
Near-Side Prefetch Throttling: Adaptive Prefetching
for High-Performance Many-Core Processors

Wim Heirman
Intel Corporation

wim.heirman@intel.com

Kristof Du Bois
Intel Corporation

kristof.du.bois@intel.com

Yves Vandriessche
Intel Corporation

yves.vandriessche@intel.com

Stijn Eyerman
Intel Corporation

stijn.eyerman@intel.com

Ibrahim Hur
Intel Corporation

ibrahim.hur@intel.com

ABSTRACT
In modern processors, prefetching is an essential component for
hiding long-latency memory accesses. However, prefetching too
aggressively can easily degrade performance by evicting useful data
from cache, or by saturating precious memory bandwidth. Tuning
the prefetcher’s activity is thus an important problem. Existing tech-
niques tend to focus on detecting negative symptoms of aggressive
prefetching, such as unused prefetches being evicted or memory
bandwidth saturation, and throttle the prefetcher in response.

We argue that these far-side throttling techniques are inefficient
because they require significant tracking state, and are reactive to
negative effects rather than being proactive. We propose an alterna-
tive technique which we coin near-side throttling, which works by
detecting late prefetches and tuning the prefetch distance to closely
track the point at which most prefetches are not late. Because late
prefetches are by definition useful, detecting late prefetches exclu-
sively suffices to detect and prevent useless prefetches as well. Our
solution is cheap to implement in hardware, includes throttling on
off-chip bandwidth saturation, applies to both hardware and soft-
ware prefetching, and can control multiple concurrent prefetchers
where it will naturally allow the most useful prefetch algorithm
to generate most of the requests. Through detailed simulation of
a many-core architecture running a wide range of sequential and
parallel applications, we show that our near-side throttling (NST)
proposal performs similar to the state-of-the-art feedback-directed
prefetching (FDP), even though it has a significantly lower imple-
mentation cost, can react more quickly to changes in application
behavior and is applicable to a more varied set of use cases.
ACM Reference Format:
Wim Heirman, Kristof Du Bois, Yves Vandriessche, Stijn Eyerman,
and Ibrahim Hur. 2018. Near-Side Prefetch Throttling: Adaptive Prefetch-
ing, for High-Performance Many-Core Processors. In International con-
ference on Parallel Architectures and Compilation Techniques (PACT ’18),
November 1–4, 2018, Limassol, Cyprus. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3243176.3243181

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PACT ’18, November 1–4, 2018, Limassol, Cyprus
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5986-3/18/11. . . $15.00
https://doi.org/10.1145/3243176.3243181

1 INTRODUCTION
In modern computer systems, both memory latency and off-chip
bandwidth have struggled to keep up with compute performance.
While caches can help exploit spatial and temporal locality, many
workloads have large data sets that do not fit in cache, and instead
have to rely on hardware and/or software prefetching to hide main
memory latency. This problem becomes especially important on
many-core high-performance processors, where cache sizes are
usually limited (in favor of core count) and memory latency is
higher because of a more complex network fabric and competition
for off-chip bandwidth. Significant research has gone into deter-
mining what to prefetch, resulting in several algorithms that detect
memory access patterns and predict future memory references, so
they can be prefetched ahead of time to hide (most of) the main
memory access latency from the application. Popular examples
include stream prefetchers [6, 12, 15], the global history buffer [23],
indirect prefetching [32], and many others [13, 16, 17, 22].

In addition to generating the addresses to prefetch, an important
question is when to prefetch them. Typically, when looking at a
memory access stream, the application has reached one point on
the stream and the prefetcher is generating requests at some future
point, ahead of the application by a given distance. This prefetch
distance must be high enough such that prefetch requests are timely,
i.e., they are made sufficiently ahead of time such that the request
has completed by the time the application makes its demand request
for that cache block. If not, the prefetch is considered late. However,
prefetching too far ahead can be problematic, for two main reasons.
First, the prefetcher’s prediction may be wrong. Typically the error
increases for predictions made further out, the prefetch distance
should therefore be limited to the range where prediction accuracy
is good. Wrong prefetches waste both off-chip memory bandwidth,
and displace useful data from the caches. Second, if a cache block
(even when correct) is prefetched too far ahead, it will be displaced
from the cache, by demand misses or by more prefetches, before
the application has a chance to use it (useless prefetch).

Different applications can have contrasting behavior when vary-
ing the prefetch distance. Figure 1 plots application performance,
relative to a baseline that has no L2 prefetching, for a selection
of applications and prefetcher distances. (See Section 3 for more
methodological details.) Some applications, such as HPCG, benefit
from prefetching and perform best with an aggressive prefetcher.
For others, such as cactus, the prefetcher is not able to bring in
useful data and instead saturates memory bandwidth with useless
prefetches. Finally, some applications such as mcf benefit from a

https://doi.org/10.1145/3243176.3243181
https://doi.org/10.1145/3243176.3243181

PACT ’18, November 1–4, 2018, Limassol, Cyprus W. Heirman et al.

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

HPCG cactus mcf

S
p
e
e
d
u
p

distance
1
3
8

16
32

Figure 1: Impact of varying prefetch distance on application
performance.

limited prefetch distance but see reduced performance beyond a
certain distance. These differences between applications, and inside
applications that exhibit phase behavior, make it difficult to tune a
prefetcher with a single set of parameters. In addition, the optimal
distance can depend on data locality (whether the data resides in a
last-level cache, or in fast on-package versus slow off-package mem-
ory) and on the bandwidth available to each core in a many-core
environment (e.g., when not all cores are active, memory band-
width pressure is lower so there is a higher tolerance for useless
prefetches). A dynamic approach is therefore needed, which should
be able to detect the prefetcher’s usefulness at runtime, and reign
in the prefetcher or let it run ahead as appropriate for the current
application or phase.

Existing solutions tend to focus on detecting the effect of wrong
prefetching directly. A common approach, followed by feedback-
directed prefetching (FDP) [29] and others, instruments the cache
and adds a bit to each cache block to indicate it was brought in by
prefetching, and clears the bit whenever the application uses that
cache block. If any block is evicted with the bit still set, a useless
prefetch is detected, which serves as input to algorithms to throttle
the prefetcher. The same can be done when memory bandwidth is
saturated. We call these techniques far-side throttling, as they keep
the prefetch distance generally at a high level, and reduce it only
in reaction to negative prefetching effects.

We propose an alternative way of looking at prefetch throttling,
which we coin near-side throttling, that keeps the prefetch distance
as low as possible while still retaining all of the prefetcher’s benefits.
This tends to operate the prefetcher in its most accurate range, and
minimizes cache pollution and memory bandwidth wastage. We ar-
gue that near-side throttling makes more efficient use of bandwidth,
which on today’s many-core processors is becoming more and more
scarse. Near-side throttling is implemented by matching demand
accesses with outstanding prefetch requests, and hence detecting
late prefetches. A control loop then adapts the prefetch distance to
a level where the amount of late prefetches is still detectable, but
harmlessly low. This approach has several advantages. First, hard-
ware implementation is cheap: outstanding prefetches can be found
in the miss status holding register (MSHR) which is an existing
structure, and demand accesses are already matched to it to avoid
duplicate memory accesses. We add just one bit per MSHR entry to
tag prefetches; no additional tracking state is needed in the caches.
Second, this technique can respond to application phase behavior

much more quickly: late prefetches are detected after at most a
time equal to the memory access latency (less than one microsec-
ond), whereas useless prefetches need to be evicted before they
can be detected as such (which can take up to several milliseconds
for large caches). Finally, near-side throttling detects bandwidth
saturation locally (through memory latency), so no global coordi-
nation is needed between the per-core prefetchers in a many-core
architecture, or even between multiple prefetch algorithms on a
single core.

In this paper we make the following contributions:

• We introduce the concept of near-side prefetch throttling
(NST) and discuss its implementation. We estimate hardware
storage overhead and show that it is considerably cheaper to
implement than traditional far-side throttling, exemplified by
feedback-directed prefetching (FDP) as a the state-of-the-art
technique.
• We evaluate near-side throttling for a wide range of applica-
tions and show that it can find the optimal prefetch distance,
both per workload and in each application phase. NST even
slightly outperforms FDP (9.6% vs. 9.4% speedup over no
prefetching, respectively).
• We study the sensitivity of our implementation and show
stable behavior over a wide range of parameters, negating
the need for machine-specific tuning.
• We show that near-side throttling can be extended to mul-
tiple prefetchers per core, where it will naturally throttle
those prefetchers that yield no useful requests, allowing for
a diverse set of prefetch algorithms to co-exist.
• We apply near-side throttling to find the optimal distance
when doing software prefetching, eliminating the need for
tuning and achieving performance portability.

2 NEAR-SIDE PREFETCH THROTTLING
The aim of prefetch throttling is to allow the prefetcher to run
ahead far enough such that prefetches are timely, but prevent it
from running too far ahead into a region where the prefetch al-
gorithm can no longer accurately predict the application’s access
pattern which leads to useless prefetches. An additional concern is
to prevent prefetches from hogging all available off-chip memory
bandwidth which slows down demand misses.

The basic concept of near-side prefetch throttling (NST) is to
detect late prefetches, and tune the prefetcher aggressiveness such
that the amount of late prefetches is balanced around a small but
non-zero fraction of all prefetches. Because late prefetches — which
occur when an application (demand) access hits on an outstand-
ing prefetch request — are by definition useful, reigning in the
prefetcher to a point where the prefetches are (almost) just-in-time
automatically prevents overly aggressive prefetching which is more
likely to generate useless prefetches. Maintaining a small fraction
(e.g., 10%) of late prefetches does not harm performance as long as
the late prefetches are only late by a small amount, i.e., the demand
access is made only just before the prefetch request completes. In
practice, this means that even late prefetches hide most (all but a
few clock cycles) of a long-latency off-chip memory access (totaling
hundreds of cycles).

Near-Side Prefetch Throttling PACT ’18, November 1–4, 2018, Limassol, Cyprus

Symbol Description
MSHR bits (per entry and per prefetcher)

px Request was launched by prefetcher x
Counters (per prefetcher)

ax All prefetches
lx Late prefetches

Configuration parameters Value
Wpos Window size while increasing distance [10 µs]
Wneд Window size while decreasing distance [5 µs]
Fmax Maximum fraction of late prefetches [10%]
Hmax Hold time (in windows) until decrease [10]
Rmin Minimum prefetch rate [1]
Rmax Maximum prefetch rate [8]

Algorithm variables (per prefetcher)
Rx Current prefetch rate
Wx Remainder of current window
Hx Elapsed hold time
Fx Late prefetch fraction

Machine parameters
L Uncontended main memory latency (cycles)

Table 1: Notations used in Section 2.

Tuning the late prefetch fraction around a fixed point also works
when the application changes its behavior. When the application’s
memory requests come closer together, the late prefetch fraction
will increase and NST will increase the prefetch distance. When the
distance is larger than needed no late prefetches will be detected
and NST reigns in the prefetcher to ensure the late prefetch fraction
remains at its operating point. In more complex scenarios where
there are both a high fraction of late and useless prefetches, NST
will extend the prefetch distance to reduce late prefetches as long
as off-chip bandwidth is not saturated.

Our proposed implementation of near-side prefetch throttling
consists of some extra state in the processor’s miss status holding
register (MSHR) and a state machine. The MSHR tracks outstand-
ing cache misses triggered by both demand requests (application
loads and stores), and prefetches; the extra state allows for detec-
tion of late prefetches. The state machine periodically computes
the fraction of late prefetches, and updates the optimal prefetch
distance.

2.1 Detecting late prefetches
Late prefetches occurwhen the core accesses a cache block onwhich
a prefetch request is still outstanding. These prefetch requests are
by definition useful (the application does access the same address),
but should have been issued earlier to allow the prefetch to hide
the full memory latency from the application.

We extend the MSHR with one extra bit per entry (the p bits, see
Table 1 for a summary of notations used throughout this section).
Two counters are kept: one for counting all prefetches issued (a),
and another one for counting late prefetches (l). Each time a cache

Clock tick

W = W - 1

W > 0

No update

Yes

Read a and l

Compute F =

Reset a and l

No

F > Fmax

R = min(R + 1, Rmax)
H = 0

W = Wpos

Yes

H < Hmax

No

H = H + 1
W = Wpos

Yes

R = max(R - 1, Rmin)
W = Wneg

No

Update rate for prefetcher to R

l
a

Figure 2: Flowchart of the prefetcher control algorithm.

miss occurs and an MSHR entry is allocated, the entry’s p bit is
initialized depending on whether the request was a prefetch (p bit
is set) or another type of request (bit is cleared). When p is set, the
a counter is incremented.

The l counter is incremented as part of the existing cache miss
handling logic. An application load or store that misses the cache
triggers a check of the MSHR to filter out duplicate requests to the
same cache block. When there is an MSHR match, we now check
whether the matching entry’s p bit is set. If so, the l counter is
incremented and the p bit is cleared.

2.2 Determining prefetch rate
The prefetch rate is updated everyW clock cycles, based on the val-
ues of the a and l counters using the algorithm in Figure 2. First, the
fraction of late prefetches F = l/a is computed and both counters
are reset. As long as the fraction is larger than the threshold Fmax ,
the current prefetch rate R is increased (up to Rmax). If there is no
significant amount of late prefetches, R is held constant for Hmax
update windows. After that, R starts to decrement down to Rmin ,
or until the late prefetch fraction again exceeds Fmax . It is possible
to decrement R faster than it is incremented by changing the ratio
ofWpos toWneд . The algorithm keeps R just above its minimum
required value, this ensures there are only few late prefetches, but
also avoids excessive or early prefetching.

Figure 3 illustrates the behavior of the algorithm through time.
The instantaneous optimal prefetch distance is shown as a dotted
line, and varies through time depending on memory latency, access
pattern, etc. Once the current prefetch rate (R, solid line) is smaller
than the optimal prefetch distance, late prefetches start to occur

PACT ’18, November 1–4, 2018, Limassol, Cyprus W. Heirman et al.

time
optimum prefetch degree
current prefetch degree

21 3

p
re

fe
tc

h
d

eg
re

e

Figure 3: Illustration of the behavior through time.

(gray areas). At time ①, the memory access pattern shifts and a
larger prefetch distance is needed. At this point, late prefetches
occur and the algorithmwill increaseR as long as the late prefetches
persist. After R was raised high enough, it then periodically (every
Hmax windows) tries to lower R to see if conditions have changed.
The first time this is attempted is at time ②, where conditions did
not allow for a lower prefetch distance. Here,R reverts to its original
value in the next window. By time ③ the current optimal prefetch
distance did reduce soR is decremented, andwill eventually stabilize
at just above the optimal distance.

2.3 Detecting bandwidth saturation
When the application is bandwidth bound, the processor’s off-
chip memory channels will saturate and memory latency (through
queueing delays) increases. In this situation, issueing more
prefetches or launching them earlier will not help as this only
increases queueing delays; moreover it increases the probability of
generating wrong prefetches which will aggravate the bandwidth
pressure. From the point of view of the MSHR, memory accesses
that have been in theMSHR for significantly longer than the normal
access latency are indicative of queueing delay, and hence should
not trigger NST to increase the prefetch rate even if they result in
late prefetch hits.

To throttle the prefetcher when off-chip bandwidth is saturated,
we simply clear all p bits periodically, using an interval that is
slightly longer than the uncontended memory access latency (L).
We do not explicitly measure off-chip bandwidth consumption,
nor is there any need to coordinate bandwidth measurements or
prefetch throttling between cores or other agents on the same
processor chip — the fact that memory latency increased beyond
a threshold value (we used 2 · L in our experiments) is a simple,
localized indication that bandwidth saturation has occurred.

By clearing allp bits periodically (every 2L clock cycles), requests
with a latency longer than 2L, which are affected by queueing de-
lays, can no longer count as late prefetch hits. This will reduce
the late prefetch fraction, and therefore automatically reduce the
prefetch distance, in the face of bandwidth saturation. In uncon-
tended scenarios, it is possible for p bits to be cleared unnecessarily,
depending on when the prefetch request is launched in relation
to the edge of the clearing interval. An uncontended request with
latency L has a 50% chance of having its p bit cleared. However
this is not a problem as we can simply take this into account when
selecting the Fmax parameter. Moreover, our technique does not

Prefetcher Rx 1 2 3 4 5 6 7 8

Stream [5] distance 1 2 4 8 12 16 24 32
GHB [23] width:depth 1:1 2:1 2:2 3:2 4:3 4:4 6:4 6:6
ISB [13] distance 1 2 3 4 5 6

Table 2: Potential mapping between prefetch rate and
prefetcher-specific settings.

require a direct measurement of the latency of individual requests,
saving the associated counters and timing circuits this measurement
would entail.

2.4 Multiple prefetchers
In a many-core processor, the prefetchers in each core can be con-
trolled independently based on their own specific late prefetch
fraction. This allows for heterogenous applications or multi-
programming workloads, and will tune each prefetcher’s distance
to the specific access pattern it is experiencing. In addition, we
can extend near-prefetch throttling to support multiple hardware
prefetchers per core, or to simultaneously control both a software
prefetch distance and one or more hardware prefetchers.

To support multiple prefetchers, each MSHR entry contains mul-
tiple p bits, one per prefetcher (denoted as px bits, where x denotes
either software prefetches or one of the hardware prefetchers). The
all and late prefetch counters are also duplicated per prefetcher
(ax and lx). When there is an outstanding prefetch request for a
given address (MSHR entry has px set), and another prefetcher (y)
predicts the same address, this request is matched in the MSHR
and we set the entry’s py as well and increment ay . If the address
proves useful (when an application request hits this MSHR entry),
multiple px bits can be set and each corresponding prefetcher’s
lx counter is incremented, after which all of the entry’s p bits are
cleared. This ensures that, when multiple prefetchers predict the
same block, both will get credit if the block proves useful.

Finally, the rate for each prefetcher is determined independently,
based on the values of its ax and lx counters using the algorithm in
Figure 2. This way the most useful prefetch algorithm is allowed to
make most of the prefetch requests, while algorithms that do not
generate useful prefetches are throttled. This makes it possible to
combine different prefetch algorithms that each perform well on
some applications, but minimize the activity of those prefetchers
that are not applicable to the current application or phase.

2.5 Computing prefetch settings
While the variable Rx provides a per-prefetcher indication of its
desired prefetch rate, different prefetch algorithms have different
ways of controlling them. Therefore the Rx value is converted using
a mapping function that depends on the type of prefetcher. For a
stream prefetcher, the rate can be controlled by setting the prefetch
distance, this is the number of consecutive blocks to fetch for each
stream. The mapping can be made non-linear, so the prefetch dis-
tance goes up slowly for small values of Rx while moving more
quickly through larger distances. More complex prefetch algorithms
can have multiple parameters that are all controlled by the Rx

Near-Side Prefetch Throttling PACT ’18, November 1–4, 2018, Limassol, Cyprus

Component FDP [29] Near-side throttling
Detecting late prefetches
1 bit per L2 MSHR 4 B 4 B
(32 MSHRs)
Detecting useless prefetches
1 bit per L2 cache block 2048 B —
(L2 capacity = 1024 KB)
Additional counters
All prefetches 4 B 4 B
Late prefetches 4 B 4 B
Useless prefetches 4 B —
Demand misses 4 B —
Demand misses caused 4 B —
by prefetcher
Internal state algorithm 12 B 16 B
Total 2084 B 28 B

Table 3: Storage overhead per prefetcher.

variable. We used the mapping from Table 2 for the experiments
described later in this paper.

Note that a given prefetcher should never be completely disabled:
near-side throttling needs to see an amount of late prefetches before
it can decide to increase the activity for that prefetcher, so if a
prefetcher is turned off entirely the algorithmwill get stuck inR = 0.
We therefore setRmin to one rather than zero. It is possible tomostly
disable a prefetcher, by implementing the lowest rate to generate
only a small fraction of the usual prefetch rate. This reduces the
amount of useless prefetches to a harmlessly low value while still
allowing for the late prefetch fraction to bemeasured. This approach
can be used on for instance an indirect prefetcher [32], which can
be very useful on some applications but will not work at all if it is
not operating on pointer data.

2.6 Hardware overhead
Table 3 provides an overview of the total storage overhead of near-
side prefetch throttling per prefetcher (see Section 3 and Table 5
for more details about our experimental setup). We compare our
proposal to Feedback Directed Prefetching (FDP) [29], which is the
work mostly related to ours.

Near-side prefetch throttling requires one bit per MSHR entry.
For a 32-entry MSHR, this adds up to a total of just 4 bytes. Also,
we need two additional registers to count the number of total and
late prefetches. As these counters are reset at the end of a time
window (which has a length in the order of 10 µs, see Figure 2), a
32-bit wide register is enough to prevent overflow. The internal
state of our algorithm consists of four variables, which are also 32
bit wide, resulting in a storage overhead of 16 B. The total storage is
limited to 28 B per prefetcher, and scales linearly with the number
of prefetchers.

FDP requires one bit per L2 cache block to keep track of blocks
brought in by the prefetcher. For an L2 cache with a capacity of

Benchmark Input size Cores
(OpenMP×MPI)

SPEC CPU2017
* ref 1
APEX

GTCP A.txt 8 (4×2)
HPCG 64×64×64 8 (4×2)
Meraculous bwa-25pct.list.ufx.bin 2
MILC 6×6×18×6 8 (4×2)
MiniDFT small.in 1
MiniPIC 10×10×10 8 (4×2)
PENNANT leblancbig 8 (4×2)
SNAP in_s 8 (8×1)
UMT grid2MPI_3x6x8.cmg 8 (4×2)
Caffe

Intel Caffe AlexNet 72

Table 4: Workload details.

1024 KB, this leads to a non-negligible storage overhead of 2048 B.
Moreover, FDP detects late prefetches with a similar approach to
ours and needs five additional counters. The state of the algorithm
is limited to three 32-bit variables. In total, the storage overhead
of FDP is 2084 B. This overhead scales linearly with the amount of
prefetchers, and with cache capacity.

3 EXPERIMENTAL SETUP
We evaluate near-side prefetch throttling on the SPEC CPU2017 [3]
suite as well the APEX benchmarks [1] (a selection of HPC work-
loads) and Intel Caffe [2] (a machine learning workload). Table 4
provides more details on these workloads, the input sets, and the
number of OpenMP threads and MPI ranks used for each workload.

The SPEC CPU workloads execute up to several trillion instruc-
tions each, so we apply a sampling strategy where we select ten
one-billion instruction slices, spaced evenly throughout the run
for each workload and input combination. We use the ref inputs,
and simulate all input sets. When reporting speedup, we aggregate
these multiple inputs per application by summing their runtimes.
The APEX benchmarks consist of a set of hybrid MPI+OpenMP
real-world HPC applications used by the NERSC supercomputing
center. We use a shared-memory MPI implementation, running on
a single node. We use the small problem sizes, which is intended
for node level performance analysis, and simulate only the parallel
part of the application. For some applications, even the small prob-
lem size is too large to simulate in a reasonable amount of time,
therefore we further reduced problem sizes or created a kernel that
is representative for the execution of the application (this is the
case for MiniDFT and Meraculous). Intel Caffe is a deep learning
framework [26], we configure AlexNet [18] as neural networks, and
use the ImageNet [8] dataset. We simulate two iterations of infer-
ence, the first iteration to warm up caches and branch prediction
structures, and report on the second iteration.

We use an internal many-core simulator derived from Sniper [7]
to model a high-performance many-core architecture, inspired by

PACT ’18, November 1–4, 2018, Limassol, Cyprus W. Heirman et al.

Component Parameters
Core 72× 1.5 GHz, 2-way OOO, 72-entry ROB
Branch predictor hybrid local/global predictor
L1-I 32 KB, 4 way, 1 cycle access time
L1-D 32 KB, 8 way, 1 cycle access time
L1-D prefetcher IP-indexed, 256 entries
L2 cache 1024 KB shared per tile, 16 way, 18 cycle
L2 prefetcher • stride-based, 32 streams, degree 3

• global history buffer, 1024 entries
• irregular stream buffer

Coherence protocol directory-based MESIF, distributed tags
On-chip network 6×6 mesh, 2 cores per tile, 1 cycle per hop

32 GB/s per link per direction
Memory controller FR-FCFS scheduling, line-interleaved mapping,

closed-page policy
On-package memory 16 GB MCDRAM, 8 channels, 400 GB/s total

Table 5: Simulated architecture details.

Intel’s Xeon Phi 7290 (Knights Landing) processor [28], see Table 5
for details. To keep simulation times feasible, we simulate either
one, eight, or all 72 processor cores, depending on the workload as
indicated in Table 4. For simulations that do not use the full chip,
we rescale memory bandwidth, mesh topology, and (for single-core
runs) L2 cache capacity. This way, we ensure the per-core band-
width and cache capacity correspond to their full-chip equivalent.
This makes our results representative for running SPEC_rate ac-
cross the full chip, or filling the chip withmoreMPI ranks (assuming
a weak scaling problem) for parallel workloads.

Our baseline results have only the L1-I and L1-D prefetchers
enabled. We then enable one or more L2 prefetchers, and for each
workload plot performance relative to this baseline. Unless men-
tioned otherwise, we use the L2 stride prefetcher and the default
values from Table 1 to configure the near-side throttling mecha-
nism. The stride prefetcher has a degree of three, meaning that it
will launch three new prefetch requests on every hit — until the
prefetcher has run out to its maximum configured distance away
from the application’s last access at which point it will revert to
making a single new request per hit. The distance is set statically
or through a throttling mechanism and is expressed as a multiplier
for the stride of a stream. Our simulator tags prefetched blocks
in the cache so we can report on useless prefetching, although
this information is not used by the near-side throttling algorithm.
For comparison, we also implemented feedback-directed prefetch-
ing (FDP) using the algorithm and default configuration values
from [29].

4 RESULTS
4.1 Performance
We begin by evaluating the speedup obtained by prefetching, com-
puted as the baseline runtime (no L2 prefetcher) divided by run-
time with the L2 stride prefetcher enabled, for a range of static
prefetch distances and two dynamic throttling mechanisms: near-
side prefetch throttling (NST, our proposal) and feedback-directed
prefetching (FDP, the state of the art). Figure 4 plots the results for

all workloads. As we saw in Figure 1, workloads tend to respond
to an increasing prefetcher distance in three ways: either prefetch-
ing should be as aggressive as possible (e.g., parest, xalancbmk,
and most of the APEX workloads), prefetching consistently causes
degradation (cactus, fotonik3d), or there is some optimal distance
that causes a speedup but after which additional prefetches cause
performance degradation (bwaves, mcf, GTCP). In most cases, both
NST and FDP are able to match the best static optimum for each
specific workload and in some cases outperform it (e.g., bwaves)
when the optimum changes depending on the input set or because
of application phase behavior.

To explain why this happens, Figure 5 plots the amount of late
(top) and useless (bottom) prefetches, both normalized to the total
number of prefetches issued. Late prefetches load useful data, but
are not generated early enough to overlap the full latency. In these
cases, increasing the distance to prefetch further ahead of the ap-
plication can help. In HPCG for instance, a distance of one results
in a late prefetch fraction of 93% and very limited benefit over no
prefetching. Increasing the distance to 32 reduces the late prefetch
fraction to 7.3% and results in a performance benefit of over 50%
compared to the baseline. Here, near-side throttling is able to detect
the late prefetches and responds by increasing the distance to the
maximum configured value of Rmax with distance 32.

In contrast, GTCP sees only a small amount late prefetches, but
suffers from large amounts of useless prefetching due to its irregu-
lar access patterns — a distance of one already incurs 35% of useless
prefetches which increases to 80% with a distance of 32. Because
these useless prefetches consume memory bandwidth that could
have been used by the application, performance degradation oc-
curs (beyond a distance of eight, GTCP saturates off-chip memory
bandwidth). In this case, near-side throttling detects a late prefetch
fraction that never exceeds the threshold of Fmax = 10% and re-
duces the prefetch distance to its minimum setting of one.

Other workloads such as mcf perform best with a middle-of-the-
road prefetch distance that balances some late prefetches with a
low amount of useless prefetches. Figure 5 shows that for distance 8
and beyond, the amount of late prefetches is minimized, but that
useless prefetches go up at the same time. Hence, the static results
indicate mcf performs best with a distance of around 8. In fact, our
dynamic algorithm outperforms the static options, at an average
distance of 10.7. Note that this prefetch distance retains a certain
amount of late prefetches (remember that the dynamic algorithm
tunes the distance to generate about 10% late prefetches), but these
are not necessarily detrimental to performance: even a prefetch
that is late by one cycle is still counted as late, but has a negligible
performance penalty given that most of the latency (which can be
hundreds of cycles for an off-chip memory access) is still hidden
from the application.

On average, a static prefetch distance of eight provides the best
results, with a speedup over no prefetching of 6.6% albeit with large
variations (and often significant degradation) between individual
workloads and input sets. Near-side prefetching outperforms the
static optimum, providing a speedup of 9.6%; which is similar to
feedback directed prefetching’s 9.4% yet NST has a much smaller
implementation cost.

Near-Side Prefetch Throttling PACT ’18, November 1–4, 2018, Limassol, Cyprus

0.6

0.8

1.0

1.2

1.4

1.6

blender

bwave
s

ca
ctu

s
ca

m
4

deepsje
ng

exc
hange2

foto
nik3

d
gcc

im
agick lbm

leela
m

cf
nab

nam
d

om
netp

p

pare
st

perlb
ench

povr
ay

ro
m

s
wrf

x2
64

xa
lancb

m
k xz

GTCP
HPCG

Mera
cu

lous
MILC

MiniD
FT

MiniPIC

PENNANT
SNAP

UMT

AlexN
et

Geom
ean

S
p

e
e
d

u
p

distance 1 3 8 16 32 NST FDP

Figure 4: Speedup for static prefetch distances, near-side throttling (NST) and feedback-directed prefetching (FDP). Dynamic
throttling performs close to each workload’s static optimum, and outperforms a global static optimum.

0%

20%

40%

60%

80%

100%

blender

bwave
s

ca
ctu

s
ca

m
4

deepsje
ng

exc
hange2

foto
nik3

d
gcc

im
agick lbm

leela
m

cf
nab

nam
d

om
netp

p

pare
st

perlb
ench

povr
ay

ro
m

s
wrf

x2
64

xa
lancb

m
k xz

GTCP
HPCG

Mera
cu

lous
MILC

MiniD
FT

MiniPIC

PENNANT
SNAP

UMT

AlexN
et

Geom
ean

La
te

 p
re

fe
tc

h
e
s

distance 1 3 8 16 32 NST FDP

0%

20%

40%

60%

80%

100%

blender

bwave
s

ca
ctu

s
ca

m
4

deepsje
ng

exc
hange2

foto
nik3

d
gcc

im
agick lbm

leela
m

cf
nab

nam
d

om
netp

p

pare
st

perlb
ench

povr
ay

ro
m

s
wrf

x2
64

xa
lancb

m
k xz

GTCP
HPCG

Mera
cu

lous
MILC

MiniD
FT

MiniPIC

PENNANT
SNAP

UMT

AlexN
et

Geom
ean

U
se

le
ss

 p
re

f.

distance 1 3 8 16 32 NST FDP

Figure 5: Late prefetch fraction (top), and useless prefetch fraction (bottom), relative to the total number of prefetches.

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

data conv1 norm1 conv2 conv3 conv4 conv5 fc6

0
10
20
30
40
50

La
te

 p
re

f.
 (

%
)

0

10

20

30

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

D
is

ta
n
ce

Time (sec)

Figure 6: Behavior of near-side throttling through time
while running AlexNet.

4.2 Dynamic behavior
When an application contains phase behavior, dynamic prefetching
can select the optimal prefetch distance not just for the application
as a whole but for each individual phase. Figure 6 plots the behavior
of AlexNet through time over the course of one iteration, using

near-side throttling to control the prefetcher distance. The markers
at the top of the figure indicate the different layers of the AlexNet
deep learning network, the timings of which were obtained by
instrumenting the Caffe binary. From top to bottom, the graphs
plot per-core IPC, the fraction of late prefetches, and the selected
prefetch distance. The convolution layers conv1 and conv2 are
data-intensive compute phases with linear accesses, here the stride
prefetcher is able to generate useful prefetches and is set to its
maximum distance. The later convolution layers conv3. . .conv5
operate on much smaller data sets that are mostly cache-resident,
after an initial burst of cache misses (during which the prefetch
distance is increased temporarily) themiss rate reduces significantly.
A relatively high fraction of late prefetches remains (>10%), but
this misleading because the prefetch rate is so low (often less than
10 prefetches per update interval). Here, NST does not increase the
prefetch distance because the bursts of late prefetches are alternated
with long periods without prefetcher activity during which the
distance reduces to its minimum value.

In contrast, FDP evaluates the prefetcher settings only once every
8,192 cache misses, which is 100× slower than the update interval of
NST. FDP therefore does not see the intra-iteration variations of this
workload and keeps the prefetcher distance at its most aggressive
setting of 32, resulting in a 20% higher prefetch rate without an
increase in useful prefetches — wasting off-chip bandwidth during
some of the workload phases.

PACT ’18, November 1–4, 2018, Limassol, Cyprus W. Heirman et al.

0.8

1.0

1.2

1.4

1.6

0.2% 1% 10% 50%

S
p
e
e
d
u
p

Late prefetch fraction threshold (Fmax)

HPCG
SNAP
GTCP

Figure 7: Speedup of NST for a range of Fmax values.

0.8

1.0

1.2

1.4

1.6

10 µs 100 µs 1 ms 10 ms 100 ms

S
p
e
e
d
u
p

Window size (Wpos)

HPCG
SNAP
GTCP

Figure 8: Speedup of NST for a range ofWpos values.

4.3 Sensitivity analysis
When introducing an algorithm that should automatically tune a
system parameter, it is not desirable to require a set of new tuning
parameters that need to be set optimally to make the algorithm
work well as this just moves the tuning effort, rather than being
able to avoid it. While our algorithm does contain a number of new
parameters, most notably Fmax and the window sizesWpos and
Wneд , we show the algorithm retains its optimal behavior over a
wide range of settings. This means there is no need to tune these
parameters to individual systems or applications.

Figure 7 plots the application speedup, for a representative se-
lection of workloads, while changing the threshold value for late
prefetches. We used a value of Fmax = 10% for all results shown ear-
lier, but now sweep over a range of 0.2%–50%. A very large threshold
(>10%) retains too many late prefetches even in stable conditions,
and causes performance degradation. Lowering the threshold be-
low 2% makes the algorithm too aggressive even in the presence of
unavoidable late prefetches. A value of Fmax between 2% and 10%
is able to provide optimal working point for most applications.

In Figure 8 we explore the size of the update window. The length
of this window should balance the need to make a reliable mea-
surement of the current application behavior, while being short
enough to be able to react to changes in application phase behavior.
We maintain a constant ratio between the positive and negative
windows (used while increasing or decreasing the distance, respec-
tively) ofWpos = 2 ·Wneд , and sweepWpos over a range between
10 µs and 100 ms. Very short intervals (<10 µs) do not contain
enough completed prefetches (off-chip memory latency is typically
a few hundred nanoseconds) to make a useful measurement. Be-
yond a window of 1 ms the algorithm becomes too slow to react
to application phase changes. Between 10 µs and 1 ms is a wide
range that provides the best trade-off. We usedWpos = 10 µs and
Wneд = 5 µs for the results in this paper. Note that techniques that

(a) GHB

0.8

1.0

1.2

1.4

1.6

GT
CP

HP
CG

Me
ra
cu
lou

s
MI
LC

Mi
niD

FT

Mi
niP

IC

PE
NN
AN
T
SN
AP UM

T

Ge
om

ea
n

S
p
e
e
d
u
p

1:1
2:2

3:3
4:4

5:5
6:6

NST

(b) ISB

0.8

1.0

1.2

1.4

1.6

1.8

2.0

GT
CP

HP
CG

Me
ra
cu
lou

s
MI
LC

Mi
niD

FT

Mi
niP

IC

PE
NN
AN
T
SN
AP UM

T

Ge
om

ea
n

S
p
e
e
d
u
p

1
2

3
4

5
6

NST

Figure 9: Speedup of NST applied to the GHB and ISB
prefetchers.

rely on measuring useless prefetches such as FDP, require update
windows that are in the order of several milliseconds, as that is the
average lifetime of a cache block in our experiments. This makes
far-side techniques respond much slower to aplication phases than
near-side throttling.

4.4 Modern prefetchers
Thus far we evaluated NST with a simple stride prefetcher, where
there is a natural relation between timeliness and accuracy through
the distance parameter: prefetching with a higher distance increases
timeliness of strided access patterns, but at the same time reduces
accuracy on those access patterns that consist of short strides or
random accesses. Many modern prefetcher algorithms have been
proposed that provide higher accuracy. Near-side throttling can
be applied advantageously to these newer prefetchers as well,
as seen in Figure 9. We apply NST to the Global History Buffer
prefetcher [23] (GHB, top) and Irregular Stream Buffer [13] (ISB
, bottom) prefetchers and show results for the APEX benchmark
suite (other workloads behave in a similar manner). Whereas the
stride prefetcher caused degradation of GTCP at higher distances,
these newer prefetch algorithms do not have this disadvantage.
Still, applying NST to them allows us to approach, and in some
cases improve on the statically optimum prefetch distance for each
workload.

4.5 Multiple prefetchers
Thus far the L2 prefetcher consisted of a single stride-based prefetch
algorithm. Near-side throttling is able to control multiple prefetch-
ers, andwill naturally allow themost accurate algorithm to issue the
largest number of prefetch requests, during each application phase.

Near-Side Prefetch Throttling PACT ’18, November 1–4, 2018, Limassol, Cyprus

libquantum

1 3 8 16 32

Stride

1:1

2:2

3:3

4:4

5:5

6:6

G
H
B

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

soplex

1 3 8 16 32

Stride

1:1

2:2

3:3

4:4

5:5

6:6

G
H
B

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Figure 10: Combination of stride and GHB prefetcher.

For the results shown in Figure 10, we combine a stride prefetcher
with a global history buffer based prefetcher [23] at each L2 cache,
and plot the speedup (over the baseline with only L1 prefetchers)
for a few example applications. We sweep the stride prefetcher
distance between 1 and 32, while simultaneously sweeping over
the GHB’s parameters (width : height) from 1 : 1 to 6 : 6. We also
plot the operating point that is selected by the dynamic distance
(black marker, averaged over the application).

libquantum benefits from the stride prefetcher and reaches an
optimal performance at a distance between 16 and 32, but is neutral
with respect to the GHB. Our algorithm selects a stride prefetch
distance of 23 while minimizing the activity of the GHB. While
this application does not hit the off-chip memory bandwidth and
the GHB’s extra, useless prefetches do not affect performance in
this case, minimizing its activity does reduce the number of off-
chip memory accesses. This results in energy savings that can
(for a power-constrained environment) be used to increase clock
frequencies and lead to an additional performance advantage.

In contrast, soplex has a more complex memory access pattern
which does benefit from the GHB prefetcher. Some amount of
stride prefetching is useful yet a stride prefetcher distance over
16 generates too many useless prefetches. For this application, near-
side throttling tunes the activity of the GHB up to its maximum 6 : 6
setting, while selecting a distance of 16 for the stride prefetcher,
which is near the static optimal configuration.

5 SOFTWARE PREFETCHING
Finally, we look at how near-side throttling can be applied to soft-
ware prefetching. Today, the programmer has to select a prefetch
distance, typically expressed statically in a number of loop itera-
tions to prefetch ahead. The optimal distance is based on the length
of a loop iteration and the off-chip memory access latency. Both
parameters are architecture dependent, which necessitates either
machine-specific tuning of the application, or large tables of pre-
computed prefetcher distances for various architectures. Neither
approach can be considered programmer friendly, or provides much
performance portability. Moreover, both the loop length and aver-
age memory access latency can change at runtime, through effects
such as dynamic frequency scaling, competition for off-chip band-
width from other cores, or whether the loop is operating on data
that is in main memory or in cache.

void spmv_csr(int nrows, double* y, int* row_ptr,
int* cols, double* values, double* x)

{
for(int row = 0; row < nrows; ++row)
{

double tmp = 0;
int dist = __read_msr(PF_DIST);
for(int i = row_ptr[row]; i < row_ptr[row+1]; i++)
{

__builtin_prefetch(&x[cols[i+dist]]);
tmp += values[i] * x[cols[i]];

}
y[row] = tmp;

}
}

Figure 11: Source code of an SpMV kernel with software
prefetching.

We propose to assist software prefetching by having the hard-
ware compute the optimal software prefetch distance. As with
hardware prefetches, we add a tracking bit pswp to each MSHR
entry to track memory requests initiated by software prefetches,
and keep aswp and lswp counters to compute the fraction of late
software prefetches. These counters can be exposed to software
as performance counters, or the algorithm from Figure 2 can be
implemented fully in hardware to expose the prefetch distance as
an architectural register.

We test our implementation with a sparse matrix-vector product
kernel listed in Figure 11. This kernel computes y = Ax , with x
and y being dense vectors while A is a sparse matrix defined in
compressed row storage format given by the row_ptr, cols and
values variables. The arrays defining the matrix A are accessed
linearly, and hence will benefit from hardware prefetching. The
input vector x has a non-linear access pattern, based on the non-zero
elements of the sparse matrix, and will rely on software prefetching.
We prefetch x at a distance of dist iterations ahead, where dist is
either hard-coded to a static value or set by near-side throttling.

Figure 12 plots the performance of the SpMV kernel when vary-
ing the prefetch distance. The kernel was configured to use 1M
double-precision elements in both X and Y dimensions, and a ran-
domly generated matrix A with 4M non-zero elements. This means
that all of the main structures reside in main memory. Compared
to no software prefetching, a performance gain of up to 4.8× is
possible. The best performance, given the memory access latency
for this particular architecture, occurs at a distance between 16 and
64. For a distance shorter than 16, many prefetches are late so the
memory access latency is not fully overlapped. When prefetching
more than 4096 iterations in advance, the x values are evicted from
the L2 cache before they are needed. For distances between 128
and 2048, software prefetching is still effective in the sense that
there is no cache pollution, but here there is TLB pollution. When
prefetching 64 or fewer iterations ahead, software prefetching is
able to warm up both the L2 cache and the D-TLB.

Near-side prefetch throttling, when run with this particular ar-
chitecture and matrix properties, converges on a distance of 17
iterations, which is at the low end of the optimal range. While the

PACT ’18, November 1–4, 2018, Limassol, Cyprus W. Heirman et al.

1.0

2.0

3.0

4.0

5.0

6.0

 1 4 16 64 256 1024 4096 16384

S
p
e
e
d
u
p

Prefetch distance

static
dynamic

Figure 12: Performance of SpMV kernel with varying dis-
tances of software prefetching.

algorithm does not explicitly consider cache pollution nor TLB
effects, it is still able to benefit from both types of warmup, ex-
actly because we keep the prefetch and its use as close to each
other as possible. In contrast, an approach that only detects useless
prefetches would not throttle until a distance of about 4096, and
hence not be able to benefit from the TLB warmup effect.

6 RELATEDWORK
Prefetching and how to control prefetcher aggressiveness has been
extensively studied in prior work. In this section, we provide an
overview of prior work related to our study. We first describe meth-
ods that require modifications to the hardware to reduce the nega-
tive impact of too aggressively prefetching, later we discuss soft-
ware solutions to steer prefetching.

6.1 Hardware solutions
Multiple techniques [4, 10, 29], which we call far-side throttling
mechanisms in this paper, require additional instrumentation in the
cache to estimate the negative impact of prefetching. Thesemethods
keep track of which cache blocks were brought in by the prefetcher,
clear the prefetch flag when the core does an access to that block,
and mark the prefetch as useless if the block gets evicted from the
cache without being accessed by the core. This way, metrics such as
prefetch accuracy can be calculated dynamically. However, we see
a number of drawbacks with these mechanisms. First, they have a
non-negligible hardware cost because extra tracking bits are needed
for each cache block. Second, they react slowly to phases in the
application because, especially for large cache sizes, it can take a
significant amount of time before blocks get evicted. This means the
measured useless prefetch metric trails behind application behavior
by a significant amount of time. Last, these methods typically keep
the prefetch distance high until they detect a negative impact on
performance, which can miss causes of degradation that are not
explicitly measured, such as TLB warmup as we saw in the case of
software prefetching, or the displacement of useful data by useful
prefetches. This is the opposite from what we are proposing in this
paper, which is to keep the prefetch and its use closely together,
thus ensuring effective warmup of as many processor structures
as possible while using the least amount of cache capacity to hold
prefetched data.

Ebrahimi et al. [10] present a mechanism to estimate interference
between cores caused by prefetching. The algorithm consists of a
local component which is similar to [29], and a global component

which takes interactions between cores into account (e.g., saturating
shared memory bandwidth), and can override decisions made by the
local component. They apply their scheme to multiple prefetchers
on multiple caches which is different from multiple prefetchers
on the same cache as we do in this paper. Later in their follow-up
work [9], they improve this mechanism by taking fairness between
cores into account. Similar to this is the work done by Panda [24],
who introduces a synergistic prefetcher aggressiveness controller
(SPAC) that aims to achieve a fair speedup when making prefetch
throttling decisions. In this paper, we target high-performance
processors, where speedup is more important than fairness between
cores, however our mechanism could easily be extended with a
similar approach as [24] to incorporate fairness.

Pugsley et al. [25] propose Sandbox Prefetching, a technique
where they evaluate the accuracy of the prefetcher using a Bloom
filter, and if prefetcher accuracy exceeds a threshold, they allow
the prefetcher to start fetching data into the cache. Other work [21,
27, 30] makes a distinction between demand and prefetch requests
in the cache replacement policy to avoid cache pollution caused
by prefetching. However, all of these proposals do not dynamically
change the configuration of a prefetcher.

Hur and Lin [11] propose to dynamically adjust the priority of
prefetch requests over demand requests in the memory controller.
This allows to postpone useless prefetch requests, but can still
lead to cache pollution when prefetch accuracy is low. Later work
by Lee et al. improves on this with prefetch-aware DRAM con-
trollers [19]. By making the memory controller aware of prefetch
accuracy, useless prefetches can be dropped, and useful prefetches
can be prioritized. However, the method to calculate prefetch ac-
curay is still a type of far-side throttling similar to [29], with the
disadvantages discussed earlier.

6.2 Software solutions
Most studies to control prefetcher aggressiveness offer hardware
solutions, but in literature software solutions exist too. Wu and
Martonosi [31] characterize LLC interference using hardware per-
formance counters, and propose a prefetch managemement scheme
to dynamically turn on or off the prefetcher. Similar to this is the
work of Liao et al. [20], they propose a prefetcher tuning framework,
using machine learning models, and based on the input from hard-
ware performance counters. Unlike we do, the hardware setup used
in both works does not allow to dynamically change the prefetch-
ing distance. Therefore, these proposals are more coarse-grained
than our solution. Jiménez et al. [14] propose a more fine-grained
solution, their hardware platform is more flexible, and they built a
software scheme to dynamically reconfigure the prefetcher. How-
ever, most of the commercially available processors today have no
support for this fine-grained prefetcher reconfiguration.

7 CONCLUSION
We propose near-side prefetch throttling, a technique that detects
the fraction of late prefetches and uses it to dynamically select an
appropriate prefetch aggressiveness. We show this technique is
applicable in several situations, including controlling single and
multiple hardware prefetchers in a high-performance many-core
processor, and can be used to control software prefetching. Our

Near-Side Prefetch Throttling PACT ’18, November 1–4, 2018, Limassol, Cyprus

technique naturally integrates detection of off-chip bandwidth sat-
uration and throttles the prefetch rate accordingly.

Using detailed simulations we measure application performance
over a range of workloads, and show that our method can quickly
adapt to application behavior, to match, or in some cases exceed,
the best static optimal prefetch distance with only minimal hard-
ware cost. This makes near-side throttling superior over traditional
far-side throttling as it is able to provide even slightly better per-
formance (9.6% vs. 9.4%), at a far cheaper implementation cost,
and is more widely applicable to other use cases such as software
prefetching and control of multiple hardware prefetchers.

REFERENCES
[1] 2016. APEX Application Benchmarks. http://www.lanl.gov/projects/apex/
[2] 2016. Intel Caffe. https://github.com/intel/caffe
[3] 2017. SPEC CPU2017 benchmark suite. https://www.spec.org/cpu2017/
[4] Alaa R. Alameldeen and David A.Wood. 2007. Interactions Between Compression

and Prefetching in Chip Multiprocessors. In Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA). 228–239.

[5] Jean-Loup Baer and Tien-Fu Chen. 1991. An Effective On-Chip Preloading Scheme
to Reduce Data Access Penalty. In Proceedings of the ACM/IEEE Conference on
Supercomputing. 176–186.

[6] Jean-Loup Baer and Tien-Fu Chen. 1995. Effective Hardware-Based Data Prefetch-
ing for High-Performance Processors. IEEE Trans. Comput. 44 (1995), 609–623.

[7] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the Level of Abstraction for Scalable andAccurate ParallelMulti-Core Simulations.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). 52:1–52:12.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 248–255.

[9] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. 2011. Prefetch-
Aware Shared Resource Management for Multi-Core Systems. In Proceedings of
the International Symposium on Computer Architecture (ISCA). 141–152.

[10] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. 2009. Coordinated
Control of Multiple Prefetchers in Multi-Core Systems. In Proceedings of the
International Symposium on Microarchitecture (MICRO). 316–326.

[11] Ibrahim Hur and Calvin Lin. 2006. Memory Prefetching Using Adaptive Stream
Detection. In Proceedings of the International Symposium on Microarchitecture
(MICRO). 397–408.

[12] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2011. Access Map Pattern Matching for
High Performance Data Cache Prefetch. Journal of Instruction-Level Parallelism
13 (2011), 1–24.

[13] Akanksha Jain and Calvin Lin. 2013. Linearizing Irregular Memory Accesses for
Improved Correlated Prefetching. In Proceedings of the International Symposium
on Microarchitecture (MICRO). 247–259.

[14] Victor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyuktosunoglu,
Pradip Bose, and Francis P. O’Connell. 2012. Making Data Prefetch Smarter:
Adaptive Prefetching on POWER7. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (PACT). 137–146.

[15] Norman P. Jouppi. 1990. Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers. In Proceedings

of the International Symposium on Computer Architecture (ISCA). 364–373.
[16] Prathmesh Kallurkar and Smruti R. Sarangi. 2016. pTask: A Smart Prefetch-

ing Scheme for OS Intensive Applications. In Proceedings of the International
Symposium on Microarchitecture (MICRO). 1–12.

[17] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy, Chris Wilker-
son, and Zeshan Chishti. 2016. Path Confidence Based Lookahead Prefetching. In
Proceedings of the International Symposium on Microarchitecture (MICRO). 1–12.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Proceedings of the
International Conference on Neural Information Processing Systems (NIPS). 1097–
1105.

[19] Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt. 2008. Prefetch-
Aware DRAM Controllers. In Proceedings of the International Symposium on
Microarchitecture (MICRO). 200–209.

[20] Shih-wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou, Chiaheng Tu,
and Hucheng Zhou. 2009. Machine Learning-Based Prefetch Optimization for
Data Center Applications. In Proceedings of the International Conference on High
Performance Computing Networking, Storage and Analysis (SC). 56:1–56:10.

[21] Wei-Fen Lin, Steven K. Reinhardt, and Doug Burger. 2001. Reducing DRAM
Latencies with an Integrated Memory Hierarchy Design. In Proceedings of the
International Symposium on High Performance Computer Architecture (HPCA).
301–312.

[22] Pierre Michaud. 2016. Best-Offset Hardware Prefetching. In Proceedings of the
International Symposium on High Performance Computer Architecture (HPCA).
469–480.

[23] Kyle J. Nesbit and James E. Smith. 2005. Data Cache Prefetching Using a Global
History Buffer. IEEE Micro 25, 1 (2005), 90–97.

[24] Biswabandan Panda. 2016. SPAC: A Synergistic Prefetcher Aggressiveness Con-
troller for Multi-Core Systems. IEEE Trans. Comput. 65, 12 (Dec 2016), 3740–3753.

[25] Seth H. Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert L.
Scott, Aamer Jaleel, Shih-Lien Lu, Kingsum Chow, and Rajeev Balasubramonian.
2014. Sandbox Prefetching: Safe Run-time Evaluation of Aggressive Prefetchers.
In Proceedings of the International Symposium on High Performance Computer
Architecture (HPCA). 626–637.

[26] Andres Rodriguez. 2016. Training and Deploying Deep Learning Networks with
Caffe* Optimized for Intel® Architecture. Intel Developer Zone.

[27] Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry. 2015. Mitigating Prefetcher-Caused Pol-
lution Using Informed Caching Policies for Prefetched Blocks. ACM Transactions
on Architecture and Code Optimization (TACO) 11, 4 (Jan. 2015), 51:1–51:22.

[28] Avinash Sodani. 2015. Knights Landing (KNL): 2nd Generation Intel® Xeon Phi
Processor. In Hot Chips 27 Symposium.

[29] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N Patt. 2007. Feedback
Directed Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers. In Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA). 63–74.

[30] Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C. Steely, Jr., and Joel
Emer. 2011. PACMan: Prefetch-Aware Cache Management for High Performance
Caching. In Proceedings of the International Symposium on Microarchitecture
(MICRO). 442–453.

[31] Carole-Jean Wu and Margaret Martonosi. 2011. Characterization and Dynamic
Mitigation of Intra-Application Cache Interference. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS).
2–11.

[32] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas. 2015.
IMP: Indirect Memory Prefetcher. In Proceedings of the International Symposium
on Microarchitecture (MICRO). 178–190.

http://www.lanl.gov/projects/apex/
https://github.com/intel/caffe
https://www.spec.org/cpu2017/

	Abstract
	1 Introduction
	2 Near-side prefetch throttling
	2.1 Detecting late prefetches
	2.2 Determining prefetch rate
	2.3 Detecting bandwidth saturation
	2.4 Multiple prefetchers
	2.5 Computing prefetch settings
	2.6 Hardware overhead

	3 Experimental setup
	4 Results
	4.1 Performance
	4.2 Dynamic behavior
	4.3 Sensitivity analysis
	4.4 Modern prefetchers
	4.5 Multiple prefetchers

	5 Software prefetching
	6 Related work
	6.1 Hardware solutions
	6.2 Software solutions

	7 Conclusion
	References

