
Photon Netw Commun (2008) 15:25–40
DOI 10.1007/s11107-007-0084-z

Predicting the performance of reconfigurable optical interconnects
in distributed shared-memory systems

Wim Heirman · Joni Dambre · Iñigo Artundo ·
Christof Debaes · Hugo Thienpont ·
Dirk Stroobandt · Jan Van Campenhout

Received: 5 July 2007 / Accepted: 25 July 2007 / Published online: 12 September 2007
© Springer Science+Business Media, LLC 2007

Abstract New advances in reconfigurable optical
interconnect technologies will allow the fabrication of low-
cost, fast and run-time adaptable networks for connecting
processors and memory modules in large distributed shared-
memory multiprocessor machines. Since the switching times
of these components are typically high compared to the
memory access time, reconfiguration exploits low frequency
dynamics in the network traffic patterns. These are however
not easily reproduced using statistical traffic generation, a
tool commonly used when doing a fast design space explo-
ration. In this paper, we present a technique that can predict
network performance, based on the traffic patterns obtained
from simulating the execution of real benchmark applica-
tions, but without the need to perform these slow full-system
simulations for every parameter set of interest. This again
allows for a quick comparison of different network imple-
mentations with good relative accuracy, narrowing down the
design space for more detailed examination.

Keywords Prediction · Reconfiguration · Interconnect ·
Shared-memory

1 Introduction

1.1 Background

The electrical interconnection networks connecting the diffe-
rent processors and memory modules in a modern large-scale

W. Heirman (B) · J. Dambre · D. Stroobandt · J. Van Campenhout
ELIS Department, Ghent University, Sint-Pietersnieuwstraat 41,
B-9000 Ghent, Belgium
e-mail: wim.heirman@elis.ugent.be

I. Artundo · C. Debaes · H. Thienpont
TONA Department, Free University of Brussels, Brussels, Belgium

multiprocessor machine, are running into several physical
limitations [1]. In shared-memory machines, where the
network is part of the memory hierarchy [2], the ability to
overlap memory access times with useful computation is
severely limited by inter-instruction dependencies. Hence, a
network with high latencies causes a significant performance
bottleneck.

It has been shown that optical interconnection techno-
logies can alleviate this bottleneck [3,4]. Mostly unhinde-
red by crosstalk, attenuation, and increased capacitive bus
load, these technologies will soon provide a cheaper,
faster, and smaller alternative to electrical interconnections,
on distances from a few centimeters upward. Massively
parallel inter-chip optical interconnects [5,6] are already
making the transition from lab-settings to commercial
products.

Optical signals may provide another advantage: the opti-
cal pathway can be influenced by components like steerable
mirrors, liquid crystals, or diffractive elements. In combina-
tion with tunable lasers or photodetectors, these components
will enable a run-time reconfigurable interconnection net-
work [7,8] that supports a much higher bandwidth than what
is achievable through electrical reconfiguration technology.
From a viewpoint higher in the system hierarchy, this would
allow us to redistribute bandwidth or alter the network topo-
logy such that node-pairs that communicate intensively have
a direct connection. Since there is no longer interference from
other traffic streams, this results in higher available band-
width and lower packet latency (which is otherwise caused
by congestion and switching delays).

However, the switching time for most of these compo-
nents is such that reconfiguration will necessarily take place
on a time scale that is significantly above that of the indivi-
dual memory accesses. The efficiency with which such net-
works can be deployed will therefore strongly depend on the

123

26 Photon Netw Commun (2008) 15:25–40

temporal behavior of the interprocess data transfer patterns.
In our previous work, we have characterized the locality in
both time and space of the traffic flowing over the network
[9], using full-system simulations of the execution of real
benchmark programs with a simulation platform based on
the Simics multiprocessor simulator [10]. We have found
that long periods of intense communication occur between
node pairs, and that the particular node pairs between which
communication is done, varies over time. This suggests that
reconfigurable networks can result in a significant perfor-
mance improvement. Next, we have included the model of a
specific reconfigurable network in our simulator, and found
that the average remote memory access latency could be
improved by up to 20% [7].

When designing the interconnection network for a new
line of machines, one would typically like to simulate the
speedup of a number of benchmark applications for a range
of network parameters, allowing the designer to make the
right trade-offs. This requires thousands of simulations. In a
full-system simulation the entire machine is modeled, inclu-
ding processors, caches, memories, and the interconnection
network. This virtual machine runs both the operating sys-
tem and the benchmark, allowing the traffic on the network
to be driven by an actual benchmark application (hence the
name execution-driven). Due to its complexity, for realis-
tic benchmarks one such simulation can take several days to
complete. It is therefore impractical, or even impossible, to do
a full-system simulation for each benchmark application and
each set of network parameters. The typical solution for this
problem is not to employ full-system simulation, but to only
model the interconnection network. The network traffic is
now no longer generated by an actual parallel application, but
by a statistical traffic generator [11]. These traffic generators
are usually good for modeling simple traffic such as uni-
form distributions or broadcasting behavior, which can suf-
fice to evaluate static networks. The reconfigurable networks
we propose however depend on low-frequency dynamics of
the network traffic such as bursts, which are not sufficiently
modeled in existing traffic generators. This precludes their
use for our purposes, leaving us with the much slower full-
system simulations.

Another well-known technique, called trace-driven simu-
lation, is situated between full-system simulation and statis-
tical traffic generation. Trace-driven simulation starts with
one full-system simulation, where the resulting traffic flow
is recorded. This flow is later played back and fed into the
simulator of an interconnection network with different para-
meters. Since the network traffic usually does not depend
too much on the timing of the specific interconnection net-
work, the traffic that is used is very similar to the traffic
that would have been generated using an execution-driven
simulation with the new network, resulting in an accept-
able approximation. At the same time, the removal of the

processors and caches from the simulation results in a greatly
reduced simulation time.

1.2 Paper contributions

In this paper we present a fast prediction method for the per-
formance of reconfigurable networks. It is based on trace-
based simulation, but goes one step further: we start with a
trace of the traffic from one full-system simulation, but we do
not actually simulate the flow of packets in our subsequent
evaluation of the different networks. Since the reconfigura-
tion of the network manifests itself only as a modification of
the network topology, it is very easy to determine the distance
a packet will have to travel in the new network as compared
to the old network, allowing us to rapidly predict new packet
latencies, and estimate, to a certain level of accuracy, the
resulting new average remote memory access latency. This
will be our performance metric for the network. With this
quick estimation method a network designer can explore
the design space of the interconnection network and make
a comparison between different proposed network architec-
tures. Note that this only requires a good relative accuracy of
our model, an absolute prediction of network performance is
usually not necessary at this stage.

In Sect. 2 we situate this work in relation to other research
on reconfigurable and optical interconnections. Sect. 3 des-
cribes in more detail the architecture of both the shared-
memory machine and the reconfigurable network that were
used in this study. In Sect. 4, relevant details of our simula-
tion setup are provided. The prediction method is presented
in Sect. 5. Section 6 gives the prediction results and compares
them with the actual speedup. In Sect. 7 some future work is
discussed, the conclusions are summarized in Sect. 8.

2 Related work

Several papers present optical interconnection demonstrators
for point-to-point inter-chip interconnects. Ref. [12] des-
cribes the result of the OIIC project performed in coopera-
tion with our own research group, in which two FPGA chips
were connected directly using 2D arrays of optical compo-
nents, flip chip mounted onto the FPGA chips. Ref. [6] des-
cribes a similar project performed at IBM Research, while
Ref. [5] contains several articles about the current state of
Intel’s research in optical interconnections.

At the systems level, Collet [3], Huang [13] and Benner
[4] each explore the potential of optical interconnections in
several types of computing systems. All agree that optics can
be used effectively in the class of tightly coupled, medium
to large scale SMP systems.

On the reconfigurability side, early work done by Snyder
introduces the reconfigurable computer [14]. He notes that

123

Photon Netw Commun (2008) 15:25–40 27

an adaptive network can make a parallel computer achieve
good performance for a range of applications, each posses-
sing different communication patterns. Pinkston describes
the GLORI system [15], a possible implementation of an
architecture similar to Snyder’s, using optical reconfiguration
technology. Other architectures, some of which have been
developed into demonstrators, include the simultaneous opti-
cal multi-processor exchange bus (SOME-bus) from Drexel
University [8], the optical centralized shared bus from the
University of Texas at Austin [16], and Columbia Univer-
sity’s vortex optical packet switching interconnection net-
work [17].

The work done by our research group tries to combine
several aspects of these works: the view, at a systems level,
of reconfigurable optical interconnections applied to large
parallel computer systems. In Ref. [18] we gave an overview
of the technologies and ideas that are applicable, and presen-
ted a number of simulations showing the results that can be
expected with this technology. We also reported on a predic-
tion method that allows fast design-space exploration [19].
However, due to a desire to keep complexity of the network
implementation down, this work imposed a restriction on
how the reconfigurable network was used: a network packet
either had to go through an extra link, or through the base
network, but not through a combination thereof.1 In some
implementations, one being our own proposal described in
Ref. [18], it is impossible for some node pairs to be connected
by an extra link. Traffic exchanged between this node pair
will therefore never benefit from the reconfigurability of the
network, limiting the performance that can be attained.

This paper extends on the preliminary prediction method
from Ref. [19]. By adding more intelligence to the algorithms
controlling reconfiguration, the routing restriction has been
removed so that packets can use a combination of base net-
work and extra links. This allows for a much more efficient
use of the reconfigurable network, increasing performance of
the parallel computer. For our prediction method, this change
required us to review latency on each memory access separa-
tely, instead of being able to use a global improvement factor
as in [19]. This somewhat increased both the implementa-
tion complexity and the runtime of our prediction method,
but also improved the prediction accuracy.

3 System architecture

3.1 Multiprocessor architecture

Multiprocessor machines come in two basic flavors: those
that have a tight coupling between the different processors

1 The notion of extra link is introduced in Sect. 3.2, where we describe
our reconfigurable network architecture.

NI

CacheMem

CPU

Network

NI

CacheMem

CPU

NI

CacheMem

CPU

Fig. 1 Schematic overview of a multiprocessor machine. For message-
passing machines, the network traffic is under control of the application.
In shared-memory machines, network traffic is generated by the network
interfaces (NI) in response to non-local memory accesses by a processor

and those with a more loose coupling. Both types can
conceptually be described as consisting of a number of nodes,
each containing a processor, some memory and a network
interface, and a network connecting the different nodes to
each other (Fig. 1). In the extreme end of the loosely cou-
pled family we find examples such as the Beowulf cluster
[20], in which the network consists of a commodity techno-
logy such as Ethernet. This simple interconnection network
results in relatively low throughput (1 Gbps per processor)
and high latency (up to several milliseconds, for a large part
due to protocol overhead). These machines are necessarily
programmed using the message-passing paradigm, and place
a high burden on the programmer to efficiently schedule com-
putation and communication.

Tightly coupled machines usually have proprietary inter-
connection technologies, resulting in much higher through-
put (tens of Gbps per processor) and very low latency (down
to a few hundred nanoseconds). This makes them suitable for
solving problems that can only be parallelized into tightly
coupled sub-problems (i.e., that communicate often). It also
allows them to implement a hardware-based shared-memory
model, in which communication is initiated when a pro-
cessor tries to access a word in memory that is not on the
local node, without programmer’s intervention. This makes
shared-memory based machines relatively easy to program.
However, since the network is now part of the memory hie-
rarchy, it also makes such machines much more vulnerable
to increased network latencies.

Modern examples of the latter class of machines range
from small, 2- or 4-way SMP server machines (including
multi-core processors where several CPUs are on the same
silicon chip), over mainframes with tens of processors (Sun
Fire, IBM iSeries), up to supercomputers with hundreds of
processors (SGI Altix, Cray X1). The larger types of these
machines are already interconnect limited. Since the capabi-
lities of electrical networks are evolving much more slowly
than processor speeds, reconfigurable optical interconnection
networks are a likely alternative for large shared-memory
systems.

For this study we consider a machine in which coherence
is maintained through a directory-based coherence protocol.

123

28 Photon Netw Commun (2008) 15:25–40

This protocol was pioneered in the Stanford DASH mul-
tiprocessor [2], and is, in one of its variants, used in all
modern large shared-memory machines. In this computing
model, every processor can address all memory in the sys-
tem. Accesses to words that are allocated on the same node as
the processor go directly to local memory, accesses to other
words are intercepted by the network interface. This inter-
face will generate the necessary network packets requesting
the corresponding word from its home node. Since proces-
sors are allowed to keep a copy of remote words in their own
caches, a cache coherence protocol has to be implemented.
The network interfaces keep a directory of which processor
has which word in its cache, and make sure that, before a pro-
cessor is allowed to write to a word, all copies of the same
word in the caches of other processors are invalidated. Net-
work traffic thus consists of both coherence-related traffic
(control packets such as invalidate requests) and data traffic
(words that were not in a cache due to cold, conflict, capacity,
or coherence misses).

Remote memory access, where use of the interconnec-
tion network is required, can take the time of several net-
work round trips (hundreds of nanoseconds). This is much
more than the time that out-of-order processors can occupy
with other, non-dependent instructions, but not enough for
the operating system to schedule another thread. Simulta-
neous multithreading (SMT) can help to hide some of the
communication latency, but to use this technique to speed
up one parallel program would require the program to be
split up into more threads. While communication between
threads running on the same processor core is essentially
free, synchronization is not so multithreading again increases
overhead. Ultimately, it is very difficult to effectively hide the
communication latency, which makes system performance
very much dependent on network latency.

3.2 A simple reconfigurable network architecture

Previous studies concerning reconfigurable networks, such
as [15] and [21], have mainly dealt with fixed topologies
(usually a mesh or a hypercube) that allowed swapping of
node pairs, incrementally evolving the network to a state
in which processors that often communicate are in neigh-
boring positions. However, algorithms to determine the pla-
cement of processors turned out to converge slowly, or not
at all when the characteristics of the network traffic change
rapidly. Moreover, implementing this kind of network usually
requires large free-space optical structures which are not
compatible with the integrated, highly reliable nature of large
parallel computers. Finally, the communication pattern exhi-
bited by the program ran on the parallel computer may have
a structure that cannot be mapped efficiently (i.e., using only
single-hop connections) on the chosen base network topology,

Fig. 2 Reconfigurable network topology. The network consists of a
base network, augmented with a limited number of direct, reconfigu-
rable links

suggesting that reconfiguration should be used to offer a
richer topology than that of the base network.

Therefore, we assume a different network architecture in
this study. We start from a base network with a fixed topo-
logy. In addition, we provide a second network that can rea-
lize a limited number of connections between arbitrary node
pairs—these will be referred to as extra links or elinks for
short. A schematic overview is given in Fig. 2. An advantage
of this setup, is that the base network is always available. This
is most important during periods where the extra network is
undergoing reconfiguration and may not be usable. Routing
and reconfiguration decisions are also simplified because it
is not possible to completely disconnect a node from the
others—the connection through the base network will always
be available.

The reconfiguration of our network aims to exploit the
temporal locality of the communication patterns. Reconfi-
guration takes place at specific intervals, the length of each
interval being a (fixed) parameter of the network architecture.
Traffic is observed by the reconfiguration entity during the
course of an interval, and total traffic between each node pair
is computed. At the end of the interval, the new positions of
the extra links are determined, within the constraints of the
network architecture, such that node pairs that exchanged the
most data in the previous interval will be ‘closer together’:
the distance, defined as the number of hops a packet sent
between the pair must traverse in the new network topology,
is minimized. This way, a large percentage of the traffic has
a short path and a correspondingly low uncongested latency,
also congestion is lowered because heavy traffic is no longer
spread out over a large number of links.

After selecting the new network configuration, the net-
work is reconfigured and a new interval begins (Fig. 3). For
now, we assume that both the computation to select the new
elinks and the physical reconfiguration (done by switching
mirrors, tuning lasers, etc.) are performed instantly. This is
not the case in reality: depending on the technology,
reconfiguration (the switching time) can take from tens of
microseconds up to several milliseconds. Therefore, the

123

Photon Netw Commun (2008) 15:25–40 29

Fig. 3 The observer measures network traffic, and after each interval
of length �t makes a decision where to place the extra links. This calcu-
lation takes an amount of time called the selection time (tSe). During the
switching time (tSw), reconfiguration will take place making the extra
links temporarily unusable

reconfiguration interval must be chosen such that it is large
compared to the selection and switching times. On the other
hand, if the reconfiguration interval is too long, the elink pla-
cement for one interval, based on traffic measurements from
the previous interval, will not be a good match for traffic in
the current interval, degrading the performance improvement
obtained.

3.3 Implementation

The physical implementation of the reconfigurable optical
network we envision can be done by using low-cost tunable
laser sources, a broadcast-and-select scheme for providing
the extra optical links, and wavelength selective receivers on
every node (Fig. 4). For the transmission side, Vertical Cavi-
tiy Surface Emitting Lasers (VCSELs) are preferred for their
low power consumption, easy array integration and coupling
into optical fibers. Their tuning range (a few tens of chan-
nels) and speed (between 100µs and 10 ms) is adequate for
following the traffic patterns targeted in this study.

The broadcasting can be done through the use of a
starcoupler-like element that reaches all the nodes. By tuning
the laser source, the right destination is addressed. When
scaling up to tens of nodes or more this is no longer feasible:
the number of available wavelengths is finite, also such a wide
broadcast would waste too much of the transmitted power.
In this case a component like a diffractive optical prism can
be used, which broadcasts light from each node to its own
subset of receiving nodes. Note that the routing to and from
the broadcast element will be such that nodes have different
neighbors on the broadcast element than those on the base
network. This way the extra links will span a distance on the
base network that is larger than 1.

On the receiving side, Resonant Cavity Photodetectors
(RCPDs) make each node susceptible to just one wavelength.
Integration of all these optical components has been proven
and (non-reconfigurable) optical interconnects are currently
arriving to the midrange servers. More information about this
envisioned implementation can be found in Ref. [18].

Fig. 4 Schematic representation of an example reconfigurable optical
interconnect implementation. A processor node transmits data on one
of nine wavelengths λ1 . . . λ9. The selective optical broadcast element
(SOB) distributes the signal toward nine fellow processor nodes. Since
every receiving processor node is sensitive to one wavelength only, the
target processor node is selected by emitting at the appropriate wave-
length

Note that while optical interconnections (light source →
waveguide → detector) are unidirectional, elinks as defined
in this work are bidirectional. Therefore, an elink consists
of two such assemblies. In theory it is not necessary for the
elinks to be bidirectional. However, since the implementation
of a shared-memory model uses a request-response protocol
it is not considered very useful to speed up the request but
not the response or vice versa.

4 Methodology

4.1 Simulation platform

We have based our simulation platform on the commercially
available Simics simulator [10]. It was configured to simu-
late a multiprocessor machine resembling the Sun Fire 6800
server, with 16 UltraSPARC III processors clocked at 1 GHz
and running the Solaris 9 operating system. Stall times for
caches and main memory are set to realistic values (2 cycles
access time for L1 caches, 19 cycles for L2 and 100 cycles
for SDRAM). The directory-based coherence controllers and
the interconnection network are custom extensions to Simics,
and model a full bit vector directory-based MSI-protocol and
a packet-switched 4×4 torus network with contention and
cut-through routing. For the simulations validating our pre-
dictions, a number of extra point-to-point links can be added
to the torus topology at any point in the simulation.

The network links in the base network are 16 bits wide
and are clocked at 100 MHz. In the reported experiments, the

123

30 Photon Netw Commun (2008) 15:25–40

characteristics of an elink were assumed to be equal to those
in the base network, yielding a per-hop latency that is the
same for an elink as for a single base network link. Howe-
ver, our simulation and prediction methodology allow for
any other latency ratio. Both coherence traffic (read requests,
invalidation messages, etc.) and data (the actual cache lines)
are sent over the network. The resulting remote memory
access times are representative for a Sun Fire server (around
1µs on average).

To avoid deadlocks, dimension routing is used on the base
network. Each packet can go through one elink on its path,
after that it switches to another virtual channel (VC)2 to
avoid deadlocks of packets across elinks. For routing packets
through the elinks we use a static routing table: when reconfi-
guring the network, the routing table in each node is updated
such that for each destination it tells the node to route packets
either through an elink starting at that node, to the start of an
elink on another node, or straight to its destination, the latter
two using normal dimension routing.

Since the simulated caches are not infinitely large, the net-
work traffic will be the result of both coherence misses and
cold/capacity/conflict misses. To make sure that private data
transfer does not become excessive, a first-touch memory
allocation was used that places data pages of 8 KB on the
node of the processor that first references them. Also each
thread is pinned down to one processor (using the Solaris
processor_bind() system call), so the thread stays on
the same node as its private data for the duration of the pro-
gram.

The SPLASH-2 benchmark suite [23] was chosen as the
workload. It consists of a number of scientific and technical
applications using a multi-threaded, shared-memory progra-
ming model. Since the default benchmark sizes are too big
to simulate their execution in a reasonable time, smaller pro-
blem sizes were used (Table 1). Since this influences the
working set, and thus the cache hit rate, the level 2 cache
was resized from an actual 8 MB on a real UltraSPARC III to
512 KB. Also the associativity was increased to 4-way (com-
pared to 2-way for the US-III) after we experienced excessive
conflict misses in Solaris’ internal structures with the 2-way
caches. Overall, this resulted in 93–97% hit rates for the L2
caches. 50–60% of L2 misses were cataloged as coherence
misses (resulting in communication between different pro-
cessors), the remaining 40–50% were cold/conflict/capacity
misses.

The simulation slowdown (simulated time versus simula-
tion time) was a factor of 50,000 resulting in execution times
of 1–10 h per benchmark on a Pentium 4 running at 2.6 GHz
with 2 GB RAM. In contrast, the prediction method described
later in this paper, which seeks to replace a large percentage

2 Actually another set of VCs is used since we already employ separate
request and reply VCs to avoid fetch deadlock [22] at the protocol level.

of these slow simulations during a design-space exploration,
only requires about 1–10 min of computation time.

4.2 Network architecture

To avoid pinning our discussion down on the peculiarities
of a specific network architecture, we test our model with
a hypothetical parameterized architecture that provides the
infrastructure to potentially place an elink between any two
given nodes. Two constraints are made on the set of elinks
that are active at the same time:

• a maximum of n extra links can be active concurrently,
• the fanout of each node is limited to f , not including

connections to the base network.

The time between reconfigurations, called the reconfigura-
tion interval �t , is the third parameter. The results in this
paper will be based on different sets of values for these
three parameters. Additionally, results for a network using
the selective optical broadcast element described in Sect. 3.3
will be shown as illustration of the performance of an actual
implementation. This network can be modeled using n = 16,
f = 1, and additional constraints on which destinations (only
9 out of 16) can be reached from each source node.

4.3 Extra link selection

For every reconfiguration interval, a decision has to be made
on which elinks to activate, within the constraints imposed
by the architecture, and based on the expected traffic during
that interval (with, in our current implementation, the expec-
ted traffic being the traffic as measured during the previous
interval). As explained in Sect. 3.2, we want to minimize
the number of hops for most of the traffic. We do this by
minimizing a cost function that expresses the total number
of network hops traversed by all bytes being transferred. This
cost function can be written as

C =
∑

i< j

d(i, j) · T (i, j)

with d(i, j) the distance between nodes i and j , which is a
function of the elinks that are selected to be active, and T (i, j)
the number of bytes exchanged between the node pair in the
time interval of interest. Since elinks are bidirectional elinks,
T (i, j) is the sum of traffic in both directions.

The time available to perform the extra link selection is
from the same order of magnitude as the switching time,
because both need to be significantly shorter than the recon-
figuration interval. Since the switching time will typically be
in the order of milliseconds, we need a fast heuristic that can
quickly find a set of active elinks that satisfy the constraints
imposed by the architecture and has an associated cost close

123

Photon Netw Commun (2008) 15:25–40 31

Table 1 SPLASH-2 benchmark
applications and their problem
sizes that were used throughout
this paper

Code Problem size

Barnes 8K particles
Cholesky tk15.O
FFT 256K points
Ocean-Cont 258 × 258 ocean
Radix 1M integers, 1024 radix

nodepairs = [all (src, dst) pairs with src < dst]
nodepairs.sort(
sort_by = distance_using_basenetwork(src, dst)

* traffic(src, dst),
)

active = []
possible = [all elinks supported by the architecture]

while not nodepairs.empty() and not possible.empty():
(src, dst) = nodepairs.pop()
elink = most_interesting_elink(src, dst)

if distance_using_elinks(src, dst, active + elink)
>= distance_using_elinks(src, dst, active):
no additional gain by turning on elink
continue

turn on elink!
possible.remove(elink)
active.add(elink)

make sure we obey all implementation constraints,
such as maximum fanout
for elink in possible:

if conflicts(active, elink):
possible.remove(elink)

activate_elinks(active)

Fig. 5 Pseudocode for the elink selection algorithm

to the global optimum. We have constructed a greedy algo-
rithm that works as follows (see Fig. 5 for an implementation
of the algorithm in pseudocode):

1. A list is constructed of all node pairs (i, j), sorted by
d(i, j) · T (i, j) in descending order, with d(i, j) the dis-
tance between nodes i and j when using only the base
network connections.

2. Initialize the set of active elinks Ea to be empty, and the
set of possibly active elinks Ep to contain all elinks that
can be supported by the architecture (but not necessarily
at the same time). For our test architecture, Ep would
contain all p(p − 1)/2 node pairs (with p the number
of processors or nodes), for the implementation with the
selective broadcast element from Fig. 4 Ep will contain a
subset hereof.

3. For the node pair at the top of the list, determine which
new elink (one that is not already in Ea but is still in Ep)
is the most interesting, i.e., when enabled, would give the
greatest reduction in distance between these two nodes.
This elink is removed from Ep and added to Ea, also, the
current node pair is removed from the top of the list.

If an elink resulting in a direct connection between the
node pair is still available in Ep this one will of course
be selected, since it reduces the distance to 1. If none of
the elinks in Ep can provide a distance lower than the one
over the base network or over an elink already in Ea, no
new elink is activated. To quickly do this selection, we
precompute a table that gives the distance between each
node pair as a function of the activated elinks. Since only
one elink is used in each path, this table has a maximum
of {number of node-pairs} × {number of elinks entries},
and usually much less since only a small number of elinks
can decrease the base distance for a specific node pair.

4. Once a link has been added to Ea, we check the constraints
imposed by the network architecture. If activation of one
of the links in Ep would cause a node to exceed its fanout
limit f , this elink is removed from Ep and is therefore no
longer considered for activation in the following iterations
of the algorithm. When the maximum number of elinks n
is reached, the algorithm terminates.

5. As long as there are nodepairs on the list, and the set of
possible elinks Ep is not empty, continue with step 3. Else,
end the algorithm, Ea is now the set of elinks that will be
enabled during the next time interval.

Note that, after enabling one of the elinks, one could recom-
pute the distances between node pairs and update the list of
node pairs before starting a new iteration at step 3. This is
however considered too time-consuming, and has not been
implemented in our algorithm.

Using a branch and bound method, it proved possible
to determine the elink placement that results in the global
minimum of C . This takes however several minutes to exe-
cute for each given traffic pattern, which underlines the need
for a fast heuristic: actual reconfiguration times (including
elink selection) will be in the order of milliseconds. In a
simulated environment this does not matter of course, so
we ran some simulations to see the difference in latency

123

32 Photon Netw Commun (2008) 15:25–40

Fig. 6 Comparison of the
heuristical elink selection
algorithm and the globally
optimal elink placement

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

Optimal elink selector - FFT

Heuristic Optimal

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

Optimal elink selector - Ocean.cont

Heuristic Optimal

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

Optimal elink selector - Radix

Heuristic Optimal

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

Optimal elink selector - Cholesky

Heuristic Optimal

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

Optimal elink selector - Barnes

Heuristic Optimal

0%

5%

10%

15%

20%

25%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4; prism)

Optimal elink selector - Average

Heuristic Optimal

improvement between this optimal selector and our heu-
ristic (Fig. 6). Results are shown for three reconfiguration
intervals and three different network implementations: two
in which two or four elinks can be placed freely (with an
imposed fanout limit of two) and the prism scenario which
uses the implementation with the prism from Sect. 3.3. In
a few cases, the optimal elink placement results in a slower
network than the pseudo-optimal placement from our heu-
ristic. This is because the elink placement is only optimal
for the traffic pattern from the previous interval, the traffic
in the current interval may have shifted such that the heuris-
tical selector now gives a better result. In most cases howe-
ver, the result is as expected, with the network using the
optimal selector being a few percent faster. This means our
heuristic does a good job and only slightly affects network
performance.

5 Predicting network performance

5.1 Overview

We will now present our performance prediction for reconfi-
gurable networks, based on only one full-system simulation

run per benchmark. This prediction is parameterized on the
constraints imposed by the network (�t , n and f , or the pro-
perties of the selective broadcast element from Sect. 3.3), and
can therefore predict the performance of a range of candidate
networks, while still relying on only a small number of long
running simulations. For each benchmark, this prediction is
derived using the following steps:

• A single full simulation is done of each benchmark, using
a non-reconfigurable network (referred to as the baseline
simulation), yielding a list of memory accesses and a list
of network packets.

• Using the list of network packets, the traffic exchanged
between each node pair is calculated for each interval of
duration �t .

• The placement of the extra links, given the traffic pattern
just computed, is determined for each interval using the
algorithm described in Sect. 4.3.

• The latency of each memory access is reviewed, for
accesses that would benefit from an extra link this latency
is reduced.

• Using the latency distribution over the different proces-
sors, an average latency reduction is derived.

123

Photon Netw Commun (2008) 15:25–40 33

In the rest of this section, each of the above stages is explained
in more detail.

5.2 Full simulation

We start by doing one full-system simulation (per bench-
mark), using the simulation platform described in Sect. 4.1.
Only the base network is active, so this simulation also serves
as the baseline against which we calculate the speedup to
determine the performance of a reconfigurable network. Our
simulator creates a list of memory references that cannot be
satisfied by the local node, and a second list of all packets
that were sent through the network. Each memory reference
is annotated with the time the request started, the requesting
node, the home node and the measured access latency. For
network packets, we store the sending time, the source and
destination nodes and the packet size. Note that there are only
two sizes of messages generated by the coherence protocol:
16-byte packets with only control information (read request,
invalidate, . . .) and 80-byte packets that contain control infor-
mation plus a complete cache line of 64 bytes.

5.3 Determining the extra link placements

The packet trace is divided into intervals of duration �t . For
each interval, sums are made of the number of bytes that were
exchanged between each of the p(p − 1)/2 node pairs (with
p the number of processors or nodes). The extra links are
bidirectional, so traffic in both directions is added together.
When we have the traffic profile for the interval, we use the
greedy algorithm described in Sect. 4.3 to determine extra
link placements for the next interval.

5.4 Correlating memory accesses

The metric that makes network performance visible to the
processors, is the remote memory access latency. Therefore,
we have chosen the relative memory access latency reduction
(compared to the baseline memory latency) as the metric with
which to compare different networks. We will now estimate
the new memory access latency as a function of the selected
elinks.

We enumerate the memory accesses of the execution and
represent each access by its sequence number i ∈ {1, 2, . . . ,

m} = I . Every memory access that requires network traffic
is initiated by the processor on one node and serviced by the
directory on another node, the home node of the memory
word. We therefore connect this memory access to the node
pair made up by these two nodes. We measure the distance
between these nodes, both before adding the extra links and
after, and tag the memory access i with these two distances:
its baseline distance db(i) and its elink distance de(i).

Memory access latencies (taking at most a few µs) are
significantly shorter than the considered reconfiguration
intervals (100 µs and upwards), so there should be no pro-
blem of accesses spanning several intervals. There are
memory accesses that require intervention by a third node,
in particular if the memory access is a write and some third
node needs to invalidate or write back the word. However,
these transactions involving three or more nodes are not very
common (in our simulations, their fraction in total memory
access latency was always less than 10%). Besides, about
half the time of these accesses is still spent in communica-
ting between the two primary nodes, so we pretend these
transactions only use the primary nodes.

5.5 Calculating new latencies

First we calculate the average memory access latency, over
the course of the baseline simulation, for all memory accesses
with the same distance (with Lb(i) the baseline latency of
memory access i , and x(y)|range(y) denoting the average of
x(y) over the specified range of y):

L(d) = Lb(i)|{i : db(i)=d}

The average baseline access latency can be computed as a
weighted average of these per distance latencies, with the
number of accesses per baseline distance Nb(d) as the
weights (N is the total number of remote memory accesses
in the simulation):

Lb = Lb(i)|I = 1

N

∑

d

Nb(d) · L(d)

L(d) gives us an estimated memory access latency as a func-
tion of the distance between its primary nodes. As indicated
by the notation, we assume latency is only a function of this
distance, and does not change when adding reconfigurable
extra links to the network. Therefore, the predicted access
latency after adding elinks, L̂e, would be the L(d) associa-
ted with the elink distance de:

L̂e(i) = L (de(i))

Note that we will always use L̂ to denote the value of L as
estimated by our model, a measurement of L using simulation
will be written as L . Our estimate for the average memory
access latency after adding the elinks, L̂e, can now be com-
puted. We can again count the number of accesses per elink
distance Ne(d) to compute the new average as a weighted
average of L(d) using Ne(d) as weights:

L̂e = L̂e(i) = 1

N

∑

i

L (de(i)) = 1

N

∑

d

Ne(d) · L(d)

When written this way, it can be seen that our prediction will
be accurate if (1) the new distance distribution Ne(d) can be

123

34 Photon Netw Commun (2008) 15:25–40

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

FFT, n = 16, ∆t = 100 µs, f = 2

0%

10%

20%

30%

40%

50%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

FFT, n = 4, ∆t = 10 ms, f = 2

0%

10%

20%

30%

40%

50%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

FFT, prism, ∆t = 1 ms

0%

10%

20%

30%

40%

50%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Ocean.cont, n = 16, ∆t = 100 µs, f = 2

0%

10%

20%

30%

40%

50%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Ocean.cont, n = 4, ∆t = 10 ms, f = 2

0%

10%

20%

30%

40%

50%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Ocean.cont, prism, ∆t = 1 ms

0%

10%

20%

30%

40%

50%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Radix, n = 16, ∆t = 100 µs, f = 2

0%

10%

20%

30%

40%

50%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Radix, n = 4, ∆t = 10 ms, f = 2

0%

10%

20%

30%

40%

50%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Radix, prism, ∆t = 1 ms

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Cholesky, n = 16, ∆t = 100 µs, f = 2

0%

10%

20%

30%

40%

50%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Cholesky, n = 4, ∆t = 10 ms, f = 2

0%

10%

20%

30%

40%

50%

60%

1 2 3 4
R

el
at

iv
e

oc
cu

re
nc

e

Distance

Cholesky, prism, ∆t = 1 ms

0%

10%

20%

30%

40%

50%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Barnes, n = 16, ∆t = 100 µs, f = 2

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

Baseline
Predicted
Measured

0%

10%

20%

30%

40%

50%

60%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Barnes, n = 4, ∆t = 10 ms, f = 2

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3 4

R
el

at
iv

e
oc

cu
re

nc
e

Distance

Barnes, prism, ∆t = 1 ms

Fig. 7 Baseline, estimated and actual distance distribution of memory operations for FFT, Ocean.cont, Radix, Cholesky, and Barnes benchmarks
and a selection of networks

accurately predicted and (2) the per distance latency L(d)

does not change after adding elinks.
Figure 7 shows that we can accurately estimate the number

of accesses per elink distance, using the traffic pattern from a
simulation with a non-reconfigurable network. For each dis-
tance, the graph shows the number of memory accesses in the
baseline simulation Nb, the predicted number of accesses Ne

using the method described above, and the actual number of
accesses, measured in a simulation where the reconfigurable
network is added to the machine. We can clearly see that
adding a reconfigurable network greatly reduces the average
distance, also this new distance distribution can be estimated
accurately based on traffic patterns obtained from a baseline
simulation run.

The next question is whether memory latency is indeed
only a function of distance, and does not vary with topolo-
gical parameters. Figure 8 shows this memory latency L(d)

for the baseline (bars) and a few different networks (cross-
hairs), as measured in simulations with the reconfigurable
network in place. For d = 4 the difference is obvious. Howe-
ver, d = 4 accesses are almost eliminated after adding elinks
(as can be seen in Fig. 7, where the gray and black bars
for d = 4 are barely visible), making this measured ave-
rage (and the apparent rise in latency for most of the net-
works) unreliable. Moreover, since the number of n = 4
accesses, and thus the weight of L(4) in the computation
of L̂e, is so small, the value of L(4) does not influence the
result much. Lower distances show far less variation, the dif-

123

Photon Netw Commun (2008) 15:25–40 35

Fig. 8 Variation of average
memory latency per distance for
different network parameters

 0

 500

 1000

 1500

 2000

1 2 3 4

A
ve

ra
ge

 la
te

nc
y

Distance

Average latency per distance - FFT

Baseline
Measured

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4

A
ve

ra
ge

 la
te

nc
y

Distance

Average latency per distance - Ocean.cont

Baseline
Measured

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4

A
ve

ra
ge

 la
te

nc
y

Distance

Average latency per distance - Radix

Baseline
Measured

 0

 500

 1000

 1500

1 2 3 4

A
ve

ra
ge

 la
te

nc
y

Distance

Average latency per distance - Cholesky

Baseline
Measured

 0

 500

 1000

 1500

1 2 3 4

A
ve

ra
ge

 la
te

nc
y

Distance

Average latency per distance - Barnes

Baseline
Measured

ference being due to the reduction of congestion after adding
more links to the network. This congestion has not been
modeled further, and will be treated as an error term in our
prediction.

6 Results and discussion

6.1 Results

Figure 9 shows the result of our prediction model, the memory
access latency improvement over the baseline after adding the
extra links, compared to the values measured in an execution-
driven simulation, for a number of different reconfigurable
networks. A linear regression of the form P̂ = α + β ×
M is calculated (with P and M the predicted and measu-
red latency reduction, respectively). The correlation coef-
ficient r is high, so a strong, linear correlation exists bet-
ween measurement and prediction. Our method can there-
fore be used to very quickly compare different proposals
for network parameters. This makes it a very useful tool
for design-space explorations, where the optimum solution
needs to be found from a large collection of candidate net-
works.

In Fig. 10 the predicted (white) and measured (light gray)
latency improvements are shown again. This is done for a
number of extra links (n = 2, 4, 8 and for the implementation
using the prism from Sect. 3.3) and different reconfiguration
intervals (�t = 100µs, 1 ms, 10 ms). For comparison, the
‘fixed’ case is added: here, the same number of elinks is
added in random positions (favoring longer links), but they
are not reconfigured at runtime (the average result from five
different placements is reported).

From this graph it is obvious there is a systematic under-
estimation present. This is most likely due to the fact that
we have not included congestion in our method. However,
the relative prediction accuracy between different network
parameters, which is actually the most important value when
comparing different suggested network implementations, is
much better. By using one more execution-driven simula-
tion, per benchmark, to ‘calibrate’ our model, better abso-
lute accuracies can be obtained. The third, dark gray bars in
Fig. 10 show this calibrated data. They are obtained by sca-
ling the predictions with a constant factor, dependent only on
the benchmark application, such that the prediction for a net-
work with parameters n = 16, �t = 100 µs, f = 2 would
match the measured value. We chose a network with a large
latency improvement for this, so as to minimize the influence
of the offset of our predictions (the α parameter in Fig. 9).

123

36 Photon Netw Commun (2008) 15:25–40

Fig. 9 Estimated versus
measured latency reduction for a
variety of network
implementations. α, β, and r
represent a linear regression of
the form P̂ = α + β × M and
its correlation coefficient 0

 5

 10

 15

 0 5 10 15 20 25 30

E
st

im
at

ed

Measured

FFT

α = -1.19
β = 0.55
r = 0.93

 0

 5

 10

 15

 0 5 10 15 20 25 30

E
st

im
at

ed

Measured

Ocean.cont

α = -0.18
β = 0.43
r = 0.87

 0

 5

 10

 15

 0 5 10 15 20 25 30

E
st

im
at

ed

Measured

Radix

α = 0.39
β = 0.38
r = 0.92

 0

 5

 10

 15

 0 5 10 15 20 25 30

E
st

im
at

ed

Measured

Cholesky

α = -2.74
β = 0.81
r = 0.95

 0

 5

 10

 15

 0 5 10 15 20 25 30

E
st

im
at

ed

Measured

Barnes

α = -0.13
β = 0.26
r = 0.90

 0

 5

 10

 15

 0 5 10 15 20 25 30

E
st

im
at

ed

Measured

Average

α = -0.96
β = 0.50
r = 0.94

Fig. 10 Latency improvement
after adding elinks: estimated
using our predictor (white),
measured in simulation (light
gray), and again the prediction
with a corrected factor applied
(dark gray)

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

FFT Benchmark

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Ocean.cont Benchmark

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Radix Benchmark

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Cholesky Benchmark

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Barnes Benchmark

0%

5%

10%

15%

20%

25%

100 µs 1 ms 10 ms fixed

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Average

6.2 Improving accuracy

A number of assumptions were made in the algorithm descri-
bed in Sect. 5. First of all, the traffic pattern from the baseline
simulation is used, when adding elinks traffic streams could
potentially appear or disappear. Since the communication
pattern is the result of an algorithm that is implemented by
the benchmark code, which is in most cases unaffected by
the platform on which it is running, this pattern should not
change too much. Selecting the elinks based on the traffic pat-

tern is done using the same method as that used at runtime, so
here no additional error can be introduced. Figure 7 showed
that we can very accurately predict the distance distribution
of memory operations after adding a reconfigurable network.
Memory latency is however, as Fig. 8 clearly shows, not just
a function of hop distance, as was assumed in Sect. 5.5.

The component which causes the largest error in our pre-
diction is the reduction of congestion. Clearly, adding links
to the network increases bisection bandwidth and generally
increases the capacity of the network. We even place our

123

Photon Netw Commun (2008) 15:25–40 37

0%

10%

20%

30%

40%

50%

 0 20 40 60 80 100

Li

nk
s

Congestion

Link congestion

baseline reconfigurable

Fig. 11 Complementary cumulative distribution of congestion over
the links (both base network links and elinks), for the baseline simula-
tion and a reconfigurable network simulation (with n = 4, �t = 100µs
and f = 2). Congestion of a link is computed as the aggregate time
packets need to wait in a buffer before entering the link in question, and
is plotted in an arbitrary unit

 0.1

 1

 10

 100

 1000

fft radix cholesky barnesocean.cont

C
om

pu
ta

tio
n

tim
e

(m
in

)

Benchmark

Simulation and estimation times

Simulation Estimation

Fig. 12 Computation time (in minutes) required for a full simulation
(white) and our prediction (black) for four of the benchmarks conside-
red. Note that the Y-axis is in a logarithmic scale

elinks such that large traffic flows are moved away from the
base network, speeding up not only the traffic that was moved
but also the traffic that remains on the base network. This can
be clearly seen in Fig. 11 which shows the complementary
cumulative distribution of congestion over the links: for the
baseline the line drops off slower meaning there are more
links with higher congestion.3 Further analysis of the impact
of congestion is therefore necessary; we leave this for future
work.

6.3 Reduction in simulation time

Figure 12 shows the computation times required for both the
full-system simulations and our prediction model, the former
taking several hours while the latter can be completed in just a
few minutes. We did not include the cost of the initial simu-
lations in the computation time for our method, since this

3 We define the congestion of a link as the aggregate time packets
need to wait in a buffer immediately preceding this link before being
transmitted over the link. It would be in a time × numberof packets
unit, but for the graph it was rescaled to an arbitrary range.

should only be done once and can subsequently be reused
for any number of network parameter sets. Our method the-
refore allows a reduction in computation time by about two
orders of magnitude. Note that we already employed scaled-
down benchmarks and an in-order processor model. If one
were to do these simulations with a highly detailed simulator
the computation time can easily be an order of magnitude
higher. In contrast, the prediction model was implemented
by a Python script, optimized for maintainability and exten-
sibility. A speed-optimized implementation written in, for
instance, C would make the difference in computation time
even larger.

6.4 Effects of traffic prediction

In Sect. 3.2, it was noted that to place the elinks an estimate
is needed of what traffic is to be expected during the cur-
rent reconfiguration interval. Our implementation assumes
this traffic will be equal to that measured during the previous
interval. We can now ask the question if this assumption is
valid, and, if this turns out not to be the case, what increased
performance can be expected of a system where traffic can be
predicted more accurately. To answer this question through
normal simulation we would have to develop such a traffic
predictor first, which is not trivial. On the other hand, with
our performance prediction method an upper bound can be
determined for the performance of a system with an ideal
traffic predictor: since, while running the performance pre-
diction, the execution-driven simulation yielding all network
traffic has completed, all traffic is known, including that of
the ‘current’ interval. So in 5.3, where we determine the elink
placement for a certain interval, we can use the traffic for the
current interval instead of that for the previous interval. This
mimics the behavior of a system with perfect traffic predic-
tion. The results of this change are shown in Fig. 13. As
expected, the ‘current’ case, where elinks are placed at loca-
tions ideal for the current traffic, performs consistently better
than the ‘previous’ case which uses the realistic placement
based on past traffic. The difference is however not dramatic,
which shows that our assumption that traffic does not change
significantly between reconfiguration intervals holds. Also,
since the ‘current’ case represents the upper limit for all traffic
prediction methods this means that even a very sophisticated
and expensive traffic prediction algorithm can only result in
a very limited performance increase.

7 Future work

Several assumptions were made in the prediction model, they
have been stated throughout Sect. 5. Some of them are fairly
trivial, others need more work to either validate or invalidate.

123

38 Photon Netw Commun (2008) 15:25–40

Fig. 13 Performance estimate
for a system with a perfect
prediction of the traffic in the
current interval: in ‘previous’,
elinks are placed at positions
ideal for traffic measured in the
previous reconfiguration
interval, in ‘current’ elinks are
placed ideally suited for the
traffic in the current interval 0%

2%

4%

6%

8%

10%

12%

14%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

FFT

Previous Current

0%

2%

4%

6%

8%

10%

12%

14%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Ocean.cont

Previous Current

0%

2%

4%

6%

8%

10%

12%

14%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Radix

Previous Current

0%

2%

4%

6%

8%

10%

12%

14%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Cholesky

Previous Current

0%

2%

4%

6%

8%

10%

12%

14%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Barnes

Previous Current

0%

2%

4%

6%

8%

10%

12%

14%

∆t = 100 µs ∆t = 1 ms ∆t = 10 ms

La
te

nc
y

re
du

ct
io

n

Network (n = 2, 4, 8; prism)

Average

Previous Current

Most importantly, the inclusion of congestion effects into our
model should be our next goal.

Our prediction method can also be used to tune other para-
meters than the n, f , and �t we have explored in this work.
Indeed,wewereable tocompare the implementationusing the
selective optical broadcast element with the generalized net-
work described by n and f , other implementations imposing
different constraints on the elink placement can be examined
also. Finally, the elink selection algorithm, which is part of our
prediction model, can be modified. This way we can quickly
measure the effect of changes in the selection heuristic.

8 Conclusions

In this paper, we have addressed the problem of evaluating
and designing a partially reconfigurable interconnection net-
work for shared-memory multiprocessors. We have propo-
sed a technique for predicting the average remote memory
access latency for variable network parameters (number of
extra links n, node fan-out f , reconfiguration time �t) based
on a single detailed simulation per benchmark. We found that
relative performance over different network parameters can
be accurately predicted. We analyzed the impact of seve-

ral assumptions made in our model, and found the omis-
sion of congestion modeling to be responsible for the largest
errors. Future work will be aimed at modeling these conges-
tion effects and incorporating them in our prediction model.

Acknowledgments This paper presents research results of the Inter-
university Attraction Poles Programs PHOTON (IAP-Phase V) and
photonics@be (IAP-Phase VI), initiated by the Belgian State, Prime
Minister’s Service, Science Policy Office. C. Debaes is indebted to the
FWO for his post-doctoral fellowship.

References

[1] Miller, D.A.B., Ozaktas, H.M.: Limit to the bit-rate capacity of
electrical interconnects from the aspect ratio of the system archi-
tecture. J. Parallel Distributed Comput. 41(1), 42–52 (1997)

[2] Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.-D., Gupta,
A., Hennessy, J.L., Horowitz, M., Lam, M.S.: The Stanford DASH
multiprocessor. IEEE Comput. 25(3), 63–79 (1992)

[3] Collet, J., Litaize, D., Campenhout, J.V., Desmulliez, M.,
Jesshope, C., Thienpont, H., Goodman, J., Louri, A.: Archi-
tectural approach to the role of optics in monoprocessor and
multiprocessor machines. Appl. Opt. 39(5), 671–682 (2000)

[4] Benner, A.F., Ignatowski, M., Kash, J.A., Kuchta, D.M., Ritter,
M.B.: Exploitation of optical interconnects in future server archi-
tectures. IBM J. Res. Dev. 49(4/5) 755–776 (2005)

123

Photon Netw Commun (2008) 15:25–40 39

[5] Mohammed, E. et al.: Optical interconnect system integration
for ultra-short-reach applications. Intel Technol. J. 8(2), 115–
127 (2004)

[6] Schares, L., et al.: Terabus—a waveguide-based parallel optica
interconnect for Tb/s-class on-board data transfers in computer
systems. In: Proceedings of the 31st European Conference on
Optical Communication (ECOC 2005), vol. 3, pp. 369–372. The
Institution of Electrical Engineers, Glasgow, Scotland (2005)

[7] Heirman, W., Artundo, I., Desmet, L., Dambre, J., Debaes, C.,
Thienpont, H., Van Campenhout, J.: Speeding up multiprocessor
machines with reconfigurable optical interconnects. In: Eldada,
L., Lee, E.-H. (eds.) Proceedings of SPIE, Optoelectronic Inte-
grated Circuits VIII, Photonics West, vol. 6124, p. 61240K. SPIE,
San Jose, California, USA (2006)

[8] Katsinis, C.: Performance analysis of the simultaneous optical
multi-processor exchange bus. Parallel Comput. 27(8), 1079–
1115 (2001)

[9] Heirman, W., Dambre, J., Van Campenhout, J.,Debaes, C., Thien-
pont, H.: Traffic temporal analysis for reconfigurable intercon-
nects in shared-memory systems. In: Proceedings of the 19th
IEEE International Parallel & Distributed Processing Sympo-
sium, IEEE Computer Society, p. 150. Denver, Colorado (2005)

[10] Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D.,
Hallberg, G., Hogberg, J., Larsson, F., Moestedt, A., Werner, B.:
Simics: A full system simulation platform. IEEE Com-
put. 35(2), 50–58 (2002)

[11] Ridruejo, F., Gonzalez, A., Miguel-Alonso, J.: TrGen: a traffic
generation system for interconnection network simulators. In: 1st.
Int. Workshop on Performance Evaluation of Networks for Paral-
lel, Cluster and Grid Computing Systems (PEN-PCGCS’05), pp.
547–553. Olso, Norway (2005)

[12] Brunfaut, M., Meeus, W., Van Campenhout, J., Annen, R.,
Zenklusen, P., Melchior, H., Bockstaele, R., Vanwassenhove, L.,
Hall, J., Wittman, B., Nayer, A., Heremans, P., Van Koetsem, J.,
King, R., Thienpont, H., Baets, R.: Demonstrating optoelectronic
interconnect in a FPGA based prototype system using flip chip
mounted 2D arrays of optical components and 2D POF-ribbon
arrays as optical pathways. In: Proceedings of SPIE, vol. 4455,
pp. 160–171. Bellingham (2001).

[13] Huang, D., Sze, T., Landin, A., Lytel, R., Davidson, H.: Optical
interconnects: out of the box forever?. IEEE J. Select. Top. Quant.
Electron. 9(2), 614–623 (2003)

[14] Snyder, L.: Introduction to the configurable, highly parallel
computer. Computer 15(1), 47–56 (1982)

[15] Pinkston, T.M., Goodman, J.W.: Design of an optical
reconfigurable shared-bus-hypercube interconnect. Appl.
Opt. 33(8), 1434–1443 (1994)

[16] Han X., Chen R.T. (2004) Improvement of multiprocessing per-
formance by using optical centralized shared bus. In: Proceedings
of the SPIE, vol. 5358, pp. 80–89 (2004)

[17] Shacham, A., Small, B.A., Liboiron-Ladouceur, O., Bergman,
K.: A fully implemented 12 × 12 data vortex optical packet swit-
ching interconnection network. J. Lightw. Technol. 23(10), 3066–
3075 (2005)

[18] Artundo, I., Desmet, L., Heirman, W., Debaes, C., Dambre, J., Van
Campenhout, J., Thienpont, H.: Selective optical broadcast com-
ponent for reconfigurable multiprocessor interconnects. IEEE
J. Select. Topic. Quant. Electron.: Spec. Issue Opt. Com-
mun. 12(4), 828–837 (2006)

[19] Heirman, W., Dambre, J., Artundo, I., Debaes, C., Thienpont,
H., Stroobandt, D., Van Campenhout, J.: Predicting reconfigu-
rable interconnect performance in distributed shared-memory
systems. Integ. the VLSI J. 40(4), 382–393 (2007)

[20] Sterling, T., Savarese, D., Becker, D.J., Dorband, J.E., Ranawake,
U.A., Packer, C.V.: Beowulf: A parallel workstation for scientic
computation, In: Proceedings of the International Conference on

Parallel Processing, pp. 11–14. CRC Press, Boca Raton, USA
(1995)

[21] Sánchez, J.L., Duato, J., García, J. M.: Using channel pipelining
in reconfigurable interconnection networks. In: 6th Euromicro
Workshop on Parallel and Distributed Processing, 1998.

[22] Leiserson, C.E., Abuhamdeh, Z.S., Douglas, D.C., Feynman,
C.R., Ganmukhi, M.N., Hill, J.V., Hillis, W.D., Kuszmaul, B.C.,
Pierre, M.A.S., Wells, D.S., Wong-Chan, M.C., Yang, S.-W., Zak,
R.: The network architecture of the Connection Machine CM-5. J.
Parallel Distributed Comput. 33(2), 145–158 (1996)

[23] Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.:
The SPLASH-2 programs: Characterization and methodological
considerations. In: Proceedings of the 22th International Sym-
posium on Computer Architecture, pp. 24–36. Santa Margherita
Ligure, Italy (1995).

Author Biographies

Wim Heirman was born in Temse,
Belgium, on November 28, 1980.
He received the M.Sc. degree in
computer engineering from Ghent
University, Ghent, Belgium, in
2003. He is currently doing Ph.D.
research with the Department of
Electronics and Information Sys-
tems (ELIS), Ghent University. His
current research interests include
parallel computing systems, recon-
figurable architectures and optical
interconnection networks.

Joni Dambre was born in Ghent,
Belgium, in 1973. She received
the M.Sc. degree in electrotech-
nical engineering, and the Ph.D.
degree in computer engineering from
Ghent University, Ghent, Belgium, in
1996 and 2003, respectively. She is
currently a Postdoctoral Researcher
with the Department of Electronics
and Information Systems (ELIS),
Ghent University. Her research inter-
ests include early evaluation of new
interconnect techniques in digital
systems.

Inigo Artundo was born in Pam-
plona, Spain on October 21, 1979.
In 2004 he received with the greatest
distinction his master degree in tele-
communication engineering at the
Public University of Navarra. Cur-
rently he is doing a Ph.D in the field of
reconfigurable optical interconnects
architectures at the Department of
Applied Physics and Photonics, Vrije
Universiteit Brussel, Belgium. His
current research interests are recon-
figurable architectures, optical inter-
connection networks and distributed
shared-memory systems.

123

40 Photon Netw Commun (2008) 15:25–40

Christof Debaes was born in
Geraardsbergen, Belgium, in 1975.
He graduated as an electrotechni-
cal engineer from the Vrije Uni-
versiteit Brussel (VUB) in 1998.
He received the Ph.D. degree from
the Applied Physics and Photonics
Department, VUB, in collaboration
with the Ginzton Laboratory, Stan-
ford University, Stanford, CA, direc-
ted by Prof. D.A.B. Miller. He is
currently working at the VUB on a
postdoctoral fellowship from the Fle-

mish Fund for Scientific Research (FWO-Vlaanderen). His research
activities are focused on optical interconnects covering a wide range of
subjects such as optical clock injection, opportunities for reconfigurable
optical interconnect and the use of the use Deep Proton Lithography for
micro-optical components.

Hugo Thienpont was born in Bel-
gium 1961. He graduated from the
Vrije Universiteit Brussels (VUB)
in 1984 as an Electrical Engineer
with majors in applied physics and
applied optics. In 1994 he became
Professor in the Faculty of Applied
Sciences. Today he is director of
research of the "Laboratory for Pho-
tonics" and is promoter of different
photonics related research and indus-
trial projects such as the European
Network of Excellence on Micro-
optics "NEMO". His research activi-

ties comprise materials, modeling, components and devices, packaging
and demonstrators for photonic interconnects.

Dirk Stroobandt obtained the Ph.D.
degree in electrotechnical enginee-
ring in 1998 from Ghent Univer-
sity. From 1998 Dirk Stroobandt was
Post-doctoral Fellow with the Fund
for Scientific Research - Flanders
(Belgium) (F.W.O.). Since October
2002 he is full professor at Ghent
University where he is affiliated
with the Department of Electronics
and Information Systems (ELIS).
His research is oriented towards a
priori estimations of interconnection

lengths in electronic systems and hardware/software codesign for
embedded systems.

Jan Van Campenhout was born
in Vilvoorde, Belgium, on August
9, 1949. He received the degree in
electromechanical engineering from
Ghent University, Ghent, Belgium, in
1972; and the M.S.E.E. and Ph.D.
degrees from Stanford University,
Stanford, CA, in 1975 and 1978, res-
pectively. He is currently with the
Faculty of Engineering, where he
teaches courses in computer architec-
ture, electronics, and digital design,
and is also the Head of the ELIS

Department, at Ghent University. His current research interests include
the study and implementation of various forms of parallelism in com-
puter systems, and their application in programming language support,
computer graphics and robotics. He is a Member of Sigma Xi, KVIV,
and ACM.

123

	Predicting the performance of reconfigurable optical interconnectsin distributed shared-memory systems
	Abstract
	Introduction
	Background
	Paper contributions
	Related work
	System architecture
	Multiprocessor architecture
	A simple reconfigurable network architecture
	Implementation
	Methodology
	Simulation platform
	Network architecture
	Extra link selection
	Predicting network performance
	Overview
	Full simulation
	Determining the extra link placements
	Correlating memory accesses
	Calculating new latencies
	Results and discussion
	Results
	Improving accuracy
	Reduction in simulation time
	Effects of traffic prediction
	Future work
	Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

