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Abstract—Simulation remains an important component
in the design of multicore processor architectures, just
as in uniprocessor design. In contrast to single-threaded
applications, however, many multi-threaded programs are
not deterministic: in multiple runs, even on the same
architecture, different execution paths can be taken. This
results in variability of simulation results, which is a
well-known phenomenon in real systems, but is nearly
universally ignored in simulation experiments. In this
paper, we review existing work on simulation variability.
We extend this work, which has been focused mainly on
commercial workloads, and show that it also applies to
scientific workloads. We characterize variability for the
SPLASH-2 benchmark applications, and look at how vari-
ability can impact the optimization of the interconnection
network. Both previous and our own results show that
studies aiming to prove the optimality of architectural
or other modifications should keep this variability in
mind, and make sure that observed improvements are
statistically valid in relation to the inherent variability
to avoid drawing the wrong conclusions. Although this
problem is in no way solved to satisfaction, we review
some possible solutions, such as the use of statistics, using
different types of metrics, and sample-based simulation.

Index Terms—Simulation, Variability, Parallel process-
ing, Multiprocessor interconnection

I. INTRODUCTION

Due to several problems prohibiting further perfor-
mance increase in uniprocessor designs, multi(-core)
processor architectures are becoming more and more
prevalent. The exponential increase in performance we
have come to expect can in this way be continued,
provided applications can be parallelized effectively. Just
as for uniprocessor designs, exploring the performance of
different design variants of a multicore processor will at
some point in the design have to rely on execution-driven
simulation, which is the only method that allows the most
accurate measurements to be made. In single-threaded
programs, such as the commonly used SPECint and
SPECfp benchmarks, the control flow is based entirely
on input data, which is fixed between simulation runs.
For multi-threaded programs, however, this is no longer
the case. For instance, the outcome of race conditions

on synchronization variables can be altered, by slightly
speeding up one thread or delaying another. This means
that, in different simulations, a different processor will
be allowed to move into the critical section first, causing
a bifurcation in the dynamic instruction streams that can
propagate throughout the execution. Methods of load
balancing such as global task queues can cause this effect
to have grave repercussions, since tasks may be claimed
by different processors, altering the load balance in the
program significantly.

A slowdown of one of the processors by just one
clock cycle is enough for this to happen. It can easily
be caused by several effects, including interference by
background processes, or by even minimal changes in
the architecture. In Java, even sequential programs are
inherently non-deterministic due to run-time variations
in just-in-time (JIT) compilation or garbage collection,
requiring a statistically rigorous approach if accurate per-
formance evaluation is desired [1]. Concerning the simu-
lation of parallel architectures, Alameldeen and Wood [2]
analyze the non-deterministic behavior of commercial
on-line transaction processing (OLTP) workloads. They
show that execution times can deviate by up to 9%
between simulations. When subtle improvements in the
architecture, compiler or operating system are to be
measured, this variability can easily drown out the actual
improvements. This can lead to the wrong conclusions
being drawn: an architectural modification may seem
to improve performance, when this improvement was
actually due to random variations!

This behavior is especially apparent in commercial
workloads. They are request-driven, the workload needed
to complete each request can have large variations.
Therefore, load balancing is required to evenly divide
requests and their resulting workload among proces-
sors. However, several important scientific and technical
workloads also use load balancing, so the same effects
will play there. And even in programs without load
balancing, the different outcome of synchronization race
conditions can still introduce runtime variations. Finally,
downscaling benchmark input sizes, as is commonly
used to reduce simulation times to reasonable values,
enlarges the problem, since less samples are being taken.



Sampling techniques, used to limit the runtime further,
can have an even worse effect.

In this paper, we measure the variability of the
SPLASH-2 benchmarks, which are commonly used in
multiprocessor evaluation. We show that the variability
in total program runtime is rather high, and can easily
reach 10%. Still, program runtime, or an average number
of transactions per second for OLTP and web server
workloads, are used most often as performance metrics,
probably because they are easy to measure (also on
real systems), and because they provide an absolute
measure that can be understood by the end-users of
a machine – who would like to know how long their
applications will run, or how many concurrent visitors
their website will support. The variability in these high-
level metrics is, however, high enough to drown out
the improvement made by several important architectural
modifications. One solution can be to use a (well-chosen)
low-level performance metric, such as average miss
latency. They often exhibit less variability, or show a
larger performance delta, which makes them capable of
distinguishing – in a statistically valid way – between
architectural modifications with higher versus those with
lower performance. In simulation especially, where the
obvious solution of running longer benchmarks or doing
multiple measurements to characterize and average out
variability, is not a viable alternative, some solution will
have to be found.

The remainder of this paper is organized as follows:
Section II provides an overview of existing work on
variability in (mainly commercial) parallel programs.
From Section III onwards, we extend this work towards
scientific applications. Section III itself describes our
methodology, including the simulation platform and de-
scribes how variability was introduced into our simu-
lations. Section IV shows the results of our measure-
ments and analyzes their variability. In Section V we
study the impact of variability on fidelity and relative
accuracy, or the ability to quantize improvements made
by architectural modifications. Section VI looks at how
the problem of variability can be coped with, while
Section VII summarizes our conclusions.

II. EXISTING WORK

A. Non-determinism in commercial workloads

The first to consider variability in architectural sim-
ulations of parallel programs were Alameldeen and
Wood [2], [3]. They state that variability is a well-known
phenomenon in real systems, but [it] is nearly universally
ignored in simulation experiments. Accurate architectural
simulations, required when microarchitectural research is

performed on large multiprocessors, use a detailed simu-
lator such as Simics/GEMS [4], [5] in which the ratio of
simulation time versus simulated time can be up to one
million. Due to this enormous slowdown, the common
approach of averaging over multiple measurements is
not very practical. Moreover, since the simulator itself
is usually deterministic, extra provisions must be made
such that the variations, visible in real systems due to
different initial states and small external perturbations,
are actually visible in simulation.

To this end, Alameldeen and Wood add artificial level-
2 cache latency that is uniformly distributed between 0
and 4 ns. Although the average increase in miss latency
is therefore always 2 ns in each simulation, the effects
of load balancing, scheduling and synchronization as
described before, cause the execution time to deviate by
up to 9% between simulations. When the performance of
two architectures or system configurations is to be com-
pared, this variability can often be as big as the (average)
performance difference between both architectures. This
makes it easy to derive the wrong conclusion, i.e., “archi-
tecture A is better than architecture B,” while in reality
B is better but the simulation of A happened to be faster
because random variations reduced the synchronization
times. They define the wrong conclusion ratio (WCR) as
a percentage of comparison pairs that reach an incorrect
conclusion, which can in realistic situations be as high
as 30%.

B. Coping with variability

To cope with this variability, Alameldeen and Wood
suggest that each researcher should perform multiple
simulations, in which divergent behavior is triggered
using a method such as adding random cache latency.
From these multiple results, variability can be measured
which allows one to construct a confidence interval
around each measurement. Also, they argue in [3] that
one should move away from measuring the instructions
executed per clock cycle (IPC), since this metric has too
much variability, and use application level metrics such
as program runtime or time per transaction instead.

Wenisch et. al. [6], on the other hand, measure the
number of user instructions per clock cycle (U-IPC),
and find that it has a lower variability than transaction
throughput. Moreover, they find a linear relationship
between both – showing that a (short) measurement of
U-IPC can reliably replace a much longer measurement
of transaction throughput. In [6] they also propose a
methodology for statistical sampling of multiprocessor
simulations. This allows a technique called matched-pair
sample comparison, which will be discussed later.



Lepak et. al. [7] introduce a methodology that can,
under some assumptions, remove the variances intrin-
sic to non-deterministic workload. This way, IPC can
be measured fast and reliably – although the method
is not applicable for all benchmarks and all types of
architectural studies.

C. Non-determinism in scientific benchmark suites

Woo et. al. [8] mention the non-determinism of some
of the benchmarks in their description of the SPLASH-
2 benchmark suite. Since they want to measure their
benchmarks’ inherent program properties, such as data
sharing and communication-to-computation ratio, they
use a fixed timing model that should not trigger the
non-determinism. While this approach is good for mea-
suring fundamental, architecture independent properties,
it does not point out how variability can be coped with
when architecture-induced performance changes are to
be measured.

PARSEC is a much newer benchmark suite for the
evaluation of chip-multiprocessors, which aims to be
a more up-to-date replacement for SPLASH-2. It is
described by Bienia et. al. in [9]. They recognize Woo’s
argumentation that fundamental program properties can
be measured accurately without a timing model, avoiding
non-determinism, but they also refer to Alameldeen’s
work and use the same approach to characterize variabil-
ity in PARSEC’s inherent properties. They claim these
measurements remained constant within 0.04%, except
for two (out of twelve) benchmarks in which much
higher deviations were observed.

However, these results were obtained using the largest
data set, simlarge, which on a real machine executes
in about 15 seconds. Since they used a cache simu-
lator based on dynamic instrumentation, the resulting
simulation times were acceptable. Microarchitectural re-
searchers, requiring cycle-accurate simulation tools such
as Simics/GEMS, face simulation times that will be
longer by several orders of magnitude. This, in practice,
limits them to the simsmall data set which has a
native runtime of about one second. By how much
this shorter data set would increase variability is yet
to be investigated. Moreover, these measurements again
concerned inherent properties, which are expected to
be architecture-independent. Variability of architecture-
dependent properties, such as performance metrics, is not
necessarily of the same magnitude.

III. METHODOLOGY

A. Multiprocessor architecture

For our own experiments on the variability of the
SPLASH-2 benchmarks, we assume a 16-processor

distributed shared-memory architecture with hardware-
enforced cache coherence using a directory-based pro-
tocol. The architectural modifications we will study
pertain to the interconnection network. We look at the
performance of three different networks: 4×4 mesh
and torus networks, and additionally a reconfigurable
network as described in [10]. This network adds eight
extra links to the torus topology, that are reconfigured
every millisecond to alleviate congestion on those parts
of the network that carry the most traffic at that point in
time.

B. Simulation platform

Our simulation platform is based on the commercially
available Simics simulator [4]. It was configured to
simulate a multiprocessor machine resembling the Sun
Fire 6800 server, with 16 UltraSPARC III processors
clocked at 1 GHz and running the Solaris 9 operating
system. Since we focus on performance of the intercon-
nection network, in-order processors are used to limit
simulation times: all executions execute in a single
clock cycle, except for memory accesses, which are
simulated realistically using two levels of caching and
an interconnection network for remote memory accesses
and coherence traffic. The coherence controllers and the
interconnection network are custom extensions to Sim-
ics. They model a full bit-vector directory-based MSI-
protocol and a packet-switched network with contention
and cut-through routing.

A first-touch memory allocation was used that places
data pages of 8 KiB on the node of the processor that
first references them. Each thread is pinned down to its
own processor using the Solaris processor_bind()
system call. This way the thread stays on the same node
as its private data for the duration of the program which
reduces communication, and already avoids most of the
non-determinism caused by the scheduler. More details
on this simulation platform can be found in [10].

C. Benchmarks

The SPLASH-2 benchmark suite [8] consists of a
number of scientific and technical applications using
a multi-threaded, shared-memory programming model.
Thread creation and synchronization are done using
the UPC PARMACS [11] macro’s, employing the
solaris.threads threading model. Because some
of the default benchmark sizes were too big to simulate
their execution in a reasonable time, smaller problem
sizes were used (see Table I). Only the parallel part of
each benchmark is included in our measurements. To
make sure that the measured variability was not caused



Benchmark Input size
barnes 8192 particles
cholesky tk15.O
fft 256K points
fmm 8192 particles
lu 512×512 matrix
ocean.cont 258×258 ocean
radiosity room
radix 1M integers, 1024 radix
raytrace teapot
water.sp 512 molecules

Table I
SPLASH-2 BENCHMARKS AND INPUT SIZES USED IN THIS STUDY

by the interference of background tasks, we verified that
no other processes were active on our simulated machine
during execution of the benchmarks.

Since our scaling down of the problem size influences
the working set, and thus the cache hit rate, the level 2
cache was resized from an actual 8 MiB on a real
UltraSPARC III to 512 KiB. Also, the associativity
was increased to 4-way (compared to 2-way for the
US-III) after we experienced excessive conflict misses
in Solaris’ internal structures with the 2-way caches.
Overall, this resulted in realistic, 93–97% hit rates for
the L2 caches. 50–60% of L2 misses were cataloged
as coherence misses (resulting in communication among
different processors), the remaining 40-50% were cold,
conflict or capacity misses.

D. Introducing variability

To measure runtime variability, we repeated the sim-
ulation of each benchmark a number of times. This
in itself is not enough, since the simulator used is
totally deterministic. Instead, we delay the starting of
the benchmark for a small amount of (simulated) time,
by running a number of UNIX ls commands before
starting the benchmark. This happens even before the ini-
tialization phase of the benchmark, so it is not included
in our measurements which only begin at the start of
the parallel phase of the benchmarks (caches are also
not simulated until this point). In theory, no difference
should thus be observed, because we run the same
benchmark on exactly the same simulated architecture.
However, this small delay causes the machine to be in a
slightly different state: process identifiers, various usage
counters, and internal timers have all been incremented
and will take less time to overflow – changing the points
in time when subtle interferences to the benchmark
(process switches, virtual memory management, etc.)
occur.

In contrast to [2], who by changing the latency of
each L2-cache miss, keep adding variation throughout
the simulation; we on the other hand introduced variation
only by changing the initial conditions. The fact that
we still observe a significant runtime variability, even
without changing the architecture, shows that this effect
is fundamental to the parallel programs that were used.
A simulation that does introduce architectural modifi-
cations will thus certainly have to cope with the same
conditions.

IV. MEASURING VARIABILITY

Using our simulation platform described in Section III,
ten simulations are performed for each of the SPLASH-2
benchmarks on each of the three types of interconnection
networks. For each of them, we measure a number of
performance metrics. Figure 1 plots the results, showing
the average, standard deviation, minimum and maxi-
mum measurements. All metrics have been scaled to
the average recorded on a mesh network for the same
benchmark.

The top plot shows the total program runtime of the
parallel phase, for each of the applications. Clearly,
a large variability is present there, which is often as
large as the improvement that is made by using a better
interconnection network. Next, the average instructions
per clock cycle (IPC) is shown (totaled over all pro-
cessors). Note that since we studied changes in the
interconnection network, an in-order processor model
was used in which each instruction executes in a single
clock cycle, except for memory references. The IPC
measured here is therefore solely dependent on the
memory access latency, which in turn depends on cache
performance and network speeds and congestion. Again,
a variability is present that can be of the same magnitude
as the average improvement between architectures. The
third and fourth plots show the number of executed
instructions, in total and in user mode only, respec-
tively, summed over all 16 processors. Those in itself
are not performance metrics, but these measurements
clearly shows that different execution paths are taken in
each simulation, even though the benchmark, operating
system and simulated architecture are kept the same in
each case. For most of the benchmarks, the number of
user instructions executed is relatively constant, showing
that most of the variation is in the number of instructions
executed in kernel mode – most of which are synchro-
nization instructions. A notable exception is raytrace.
According to [8], it is implemented using distributed task
queues with task stealing. This clearly makes for large
variations in program flow.
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Figure 1. Variability of possible performance metrics for the
SPLASH-2 benchmarks, for ten measurements each, on three dif-
ferent interconnection networks.
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Figure 2. Runtime variability as a function of average runtime: short
benchmarks do not necessarily have more variation than long ones.

The next graphs show low-level performance metrics
pertaining to the memory system and interconnection
network, who’s performance were the objective for this
study. The fifth plot shows the average level-2 miss
latency, pertaining to those memory accesses going
through the interconnection network. Again, variability
is present, although its magnitude is now in most cases
much smaller than the average improvement. The same
observation holds for the last graph, which shows the
average time network packets spend in a buffer, waiting
for a network link to become free – this value largely
determines packet latency and is a measure for the
congestion on the interconnection network.

When comparing the various benchmarks, significant
differences in variability can be observed. These can
usually be traced back to the source code. For instance,
radiosity computes an equilibrium distribution of
light, using an iterative algorithm. The speed of con-
vergence, and thus the number of iterations that are
needed, depend on the exact order certain computations
are made. This is again affected by the relative timing
of the different threads, which is not deterministic. The
total program runtime can therefore vary to a large
degree. This is visible in Figure 1: the number of user
instructions executed changed, showing that there was
not just variation in synchronization times, but also in
the computational part of the application. ocean.cont
on the other hand requires few synchronizations, and
thus experiences less variability. Another class of ap-
plications is represented by water.sp. It has a low
communication-to-computation ratio, and thus is not
affected much by changes in the network topology. Its
average runtime therefore changes little between archi-
tectures, but still very much so between runs. Memory
access latencies do change between architectures.
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Figure 3. Illustration of divergence among different simulation runs: packet latency (moving average over 10M cycles), for four simulations
with the same architecture but different initial conditions.
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Figure 4. A network is only statistically significantly better if its improvement of a performance metric is more that the variability of that
metric. Program runtime alone cannot make this distinction, L2 miss latency can.

Figure 2 plots the benchmark’s variability versus its
average runtime. In general, there is not much correlation
between both, so variability is clearly dependent on the
benchmark’s algorithm, not just on input size. Still, for
(much) longer programs we would expect them to have
less variability, and at least for radiosity this is
indeed the case.

In Figure 3 an illustration is given of the divergent
behavior of different simulation runs. All use the same
simulated architecture and initial conditions, but now
the placement of threads on the different processors was
changed – influencing the communication cost between
different threads. The graphs plot a moving average
of network packet latency. For barnes, divergences
seem to be concentrated into events about 60M cycles
apart. These can be traced back to different stages
in the benchmark, each with different communication
requirements, and followed by a global synchronization
step. cholesky and fft, on the other hand, have much
finer grained synchronization, and thus more points at
which variations can occur.

Usually, performance measurements are done to com-
pare different architectural implementations. For in-
stance, in this paper we compare the performance of a
mesh, torus and reconfigurable interconnection network.
Figure 4 shows all simulation results for some of the

benchmarks (ten measurements for each benchmark, net-
work combination), plotting two different performance
metrics – program runtime and L2 miss latency – for
the three types of network topology. Projection onto the
Y-axis, that is, looking only at program runtime, results
in an almost complete overlap of the mesh and torus
clusters for cholesky, the same thing happens with the
torus and reconfigurable networks with the fft bench-
mark. Clearly, even multiple measurements of program
runtime would not allow an accurate comparison of the
different networks. On the other hand, when looking at
the L2 miss latency, such a distinction is possible since
there is a clear separation between the clusters.

Overall, we can conclude that some low-level met-
rics have less variability than the total program run-
time. This makes them more reliable for quantizing
architectural performance improvements. Moreover, they
provide more insight into the reasons for an increase
or decrease in performance. On the other hand, they
do not really relate to the user experience such an
architecture will provide, which is more easily expressed
by metrics such as program runtime, frames per second
(for visual applications or games), or queries per sec-
ond (web or database servers). Also, some architectural
improvements do not help overall performance much,
as is the case for network improvements when only



applications with a low communication-to-computation
ratio (such as the water.sp benchmark) are run – this
effect will not show up on a low-level metric. Still, the
variability in some high-level performance metrics, in the
context of multicore and multiprocessor architectures,
can sometimes be such that their use is limited to a
mere illustration of improvements, rather than providing
a solid base for making scientific comparisons.

V. FIDELITY AND RELATIVE ACCURACY

When designing an experiment that is to compare
the performance of architectures, two properties can be
of importance. They relate to how the outcome of the
experiment, the measured value of for instance program
runtime or average miss latency (which are influenced by
variability), compares to the actual performance of the
architecture (which may be defined as the total runtime
of a given benchmark, averaged over an infinite number
of executions to cancel out the variability).

One property is fidelity: is the experiment able to
answer the question “is architecture A better than ar-
chitecture B?” For this, the experiment needs to pro-
vide a metric that changes monotonically with actual
performance, i.e., when the performance of A is higher
than that of B, the experiment always needs to yield
a value for A that is higher (or always lower) than
the measurement for B. In a noisy environment, where
the magnitude of the noise is as high as, or higher
than the absolute difference between both architecture’s
performances, this may not always be the case!

On the other hand, ignoring the presence of variability
for a moment, the low-level metrics in Figure 1 can
provide a good fidelity with respect to program runtime:
a network with a lower miss latency always results in a
shorter program runtime. Fidelity thus does not require
a one-to-one relation between measured value and actual
performance. Any monotonic relation, even a non-linear
one, suffices. In this case, an appropriate low-level metric
such as L2 miss latency, due to its lower variability, may
provide better fidelity of an architecture’s performance,
as expressed by the total runtime of a set of benchmarks,
than by measuring runtimes directly.

Another important property is relative accuracy, this
is the accuracy to which the experiment can predict
the magnitude of changes in the actual performance
between architectures. While an experiment with good
fidelity can only say that architecture A is better than B,
an experiment with high relative accuracy can reliably
say “how much better.” Here, a linear relation between
measurement and actual performance is desired. A sys-
tematic error is allowed though, as this will only reduce
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Figure 5. Measured relative improvements of program runtime (left)
and L2 miss latency (right) for cholesky.

the absolute accuracy but leaves relative accuracy intact.
Since the changes in performance are usually not very
high, however, a variability that has a small magnitude
compared to the absolute performance may suddenly
become very big when compared to an equally small
change in average performance. Variability can thus be
devastating for relative accuracy.

This is shown in Figure 5, which plots the relative
change in program runtime (left) and in L2 miss latency
(right) when changing the network topology, for the
cholesky benchmark. Since we have 10 measurements
for each network, there are 100 combinations that allow
us to compute a measured improvement between two
network architectures. Out of these 100 combinations,
we plotted the average, the standard deviation (µ ± σ),
and the minimum and maximum measurements. Note
that the variability in program runtime, for one network
architecture, was only about 5%. But comparing two
entities that are, on average, only 5% apart, and each
have a 5% error, results in a terribly low relative ac-
curacy! In this graph one has the luxury of averaging
over several simulation runs, it is therefore visible that,
when going from mesh to torus or from a torus to a
reconfigurable topology, there is an increase of about
5% or 2% in program runtime, respectively. However,
this conclusion would not have been possible using just
one simulation for each network: in such an experiment
the relative change could be anywhere between -3% and
+14% for the mesh to torus case. This range is not
much in the way of relative accuracy. Worse, the fact
that, if the initial conditions of both simulations proved
unfavorable, a negative number can be found, shows that
a single measurement of program runtime cannot even
provide the fidelity required to compare mesh and torus
networks (this can be seen by the fact that the number
0 is in the confidence interval: the outcome can be both
positive or negative). The L2 miss latency does a lot
better here: its variation is much lower, and the sign of
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Figure 6. Comparison of runtimes on mesh and torus networks, for pairs of simulations with the same initial conditions. Since variation
is also introduced by the difference in network architecture, variability cannot be canceled out in this way.

the improvement never changes. This is caused by the
fact that the difference between networks is a lot higher,
about 15%. Moreover, the variability in miss latency was,
at less than 5% of the absolute latency, lower than the
variability in program runtime.

Note also that there is no correlation between the
variations of executions with the same initial condition,
as is visible in Figure 6, so the variations do not cancel
each other out if comparisons would only be made
between runs with the same initial conditions.

VI. SOLUTIONS

A. Using statistics: characterizing variation

Alameldeen and Wood suggest in [2] to use statis-
tics in coping with variability: by performing multiple
simulations, with different initial conditions or small
perturbations in the architecture to trigger divergent be-
havior, variability can be characterized. Using confidence
intervals based on this variability, conclusions can be
made to within a preset level of certainty. Figure 7
gives an example of this approach. Up to 20 simulations
are performed for mesh and torus networks each. Using
the measured variability and Student’s t-distribution, the
95% confidence interval is computed. This means that,
with a certainty of 95%, the actual performance will be
inside the range shown, which is centered around the
average of a (small) number of measurements. If one
wants to conclude, with a probability of 95%, that the
torus architecture performs better than the mesh network,
the confidence intervals of both should not overlap.

When shown in this way, it becomes clear that not
all metrics behave in the same way. In this case, L2
miss latency allows statistically valid conclusions to be
drawn using much fewer measurements. The fact that
in some cases variability actually increases when doing
more simulations, as between 5 and 7 simulations of the
runtime of fft, may seem strange, but it is exactly due
to the fact that these graphs are based on a small number
of highly variable measurements. In fact, the seventh

simulation of fft on a torus network (the one with
lowest runtime), which is included in the graph only
from point seven on the X-axis onwards, had a much
longer execution time. This means that when only six
simulations would have been done, one could not get
an accurate value for the real variability of this type of
measurement. And imagine what the error would be if
simulation run number seven would have been the only
one that was made, and the conclusions of a research
paper were based solely on this one measurement!

Also bear in mind that the average difference in
performance between the two networks chosen for this
study is pretty high (around 10%). Often one likes to
make statements about the performance of architectures
or compiler options that represent much more subtle
changes. Here, much less variability can be tolerated, so
a much higher number of measurements must be made.

B. Low-level metrics

As has been shown above, certain low-level metrics
prove to be more reliable to quantize the effects of
certain architectural modifications, both because they
suffer less from variability, and because the same mod-
ification usually causes a larger change in (the right)
low-level metric than it does in program runtime. On
the other hand, the improvement in high-level metrics
(when measured correctly, i.e., using sufficient simu-
lation runs to both characterize the variability and to
obtain confidence intervals that do not overlap) should
be taken into account, to decide whether the architectural
improvement – which may seem significant at a low
level – actually has any effect on the global performance
of the benchmark in question. An example here is the
water.sp benchmark: Figure 1 shows that, although
changing the interconnection network does lower the L2
miss latency, the low communication-to-communication
ratio of this specific benchmark causes the optimization
to have no real effect on water.sp’s total runtime.
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Figure 7. 95% confidence intervals for mesh and torus networks after a number of simulations, for program runtime (left), IPC (center) and
L2 miss latency (right). Only when enough simulations are done such that the intervals no longer overlap, a valid statement can be made
on which of the network architectures is better.

C. Simulator detail versus input set size

As may be correctly noted, the fact that our simulator
uses an in-order processor model will influence the
performance results obtained. However, since we wanted
to study the effect of changes in the interconnection
network, one may argue that, as long as those microar-
chitectural properties visible to the interconnection net-
work (i.e., the L2 miss rate, the number of concurrently
outstanding L2 misses, etc.) are simulated correctly, the
load on the interconnection network will be more or less
correct, allowing us to draw (within a certain level of
accuracy) the correct conclusions. On the other hand,
using a simpler simulator can greatly reduce simulation
times. This allows one to use longer input sets, or
perform multiple simulations of a short input set, both of
which reduce variability and its associated inaccuracy.

We thus see the emergence of another trade-off:
that between the error introduced by a less-than-cycle-
accurate simulation model, and the error resulting from
runtime variability. When the available simulation time
is kept constant, several pairs of (simulator detail, input
set size) can be constructed. One of those pairs will have
the lowest combined error. We believe that for studies in
which the interaction between processors is large, such as
those where shared caches or interconnection networks
are investigated, the optimum may be surprisingly far to-
wards the low detail/large input set side. Further research
into this trade-off is necessary, however.

D. Matched-pair sample comparison

In [6], Wenisch et. al. propose SimFlex, a method-
ology for statistical sampling of execution-driven ar-
chitectural simulation. To avoid the warming up of
microarchitectural state before each sample, they first
run a quick functional simulation of each benchmark,
and construct at regular intervals flex points, these are
snapshots of selected microarchitectural state which can
be loaded before the execution of each sample. With

some care, this state can be made general enough to
apply to several proposed architectures – e.g., state for a
large cache can easily be converted to the initial state of a
smaller cache. Other, short-lived state such as that of the
reorder buffer can be reconstructed by a short warming
up period of only a few thousand instructions.

This methodology allows comparison of different ar-
chitectures through matched-pair samples: since the sim-
ulation of a sample starts by loading the state from a flex
point, the initial state is the same for each architecture
under test. This results in a situation similar to that in
Figure 6, but in this case, because the samples are very
short, there won’t be enough time for the simulations to
diverge. This should eliminate most of the variability.

This method actually seems most promising, since it
prevents variability – which needs to build up over time
– to come into play. At the same time it greatly reduces
simulation time. However, the technique only holds
insofar as the same flex points are valid for each microar-
chitecture under test. Some architectural enhancements,
such as widely diverging cache architectures, require
different state to be stored. Also, all possible influences
of the microarchitecture on the execution path of the
benchmark – including systematic ones – are removed,
which may not always be desirable. Finally, like all
sampling methods it runs the risk of choosing a non-
representative sampling set, which introduces its own
range of inaccuracies.

E. Alternative solutions

Other solutions may be to use traces, of executed
instructions, of memory references or of network pack-
ets. Here, the outcome of synchronization races is only
determined once (while recording the trace), which re-
moves this type of variability. The advantage is similar
to the use of flex points, i.e., variation in the execu-
tion path of the application is avoided since the same
path is recorded once and subsequently used for all



simulations. However, traces may not be useful for all
types of measurements, since they too ignore all kinds
of feedback between architecture and benchmark, which
may be important. Also, a single trace only exposes
the architecture under test to a single combination of
synchronization outcomes. A different trace, which in a
real system can occur with equal probability, might incur
other behavior of the architecture. Again, a multitude
of traces – representing the different scheduler and
synchronization decisions possible at runtime – may
need to be used, and the combined results interpreted.

Synthetic loads can be another option. For instance,
[12] introduces a model of synthetic network traffic that
is representable for the traffic patterns encountered on
real multiprocessor or CMP interconnection networks.
Since there are no synchronization issues here, its vari-
ability is much lower – even for simulation runs that
are much shorter than even a benchmark with a reduced
input set. Due to simplifications in synthetic loads, the
absolute accuracy, and even the relative accuracy, of
these solutions are not always very high, although their
fidelity is usually a lot better than that of execution-
driven simulation.

VII. CONCLUSIONS

Parallel applications, which are to become much
more prevalent following the broader adoption of multi-
core processors, have intrinsic non-determinism in their
execution. Their behavior can therefore change when
different initial conditions are presented, or when the
architecture on which the program is run varies even
slightly. Research into architectural improvements, based
on measurements of the runtime of parallel programs
on real systems or in simulations, should take these
variations into account. This prevents one from making
wrong conclusions when architectures with a perfor-
mance difference similar in magnitude to the inherent
variation in the performance metrics used, are compared.
While a definitive solution to this problem has yet to
be found, possible solutions may include (a combi-
nation of) the use of larger benchmark input sets or
performing multiple close-to identical simulations and
using statistics to characterize and average out variability.
When total simulation time is limited, gain can be found
in the use of low-level metrics (which can have less
variability, or a larger separation between architectures
under test), matched-pair sample comparison, or trading
off simulation detail for input set size.
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