise. Linear algebra kernels
are typically able to saturate a core with a single hyperthread,
and thus Intel advices against using SMT in combination with the
TMUL [36].

5.2 DECA-Core Cooperative Tile Processing
To execute compressed GeMMs with high performance, we intro-
duce a mechanism that overlaps vector operations in DECA with
AMX operations in a CPU core using hardware double buffering.
The design is shown in Figure 7. DECA has two Loader modules
and two TOut registers. A Loader reads a compressed tile from the
memory system, which includes three data structures: the data, a
bitmask, and scaling factors. A Loader can also issue prefetches to
load a tile in advance.

The journey of a tile involves DECA loading it into a Loader (D1
in Figure 7), decompressing it in the DECA vector pipeline (D2),
and storing it in a TOut register (D3). Then, the core reads it (C1),
uses it to perform the AMX operation (C2), and prompts a Loader
(C3) to initiate the fetching of the next tile by passing the starting
address and the length of the three data structures of the tile. As
shown in the figure, the double buffers enable overlapping of the
operations on two tiles. While the core is reading and processing
Tile i-1, DECA reads, processes, and writes out Tile i. After the core
finishes i-1, it triggers the fetching of Tile i+1.

DECA
Loader 1

Vector Pipeline

TOut Reg 1

CPU Core (AMX)

L

2

C2

C1C3

D1

D2

D3
Tile i

Tile i

Tile i
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Figure 7: DECA-CPU core cooperative tile processing.

We explore two options for a CPU core to communicate with
DECA. The first one uses regular stores to the memory-mapped
DECA interface; the second uses ISA extensions that we describe in
Section 5.3. Using the first approach, Figure 8 shows the pseudocode
of the core as it processes tiles as shown in Figure 7. The key
instructions are those in Lines 4-6. The core uses TLoad (an AMX
instruction) to load tile 𝑇𝑖−1 from a DECA TOut register into a tile
register TReg1 (Line 4). It then uses this tile in a TComp instruction
(an AMX instruction that performs a GeMM), saving the output in a
tile register TReg2 (Line 5). Finally, it writes themetadata for tile𝑇𝑖+1
(shown as𝑀𝑖+1) to a memory-mapped register in DECA’s Loader2
using a plain store. The write prompts Loader2 to initiate the fetch
of tile 𝑇𝑖+1. In parallel with Lines 4-6, DECA is decompressing 𝑇𝑖 .

1 ............
2 DECA𝑙𝑑𝑟1 ← ST M𝑖
3 Fence
4 TReg1 ← TLoad T𝑖−1
5 TReg2 ← TComp TReg1
6 DECA𝑙𝑑𝑟2 ← ST M𝑖+1
7 Fence
8 TReg1 ← TLoad T𝑖
9 TReg2 ← TComp TReg1
10 ............

Figure 8: CPU core pseu-
docode for store-based
DECA invocation.

1 ............
2 TReg1 ← TEPL M𝑖−1
3 TReg2 ← TComp TReg1
4 TReg1 ← TEPL M𝑖
5 TReg2 ← TComp TReg1
6 TReg1 ← TEPL M𝑖+1
7 TReg2 ← TComp TReg1
8 ............

Figure 9: CPU pseudocode for
TEPL-based DECA invocation.
The architectural tile registers
TReg1 and TReg2 get renamed
to different physical tile regis-
ters in each iteration.

Figure 8 also shows a piece of the previous iteration (Line 2)
and of the subsequent iteration (Lines 8-9). To prevent incorrect
memory operation reordering, we add a memory fence per iteration.
Specifically, the load of tile𝑇𝑖 (Line 8) should not execute before the
metadata for𝑇𝑖 is written to the control register in DECA’s Loader1
(Line 2), which resets TOut Register 1 and initiates the tile fetch
from memory. Since these two instructions do not depend on each
other, we place a fence in Line 3. There is a fence in each iteration.

Unfortunately, this approach is likely to deliver limited perfor-
mance for two reasons. First, each iteration has a fence that prevents
cross-iteration overlap. Second, within an iteration, no instruction
overlaps: the instructions in Lines 4 and 5 have a true dependence,
and the store in Line 6 can only perform the update when it is at the
head of the reorder buffer (ROB). The execution of all instructions is
serialized, as if the core was in-order. As a result, in every iteration,
the latency of the communication between core and DECA (both
the load and the store) is fully exposed.

5.3 ISA Support for Out-of-Order Invocation
To reinstate out-of-order execution and hide the core–DECA com-
munication, we propose a different approach that relies on an exten-
sion to the CPUAMX ISA.We call the extension Tile External Prepro-
cess and Load (TEPL). The main idea is to eliminate the per-iteration
fence in Figure 8 by combining, in hardware, the instructions in
Lines 2 and 8 into a single instruction. This instruction updates the
control register of a loader with metadata, triggering a tile fetch,
and only returns to the core when DECA has decompressed the tile
and stored it in a core tile register (e.g., TReg1).

A TEPL instruction takes as arguments a core source register
with the metadata for a tile, and a core destination tile register.
During the execution of the instruction, the metadata in the core
source register is transferred to DECA to initiate decompression and
the instruction completes when the decompressed tile is received
by the core destination tile register. In this design, the maximum
number of TEPL instructions that can execute concurrently is equal
to the total number of DECA Loaders (i.e., two). A structural hazard
prevents more TEPLs from executing, since each DECA loader is
able to handle only one tile at a time.

With this design, the code in Figure 8 is rewritten as Figure 9.
Fences are removed and an iteration has only two instructions
(Lines 4, 5). There are no register dependencies between the itera-
tions because TReg1 and TReg2 are renamed. However, a structural
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hazard causes the TEPL in Line 6 to stall until one of the two previ-
ous TEPLs completes.

A context switch can only occur in between two instructions.
Hence, the DECA state that needs to be saved and restored when
a new process attempts to use DECA is only the DECA control
registers and LUTs, and not any tile data.

To support these instructions, the core has a TEPL Queue, and
two TEPL execution ports, each leading to a DECA loader. A TEPL
instruction is deposited into both the ROB and the TEPL Queue.
When the TEPL source register is available and there is a free TEPL
execution port, the TEPL is issued to DECA.

To attain high performance, TEPLs are issued to DECA as soon
as possible—they do not wait until they reach the ROB head. Hence,
like a load instruction, they execute speculatively and out-of-order.
Invoking DECA speculatively is always safe, as DECA does not
update memory state. If the core needs to flush the pipeline (e.g., on
a branch misprediction or exception) while a TEPL instruction is
outstanding, the core sends a squash signal to DECA. At that point,
DECA aborts any tile operation in progress, no matter the state it
is in. The core may safely reissue the same TEPL. For a TEPL to
commit, it needs to both (1) finish its execution on DECA and write
the output to the CPU core’s physical tile register and (2) be at the
head of the CPU core’s ROB.

If DECA reads a cache line and then a core updates the line,
DECA does not receive an invalidation from the L2. This is not
a concern because DECA uses read-only weights, which are not
updated by CPU cores during LLM inference. In the uncommon
case that CPU cores update data that can potentially be accessed by
a TEPL, we place a fence before the TEPL, to ensure that the TEPL
reads the updated data.

Overall, this design hides the communication between the core
and DECA. The core executes without fences and overlaps the
operation on multiple tiles.

6 DECA Microarchitecture
We now describe the microarchitecture that enables DECA to sus-
tain high decompression performance and, at the same time, sup-
port a rich set of compression schemes. For simplicity, in the rest
of the paper, we assume that DECA’s output tile is in BF16 format.
DECA can be trivially configured to produce INT8 output tiles.

6.1 DECA Microarchitecture
Figure 10 displays the DECA PE microarchitecture. To understand
it, we describe its multiple components.
1. Accessing Memory. DECA has two Loaders, each composed
of a Load Unit (LDU) and a prefetcher. The LDU accesses memory
to read a tile’s compressed weights, bitmask, and scaling factors.
The base memory addresses and lengths of these structures are
part of the metadata provided by the CPU on DECA invocation.
When a requested cache line arrives from memory, depending on
which of the three types of data it contains, it is placed in the Sparse
Quantized Queue (SQQ), Bitmask Queue, or Scale Factor Queue.
2. Prefetcher. The prefetcher (PF) observes the address bases and
lengths used for a tile, and predicts the ones for future tiles. The
PF then generates prefetch requests that will bring this data to the
L2 cache. Since DECA operates on virtual addresses, it uses the
L2 TLB for address translation for prefetches, similar to normal

Bitmask Q

Out

Tile

Reg

Scale Factor Q

POPCNT

PF

SQQ

LDU

POPCNT
Parallel

Prefix

Sum

Bitmask Queue Scale Factor 

Queue

Next Window 

Head

SD

Reg

Wnd

.

.

.

DD

Reg
TOut

Reg

Sparse

Dequantized

Data

Dense

Dequantized

Data

Sparse

Quant

Data

PF

LUT

Array

LUT 0

LUT 

L-1

W

Expansion

Indices

16b
.

.

.

W

X
BAR

16b

Dequantization Expansion Scaling

SQQ

Wnd

Wnd

TOut

Regs

Loaders

Figure 10: DECA PE microarchitecture.

DECA loads. The DECA PE does not have any prefetch buffers,
since the prefetched data stays at the L2 and only moves to DECA
through demand loads. Instead, the DECA PE reuses the L2 prefetch
buffers/MSHRs. The existing L2 prefetcher only issues prefetches
on behalf of the CPU core. The PF aggressiveness (i.e., how many
tiles ahead are prefetched) is configurable.
3. Pipeline Stages. The pipeline is split into three stages, responsi-
ble for dequantization, expansion (i.e., de-sparsification) and scaling.
To enable pipelining, each stage has its own output register, namely
the SD, DD, and TOut registers in the figure. The Dequantization
stage reads values from the SQQ, dequantizes them using an ar-
ray of 𝐿 Lookup Tables (LUT Array), and writes dequantized BF16
values to the Sparse Dequantized (SD) register. These values are
potentially sparse—stored contiguously with zero values skipped.

The Expansion stage de-sparsifies data by inserting zeros in the
positions indicated by the bitmask. This operation is done using
a crossbar (XBAR) that is controlled using expansion indices. The
latter are generated from the bitmask using the Parallel Prefix Sum
circuitry. The result is written to the Dense Dequantized (DD) regis-
ter, which has dense (i.e., with explicit zeros) dequantized data.

Finally, if group quantization is used, the Scaling stage applies
appropriate scaling to the BF16 values by multiplying themwith the
scaling factors. It then writes the final values to the TOut register.
The critical path is shown with red arrows in the figure.
4. Duplicated Modules. A DECA PE contains two Loaders and
two TOut registers to enable the overlapping of DECA and CPU
operation. Hence, as shown in Figure 10, the PE replicates LDU, PF,
the input queues (SQQ, Bitmask queue, and Scale Factor queue),
and TOut. One Loader can be loading data while the pipeline is pro-
cessing data that was provided by the other Loader. The POPCNT
and Parallel Prefix Sum circuitry process the bitmask by mainly
performing additions of 1-bit data; they are also duplicated so their
latency can be hidden. The rest of the pipeline is not duplicated
and is used by one Loader-TOut pair at a time.
5. Vector Operations (vOps). It takes multiple cycles to generate a
decompressed tile, which always contains 512 BF16 elements. This
is because the pipeline generates output chunks ofW elements (e.g.,
32 in our design) at a time, each using one DECA Vector Operation
(vOp). In the absence of pipeline bubbles, a new chunk is generated
every cycle. A vOp reads data from the SQQ, executes in the pipeline
stages, and finally writes the chunk of W elements to a TOut. vOps
exploit pipelining: when a vOp enters the Expansion stage, the next
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vOp can enter the Dequantization stage. The vOps are processed
in order, and can enter the pipeline as long as (1) their input has
arrived from memory and (2) the first pipeline stage is free.

Without sparsity, a vOp reads W elements from the SQQ. With
sparsity, less than W elements are needed, since the SQQ does not
contain zero values. We refer to the elements that a given vOp needs
to read from the SQQ as the vOp’s window (Wnd). To determine
the size of a Wnd, the POPCNT circuitry counts the number of “1s”
in the bitmask, and determines the end of the current Wnd and
the start of the next Wnd. The latter is the next SQQ position from
which data will be read into the pipeline.
6. LUT Array Organization. The DECA dequantization stage
supports quantized numbers of 8 bits or less, which can represent
a maximum of 256 different values. For this reason, each of the 𝐿
LUTs in the LUT array stores 256 BF16 values. Dequantizing an
8-bit value corresponds to a lookup using the 8-bit value as the LUT
address to read a BF16 dequantized value. DECA contains 𝐿 LUTs
to allow for parallel dequantization of multiple values.

In addition, each LUT is internally divided into 4 smaller sub-
LUTs, each one with a read port and 64 entries. If the quantized
data bitwidth is 6 bits or less, the 4 "small" LUTs can be used in
parallel to enable 4 reads from one 256-entry "big" LUT. For less
than 6-bit quantization, some of the LUT entries are redundant and
are not used at runtime.
7. Bubbles and the Roof-Surface. We set the number of "big"
LUTs to 𝐿 < 𝑊 to limit DECA’s area. If the Wnd of a vOp is
larger than 𝐿 elements, the vOp occupies the Dequantization stage
for more than one cycle. This injects one or more bubbles in the
pipeline, which reduce the vOp throughput. For example, the Wnd
of a dense 8-bit quantization scheme is W and, therefore, a vOp will
always require𝑊 /𝐿 cycles for dequantization. Although setting 𝐿
<𝑊 limits the DECA throughput for dense quantization schemes,
this is not a major concern. The reason is that dense schemes like
BF8_100% and MXFP4 require less vector throughput (i.e., VOS)
in order to escape the vector (VEC) region. This can seen in the
BORDs of Figure 5.

On the other hand, sparser schemes require a higher VOS to
escape the VEC-bound region. Luckily, this is naturally achieved by
the DECA pipeline: the probability that the Wnd of a vOp is larger
than 𝐿 decreases with sparsity. Thus, fewer bubbles are introduced
for sparse schemes, naturally achieving higher throughput than
their dense counterparts for the same 𝐿. The same behavior is
achieved for lower bitwidth schemes because they can perform
more than 𝐿 reads in parallel from the LUT array.
9. Generality and Performance. DECA supports quantization
formats of 8 bits and lower, group quantization, and unstructured
sparsity, which cover most current and likely future model com-
pression schemes. DECA’s design is flexible, since by changing
the values in its LUT array and/or using different scale factors, it
enables the support for a rich set of formats without redesigning
the hardware. Additionally, individual stages can be skipped if they
are unneeded (e.g., quantization without sparsity). In terms of per-
formance, the main benefit of DECA is that it replaces multiple
vector (AVX) instructions by a single vOp that performs the whole
decompression—dequantization, expansion, and scaling—for W el-
ements. The decreased vOp count increases the 𝐴𝐼𝑋𝑉 (Section 4),
moving the points away from the VEC region.

6.2 Quantitative Microarchitecture Design
We now show how DECA’s𝑊 and 𝐿 relate to the Roof-Surface
model quantitatively. Consider Equation 2. We should express how
the parameters in the equation depend on 𝑊 and 𝐿. Of all the
parameters, only 𝐴𝐼𝑋𝑉 depends on𝑊 and 𝐿. Indeed, VOS is fixed
to 𝑐 ∗ 1 ∗ 𝑓 , since each of the 𝑐 CPU cores has one DECA PE that
completes at most one vOp per cycle and operates at the core
frequency 𝑓 . On the other hand, the 𝐴𝐼𝑋𝑉 of different kernels
depends on DECA’s𝑊 and 𝐿 parameters. To calculate 𝐴𝐼𝑋𝑉 , we
need to add-up the number of vOps that are needed per tile plus
the number of bubbles that are generated per tile.1

The number of vOps per tile is #𝑣𝑂𝑝𝑠 = 512/𝑊 , since each
tile has 512 elements and a single vOp produces𝑊 elements. We
express the number of bubbles per tile as #𝑏𝑏𝑙 = #𝑣𝑂𝑝𝑠 ∗𝑏𝑝𝑣 , where
𝑏𝑝𝑣 is the number of bubbles per vOp. Since bubbles can only be
generated due to insufficient resources in the Dequantization stage,
we use 𝐿𝑞 to denote the maximum number of elements that DECA
can dequantize in a cycle. 𝐿𝑞 is equal to 𝐿 for 8-bit quantization
schemes, 2 ∗ 𝐿 for 7-bit, and 4 ∗ 𝐿 for 6-bit and below. Without
sparsity,𝑏𝑝𝑣 = 𝑐𝑒𝑖𝑙 (𝑊 /𝐿𝑞)−1.With sparsity, the bubble generation
is not deterministic, as it depends on the number of nonzeros in
a compressed tile. For a matrix of density 𝑑 , if we assume that
nonzeros are uniformly distributed, then the number of nonzeros
in𝑊 consecutive matrix elements is a binomial distribution with
parameters𝑊 , 𝑑 . We compute the expected number of bubbles as:

𝑏𝑝𝑣 =
∑︁𝑊

𝐿𝑞
−1

𝑘=0 𝑘 · 𝑃 (𝑘𝐿𝑞 < 𝑁𝑁𝑍 ≤ (𝑘 + 1)𝐿𝑞)

=
∑︁𝑊

𝐿𝑞
−1

𝑘=0 𝑘 · [𝐹 ((𝑘 + 1)𝐿𝑞 ;𝑊,𝑑) − 𝐹 (𝑘𝐿𝑞 ;𝑊,𝑑)]
where 𝐹 (𝑖;𝑊,𝑑) is the binomial cumulative distribution function.
Finally, the 𝐴𝐼𝑋𝑉 is given by 1/[#𝑣𝑂𝑝𝑠 ∗ (1 + 𝑏𝑝𝑣)].

Intuitively, given a DECA architecture with a given𝑊 and 𝐿, a
certain kernel introduces an average number of bubbles per decom-
pressed tile equal to #𝑣𝑂𝑝𝑠 ∗ 𝑏𝑝𝑣 . As one tunes the architecture by
modifying𝑊 or 𝐿, the number of bubbles may increase or decrease,
pushing the kernel in the Roof-Surface plot down or up, respec-
tively, and moving it closer to or farther away from the VEC-bound
region, respectively. Consequently, we can use the Roof-Surface
model to perform an analytical Design Space Exploration (DSE). We
can plot the BORDs of different (𝑊 , 𝐿) pairs and pick the design that
pushes all the kernels out of the VEC-bound area at the minimum
DECA hardware cost. In Section 8.2, we perform such a DSE.

7 Methodology
1. Simulation and System Parameters. To evaluate our work,
we simulate a 56-core server with SPR-like parameters using an in-
house simulator based on Sniper [9].We evaluate a DDR5-based and
anHBM-basedmemorywith about 260GB/s and 850GB/s achievable
memory bandwidth, respectively. We extend the simulator so each
core has: (1) a DECA PE, and (2) an 8-entry TEPL Queue and ports
to support TEPLs in the core pipeline. Both cores and DECA PEs
run at 2.5GHz. Our baseline DECA PE is dimensioned with W=32
and L=8, but we also evaluate other options in Section 8.2.

1Note that to calculate the𝐴𝐼𝑋𝑉 for decompression with a CPU core instead of with
DECA, we also have to take into account CPU core bubbles (e.g., due to dependencies
between AVX operations and operation latencies).
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2. Software and DECA Control Code Generation. As our soft-
ware baseline, we use the Intel libxsmm kernels that overlap weight
decompression and GeMM execution (Section 2.4). To invoke DECA,
we modify the libxsmm JIT compiler by replacing the AVX decom-
pression sequence with TEPL instructions.

To evaluate the effectiveness of DECA for compressed GeMMs in
isolation, we implement a large cascade of Fully Connected (FC) lay-
ers (without other types of layers) and use Parlooper [17] for loop
parallelization. The weight matrices in these layers have ≈250M
parameters, similar to the large FC layers of Llama-2-70B. Libxsmm
and Parlooper are integrated in the Intel Tensor Processing Primi-
tives (TPP) Framework [16], which supports end-to-end Llama-2
and OPT inference on CPUs. Hence, we use TPP as is for software-
only LLM inference, and by invoking the TEPL-augmented libxsmm
kernels for inference with DECA. We test batch sizes (𝑁 ) of 1–64.
3. Compression Schemes.We evaluate the BF16, BF8, and MXFP4
compression schemes, which we refer to as Q16, Q8, and Q4, respec-
tively. We limit the compression schemes to these because these
are the ones supported by libxsmm. We also evaluate unstructured
sparsity with weight density ranging from 50% to 5% for Q16 (only
sparsity) and Q8 (quantization plus sparsity). The Q4 sparse kernels
are not currently supported by our libxsmm-Parlooper-TPP stack,
so we cannot directly evaluate them. For end-to-end Llama-2-70B
and OPT-66B inference, the uncompressed dense Q16 baseline, Q16
with 50% density (Q16_50%), and dense Q8 do not fit in the 64GB of
HBM. Hence, we simulate a larger HBM capacity for those schemes.

Table 3: Key DECA structure types, sizes, and port counts.
Structure Type Total Entry # Rd # Wr # per

Size Size Ports Ports PE
SQQ SRAM 2KB 64B 1 1 2
TOut Reg SRAM 2KB 64B 1 1 2
Bitmask Queue Regs 64B 4B 1 1 2
Scale Factor Queue Regs 64B 2B 1 1 2
LDU CAM 256B 8B 1 (+1 search) 1 2
Big LUT SRAM 512B 2B 4 1 L=8
SD/DD Reg Regs 64B 64B 1 1 1

4. Area and Power. We estimate the area and power of our DECA
design with W=32 and L=8. Table 3 shows the key DECA structures.
The key for the LDU CAM enters through the search port. The de-
sign also includes 64 32-bit parallel prefix adders for Parallel Prefix
Sum / POPCNT, 32 BF16 multipliers for scaling, and a triangular
crossbar with 32 I/O ports, where each port is 2B wide.

To estimate the area of the SRAM/CAM structures (e.g., LDU
and SQQ) and registers, we use CACTI [3]. For the crossbar, BF16
multipliers, and adders, we use numbers from [8], [83], and [64],
respectively. We then use [69] to scale down the numbers to 7nm.
Overall, we estimate the total area for 56 DECA PEs to be ≈2.51
𝑚𝑚2. Of this area, the LDUs, SQQs, Bitmask queues, Scale Factor
queues, and TOut registers consume about 55%; the LUT array
consumes 22%; and the rest consumes 23%. Given that the total
die area of a 56-core SPR is around 1600𝑚𝑚2 [76], the DECA area
overhead is less than 0.2%.

To estimate the power of the DECA PEs, we use CACTI and
information from the literature. We estimate the combined dynamic
power (at maximum activity) and static power to be 3.1W, or about
1% of the SPR TDP of 350W. Queues and registers contribute with
about 50% of DECA’s power, the LUTs with 21%, while the rest with
29%. When idle, the DECA PEs consume less than 0.1% of the TDP.

We use CACTI to validate that all the memory structures meet
timing, and [8, 64, 83] to validate that the rest of the components
also do.
5. Systems Evaluated. In our evaluation, we compare several SPR
systems with TMUL hardware that execute GeMMs and LLM work-
loads. Baseline is a system that loads uncompressed BF16 weights
from memory. Software-only is a state-of-the-art system that loads
compressed weights from memory and decompresses them using
AVX instructions; it uses the libxsmm library. DECA is our system,
which loads compressed weights from memory and decompresses
them using DECA. Sometimes, we also use Optimal, an ideal system
that delivers the performance predicted by the roofline model and,
therefore, assumes that all VEC overheads are hidden.

8 Evaluation
8.1 DECA for Compressed GeMMs
Figures 11 and 12 show, for different compression schemes, the
speedups of the Software-only, DECA, and Optimal systems over
the Baseline, running the GeMMs in our FC layer cascade for N=1.
The compression schemes appear in increasing compression factor.
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Figure 11: Compressed GeMM speedups for DDR and N=1.
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Figure 12: Compressed GeMM speedups for HBM and N=1.

For the DDR setting (Figure 11), DECA offers speedups over
Software-only only for high compression factors. This is expected
since, according to the BORD in Figure 5b, only high compression
factors are VEC-bound. The speedup of DECA over Software-only
reaches 1.7 for Q8_5%. For the HBM setting (Figure 12), DECA
offers speedups over Software-only for almost all the compression
schemes. This is because, as shown by the BORD in Figure 5a,
almost all schemes are VEC-bound. The speedups reach 4.0× for
Q8_5%. In addition, in both DDR and HBM, the performance of
DECA is close to the Optimal one, revealing that DECA successfully
hides the VEC overheads. We repeated this analysis for batch sizes
of up to N=16 and observed similar results.

DECA-augmented cores are much more capable at vector pro-
cessing than conventional cores. Figure 13 compares the perfor-
mance of the DECA and Software-only systems for different num-
bers of cores. The figure shows data averaged across all the compres-
sion schemes for the DDR setting with N=4. We see that 16 DECA-
augmented cores achieve higher performance than 56 conventional
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cores. With DECA, the extra cores can run other workloads that
consume little memory bandwidth, or be power-gated.
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Figure 13: TFLOPS across all compressions for DDR and N=4.

To provide further insights into the performance of the Software-
only and DECA systems, Table 4 displays the percent utilization of
the memory bandwidth, of the TMUL, and of either the CPU’s AVX
units or DECA for different density factors of the weight data. Since
performance is proportional to the utilization of the TMUL, the
table shows that the DECA system has much higher performance
than Software-only.

Table 4: Component utilization for Q8, N=1, and HBM.
Density Software-only DECA
Factor MEM TMUL AVX MEM TMUL DECA
100% 74% 14% 50% 93% 18% 75%
50% 66% 20% 88% 92% 28% 71%
20% 35% 20% 89% 91% 53% 63%
5% 19% 20% 89% 73% 79% 87%

Since the operations of the three components overlap, the one
with the highest utilization ends up being the bottleneck. In the
Software-only system, for almost all of the densities, the bottleneck
is the AVX vector units. This observation validates the Roof-Surface
prediction. With DECA, the memory bandwidth is much better
utilized, leading to direct performance improvements. As sparsity
increases, the kernels take less time to execute, as shown by the
higher TMUL utilization. Hence, one would expect a large increase
in DECA utilization. In reality, this is not seen. The reason is that, as
explained in Section 6, as sparsity increases, DECA naturally suffers
fewer pipeline bubbles and, therefore, increases its throughput.

Finally, we compare DECA with the alternative of scaling a CPU
core’s vector resources as a method to alleviate the decompression
overhead. We model cores with: (1) 4× more vector AVX units
(More AVX Units) or (2) 4× wider AVX units (Wider AVX Units).
These AVX2048 units are optimistically modeled by removing the
dynamic instructions from 3 out of 4 iterations of the decompression
loop. Since we do not modify the system cache line, each AVX2048
memory operation is executed as 4 cache-line sized operations. For
these non-DECA systems, we do not scale the superscalar width of
the core or the number of L1 ports since, as explained in Section 4,
such changes are prohibitive. Figure 14 compares the speedups of
DECA, More AVX Units, and Wider AVX Units over Baseline for
different compression schemes. We see that the performance of
conventional vector scaling methods is far below DECA’s.

8.2 Design Space Exploration with Roof-Surface
The DECA W and L parameters determine how fast DECA can de-
compress, but values that are too large may increase area without
real benefit. Here, we use the Roof-Surface to examine the perfor-
mance for different {W,L} pairs. To dimension DECA, we want to
pick the smallest {W,L} pair for which the predicted performance
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Figure 14: DECA vs traditional vector scaling for HBM&N=1.

saturates (i.e., all the kernels are predicted not to be VEC-bound
anymore). Figure 15 shows the BORDs for the HBM SPR system
without DECA (a) and with DECA (b) with three different {W,L}
sizes: {W=8,L=4} (which we find it is underprovisioned), {W=32,L=8}
(which we find it is the best one), and {W=64,L=64} (which we find
it is overprovisioned).

(a) No DECA (b) DECA with different {W,L} pairs.

Figure 15: HBM BORDs with different-sized DECAs.

We observe that, compared to a CPU without DECA, DECA has
fewer vector operations per second (𝑉𝑂𝑆), since its VEC-bound
region is larger. However, DECA decreases the number of vector
operations needed per matrix operation (i.e., it increases 𝐴𝐼𝑋𝑉 ) as
discussed in Section 6. The underprovisioned DECAwith {W=8,L=4}
is unable to push the kernels out of the VEC-bound region. The
overprovisioned one with {W=64,L=64} pushes them out, but more
than needed. The best design ({W=32,L=8}) pushes them just enough
so that they are out of the VEC-bound region.

We simulate the performance of these designs to validate the
model’s accuracy. We find that the DECA-best system is 2× faster
than the DECA-underprovisioned one. The DECA-overprovisioned
system is less than 3% faster than the DECA-best one. At the same
time, DECA-best is much cheaper than DECA-overprovisioned: it
has 8× fewer LUTs and half the W. Overall, the Roof-Surface model
accurately captures the dynamics of the matrix-vector-memory
interaction and can guide microarchitectural decisions.

8.3 Analysis of DECA Integration and TEPLs
We now evaluate different decisions we made regarding DECA’s
integration with a core. We start with a base configuration where
DECA reads compressed tiles from the LLC (bypassing L2), writes
decompressed tiles into the L2 for the core to read, and is invoked
using loads, stores, and fences. Then, we progressively enhance it
to: (1) allow the accelerator to read compressed tiles from the L2 and
use the L2 prefetcher (+Reads L2), (2) use its own prefetcher instead
of the L2 prefetcher (+DECA prefetcher), (3) write to the TOut Regs
instead of to the L2 (+TOut Regs), and (4) use TEPL instructions as
in Figure 9 instead of loads, stores, and fences (+TEPL (DECA)).
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Figure 16: Speedups due to different DECA integration fea-
tures for HBM and N=4.

Figure 16 shows the speedup of each configuration over the
base configuration for Q8 with different densities. We see that
+Reads L2 improves performance for all densities. The benefit comes
from the L2 hardware prefetcher already available in the system,
which fetches future tiles, hiding the memory/LLC access latencies.
+DECA prefetcher further improves performance by using the DECA
prefetcher rather than the default L2 one. +TOut Regs and +TEPL
(DECA) reduce or hide the DECA-core communication latency, and
are needed to execute instructions speculatively and out-of-order.
Specifically, +TOut Regs enables the core to directly fetch data from
DECA, instead of taking the longer path through the L2. Further,
+TEPL (DECA) overlaps communication with computation, hiding
the former.

The effectiveness of +TOut Regs and +TEPL (DECA) increases
as the density decreases. This is because DECA takes less time to
process a lower density tile, while the overhead of communication
with the core remains constant. Thus, for lower densities, the com-
munication cost gets more exposed. TEPLs are very effective for
low-density models: for 5% density, they double the performance.

Table 5: Prefetching sensitivity analysis (MXFP4,N=4,HBM).
Prefetching
Scheme

L2 Miss
(Million)

Weight
PFs (M)

Other
PFs (M)

Perf.
(TFLOPS)

No Weight Prefetching 90 0 6 2.9
Default L2 Prefetcher 12 78 6 3.5
DECA Pref. Degree 1 12 79 6 3.4
DECA Pref. Degree 5 1 89 6 6.0
DECA Pref. Degree 15 2 90 5 5.4

In Table 5, we perform a sensitivity study of the DECA prefetch
degree (i.e., how many tiles ahead to prefetch) for a GeMM com-
pressed with MXFP4. We also compare to no weight prefetching,
and to prefetching weights using the default L2 prefetcher. In all
configurations, the L2 prefetcher also prefetches non-weight data
(e.g., activations) triggered by CPU loads (Other PFs). When the
DECA prefetcher is active, the L2 one does not prefetch weights.

We see that the DECA prefetcher with degree of 5 (which is the
one our evaluation uses) offers great gains over both the default L2
prefetcher, and the DECA prefetcher with degree 1. On the other
hand, too deep prefetches (e.g., degree 15) start to hurt performance.
Also, we found that one of the key reasons for the performance
gains enabled by the DECA prefetcher is that it generates prefetches
with virtual addresses, which work seamlessly across physical page
boundaries—in contrast to the physically-addressed prefetches is-
sued by the default L2 prefetcher that don’t cross pages. Finally,
the number of weight prefetches does not increase drastically with
the degree. The reason is that the DECA prefetcher does not issue
duplicate prefetches; it filters out tiles for which prefetches have
already been issued.

8.4 DECA for LLM Inference
Lastly, we show the performance benefit of DECA for LLM next
token generation (i.e., including the non-GeMM stages). Table 6
shows the next token latencies of the Llama2-70B and OPT-66B
models on SPR with HBM, for 128 input tokens, 128 output tokens,
batch sizes of 1, 16, and 64, and different compression schemes. We
compare Software-only (SW-only) with DECA. In the table, the Q16
entries do not have a DECA entry because DECA is not used with
uncompressed data. Also, as explained in Section 7, we simulate
the Q16 model in SW-only assuming a larger HBM size that can fit
it. Indeed, an additional benefit of DECA is that it enables efficient
execution of large models that only fit in the HBM compressed.

Table 6: Llama2-70B & OPT-66B next-token latency (ms).
N=1 N=16 N=64

System Q16 Q4 Q8
30% Q16 Q4 Q8

30% Q16 Q4 Q8
30%

Llama2-70B
SW-only 192.3 124.6 98.2 211.2 139.1 116.6 452.5 441.6 423.4
DECA - 68.3 59.6 - 82.7 75.7 - 277.1 259.8

OPT-66B
SW-only 178.5 117.0 91.3 203.9 132.3 111.7 470.0 436.4 407.3
DECA - 60.8 53.9 - 81.8 75.5 - 236.5 230.6

We see that DECA substantially reduces the next-token latency
compared to SW-only for bothmodels, and for all schemes and batch
sizes. Using N=64 increases the next-token latency to high values,
and is generally less meaningful for inference with CPUs (Appen-
dix 12.1). Since N=64 is more compute-bound, compressed models
for this batch size are less effective in comparison with N=1 and
N=16. In fact, without DECA, MXFP4 is almost ineffective. Over-
all, across models, batch sizes, and compression schemes, DECA
reduces the next-token time by 1.6×–1.9× over SW-only. If we only
account for the more meaningful batch sizes (i.e., 𝑁=1 and 16), this
translates into a 2.5×–3.3× reduction over the uncompressed base
model (or a 1.6×–3.3× reduction if we include N=64). We observed
similar results for shorter and longer token sequences.

Table 7: Comparing CPU, CPU plus DECA, and GPU plat-
forms for W4A16 compression, Llama2-70B, and N=1.

Metric SPR
HBM

SPR
HBM

+ DECA

RTX
6000
ADA

A100
80GB
PCIe

H100
80GB
PCIe

BW (GB/s) 850 850 960 1935 2000
Max compute
(TFLOPS) 72 72 364 312 989

Next-token
latency (ms) 125 68 58 40 38

We consider how close the performance of a CPU with DECA
gets in comparison with GPUs. Table 7 considers three GPUs (RTX
6000 ADA, A100 80GB, and H100 80GB), and lists their bandwidth,
maximum compute capability, and next-token latency from the
repository in [11]. The results are for 4-bit quantized weights and
16-bit activations (W4A16), Llama2-70B, and N=1. We compare
these numbers to results from simulations of our CPU system with
and without DECA. We see that, with DECA, the SPR HBM system
attains a next-token latency that is very close to RTX6000 ADA’s.
In addition, it has only a 1.8x higher next-token latency than an
H100 GPU, despite the latter having 2.4x higher bandwidth and 14x
higher maximum computational throughput.
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Table 8: Comparison of DECA with related in/near-core accelerators.

Accelerator
Supports
Different

Quantizations

Supports
Structured
Sparsity

Supports
Unstructured

Sparsity

GeMM
Execution
Units

High
GeMM

Throughput

(I)n or
(N)ear
Core

Fine-grained
Interleaving
with the Core

HW Changes
Required
to the Core

TMUL [37] Limited ✗ ✗ Matrix ✓ I ✓ N/A
TensorCore [56] Limited 2:4 ✗ Matrix ✓ I ✓ N/A

RASA [40] ✗ ✗ ✗ Matrix ✓ I ✓ Many
VEGETA [39] ✗ 2:4,1:4 ✗ Matrix ✓ I ✓ Many
SAVE [23] ✗ ✓ ✓ Vector ✗ I ✓ Many
SPADE [19] ✗ ✓ ✓ Vector ✗ N ✗ None

DECA ✓ ✓ ✓ Matrix ✓ N ✓ Few, reusable

9 Discussion
In this section, we briefly discuss two additional topics.
1. Utility of a DECA-inspired engine for other architectures.
DECA is not limited to Intel CPU architectures. It can also be used
in other x86 processors such as AMD’s, as well as in processors
with different ISAs such as those of ARM and RISC-V. In both the
ARM and RISC-V memory models, fences are also needed to enforce
st→ ld ordering when using store-based DECA invocation. Fences
are needed to ensure that the accelerator is first invoked before
trying to read from it. Hence, TEPL-like instructions would also be
useful, and we expect the design to remain largely the same.

Regarding GPUs, similar to the TMUL, GPU Tensor Cores sup-
port only limited quantization formats and do not support unstruc-
tured sparsity. Table 7 reveals that the performance of kernels with
4-bit quantized weights largely scales with the bandwidth of the
GPU. This suggests that, for these kernels, GPUs are largely bottle-
necked by memory and not by decompression—thanks to the high
vector FLOPS of GPUs compared to CPUs.

Currently, there are multiple software systems to decompress
weights for GPUs. For example, AWQ [48] includes a dequantization
kernel, and Flash-LLM [79] de-sparsifies data with unstructured
sparsity and feeds it to the Tensor Cores. Although effective, Flash-
LLM ends-up substantially increasing the utilization of the L1 and
shared memory of the SMs, preventing full Tensor Core and HBM
utilization. A DECA-inspired decompression engine could reduce
the L1 and shared memory pressure, and thus potentially prove
useful for GPUs for kernels involving sparsity or combination of
sparsity and quantization. NVIDIA recently introduced the TMA
accelerator [52] for supplying data from memory to Tensor Cores.
Augmenting TMA with DECA-inspired decompression capabilities
is an interesting future direction.
2. Roof-Surface Generality. The Roof-Surface is applicable be-
yond Intel chips, CPUs, and decompression. It applies in any sce-
nario involving chains of matrix, vector, and memory operations.
For example, beyond Intel, it can be used to model the performance
of a kernel involving Scalable Vector Extensions (SVE)[68] and Scal-
able Matrix Extensions (SME) [77] in an ARM architecture. It can be
used for non-CPU architectures that involve separate matrix/vector
units such as the AWS Trainium [7, 14], the TPU [55], GPUs with
their Tensor Cores and SIMT Cores, and the Tandem processor [20].

In addition, it is straightforward to extend the Roof-Surface
for the general case of 𝑛 pipelined abstract cooperative compute
domains and memory. A general n-dimensional analytical model of
the interaction of the domains can be derived as follows. First, one
of the domains is chosen as the target (T ). The final performance
equation will be a limit for the operations of that domain. In this

paper, we chose the MTX as the T domain. Then, we should express
the AI of the T domain with respect to (1) memory (𝐴𝐼𝑇𝑀 ), and (2)
every other domain 𝐷𝑖 (𝐴𝐼𝑇𝐷𝑖 ). 𝐴𝐼𝑇𝑀 is 1

𝐵𝑦𝑡𝑒𝑠𝑇𝑜𝑝
, where 𝐵𝑦𝑡𝑒𝑠𝑇𝑜𝑝

is how many bytes need to be loaded from memory to execute one
operation of the T domain. The 𝐴𝐼𝑇𝐷𝑖 is given by #𝑇𝑜𝑝𝑠

#𝐷𝑖𝑜𝑝𝑠
, where

#𝑇𝑜𝑝𝑠 and #𝐷𝑖𝑜𝑝𝑠 are the total number of operations in the target
kernel from domains 𝑇 and 𝐷𝑖 , respectively. Then the performance
model equation in predicted 𝑇𝑜𝑝𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 or ˆ𝑇𝑂𝑆 is given by:

ˆ𝑇𝑂𝑆 =𝑚𝑖𝑛{𝑀𝐵𝑊 ∗𝐴𝐼𝑇𝑀 , 𝐷1𝑂𝑆 ∗𝐴𝐼𝑇𝐷1 , ..., 𝐷𝑛𝑂𝑆 ∗𝐴𝐼𝑇𝐷𝑛 } (3)

where 𝐷𝑖𝑂𝑆 is the rate at which the architecture can execute oper-
ations from domain 𝐷𝑖 . For more than two domains plus memory,
visualization requires more than 3 dimensions, but the model can
still be used to produce performance limits or identify limiting fac-
tors analytically. If the resulting model is 3-D, then the visualization
techniques in this paper (Roof-Surface and BORDs) apply.

10 Related Work
1. Decoupled Accelerators.A variety of stand-alone decoupled ac-
celerators that target sparsity in ML and scientific applications have
been proposed [10, 18, 22, 27, 31, 51, 59, 67, 85]. Other decoupled
accelerators rely on quantization [38, 65, 91]. Recently, accelerators
for attention are also becoming popular [25, 26, 42, 50, 74]. Decou-
pled accelerators come with large area and power budgets [39], and
suffer from data movement overheads [19].
2. In/near-core Accelerators. Due to the previous reasons, CPU-
integrated accelerators that reside in or near the CPU cores have
been proposed [19, 23, 24, 39, 40, 54]. DECA falls in this line of
work. Table 8 shows a taxonomy of the in/near-core accelerators
that are most related to DECA. The table classifies the accelerators
based on whether they support (1) different quantization schemes,
(2) sparsity (and what type), (3) high GeMM throughput, and (4)
fine-grained interleaving with the core; whether they use matrix or
vector units to execute GeMMs; whether they are in- or near-core
accelerators; and whether they require core hardware changes.
3. In-core accelerators using matrix operations. Traditional
matrix units such as TMUL [37] and RASA [40] cannot deal with
compressed tiles. To avoid the need for tile decompression, some
in-core accelerator designs [39, 56, 61] including VEGETA [39]
augment matrix units with support for specific structured spar-
sity patterns. Such an approach increases hardware complexity in
the core (e.g., a larger matrix unit, more architectural registers, or
changes in register renaming). Further, although this approach can
increase the matrix throughput (MOS) by skipping some computa-
tions with zeros, our Roof-Surface analysis of Section 4 reveals that
such an increase is unneeded for our kernels: most of them become
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memory-bound after leaving the vector-bound region. Note that
VEGETA can be paired with software that conservatively trans-
forms unstructured to structured sparsity, as the hardware does not
support unstructured sparsity natively.

Other designs augment the matrix units with native support for
more efficient lower bit quantization formats [38, 56]. However,
such designs require extra hardware in the matrix unit for each
one of the supported formats. Further, the hardware needs to be re-
designed if a new, previously unseen, quantization format emerges.
In contrast, DECA can support a rich set of quantization formats
without requiring extra hardware for each one: it can change the
values in its LUT array and/or use different scale factors.
4. In/near-core accelerators using vector operations. SPADE [19]
and SAVE [23] are accelerators for sparse applications designed to
be integrated with CPUs. Instead of relying on matrix units, they
use vector units to execute the actual GeMM. While this approach
might work for highly sparse matrices, using the high-throughput
matrix units is necessary for the moderately sparse matrices found
in ML models [80].

Overall, as shown in Table 8, DECA offers a unique combination
of characteristics. It supports a rich set of quantization schemes
combined with structured or unstructured sparsity. It enables high
GeMM throughput by cooperating with the TMUL matrix units.
Through speculative invocation, it is the first near-core accelerator
design that enables fine-grained interleaving with the core. Finally,
it introduces only a few changes to a core’s pipeline, which could
potentially be reused for other near-core accelerators.
5. Performance Models. Gables [33] is a related performance
model for multiple compute domains and memory with a 2-D visu-
alization. Gables models heterogeneous compute engines accessing
memory independently and in parallel. In contrast, Roof-Surface
models a serial (pipelined) combination of multiple engines, where
one engine accesses memory and produces data for a second engine.
As a result, Gables only uses Arithmetic Intensity (AI) with respect
to memory for each engine, while the Roof-Surface defines AI from
one engine to the other (e.g., AIXV). Overall, the two models target
different settings and are orthogonal. Combining them into a single
model is an interesting future direction.

11 Conclusion
To improve LLM inference in advanced CPU platforms with in-core
GeMM engines and HBM, this paper made three contributions: the
Roof-Surface performance model, the DECA near-core accelerator
for ML-model decompression, and the TEPL ISA extension for out-
of-order accelerator invocation to hide communication latency. Our
evaluation showed that DECA is very effective. In a simulated 56-
core Xeon 4 server with HBM, DECA accelerated the execution of
compressed GeMMs by up to 4x over the use of optimized Intel
software kernels. Further, DECA reduced the next-token generation
time of Llama2-70B and OPT-66B by 1.6×—1.9×.
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12 Appendix
12.1 Batch Sizes in LLM Inference with CPUs
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Figure 17: Llama2-70B next-token time (latency) and tokens-
per-second (throughput) scaling for different batch sizes N.

This section examines what batch sizes are meaningful for LLM
inference using modern CPU servers like SPR equipped with AMX
extensions. Figure 17 shows how the next-token time (latency) and
tokens-per-second (throughput) of the (uncompressed) Llama2-70B
model scale with the batch size N. We see that as N scales from 1
to 16, the throughput increases linearly, while the latency remains
constant. For N>16, which is the TMUL throughput saturation point
(Section 2.3), the next-token time increases without linear gains in
throughput. Although hyperscalers commonly use batch sizes of 64
in LLM serving with (multiple) GPUs [70], a single CPU has utility
for smaller batch sizes (e.g., for low-latency single-user scenarios).
For this reason, in this work we mainly focus on sizes from 1 to 16.

12.2 Effect of Batch Size on the Roof-Surface
We now discuss how the Roof-Surface and BORDs change as the
batch size N changes from 1 to 16. Note from Equation 2 that N
appears outside of the min-clause. Further, the𝐴𝐼𝑋𝑀 is not affected:
A weight tile is only used in one matrix operation, since batch
sizes from 1 to 16 can all be handled with a single matrix operation
(Section 2.3). Although the operation has different FLOPS depending
on the batch size, 𝐴𝐼𝑋𝑀 is not affected. Finally, 𝐴𝐼𝑋𝑉 also remains
unchanged. Thus, as the batch size changes from 1 to 16, the min-
clause does not change and the BORDs look the same. For example,
if a kernel is VEC-bound for N=16, it is also so for N=1 and vice-
versa. The 3D roof-surface itself just scales in height as N increases.

Figure 18: HBM BORD N=64.
As the batch size increases beyond 16, things change. Take N=64.

First, the TMUL throughput saturates, and thus the height of the
3D roof-surface remains equal to the one for N=16. Second, each
weight tile can now be reused in 4 matrix operations, increasing
the 𝐴𝐼𝑋𝑀 by 4. The 𝐴𝐼𝑋𝑉 can also increase by 4 by decompressing
only once per weight tile, and re-using the result for the other
3 matrix operations. The resulting BORD is shown in Figure 18.
Note that the axes in the figure display a larger range of arithmetic
intensities than in Figure 5a. We see that points are shifted up and
right. However, many kernels still remain VEC-bound, even for this
batch size that is less meaningful for low-latency CPU inference.
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