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I. INTRODUCTION

Architectural design space explorations rely heavily on
simulation to quickly compare the performance and energy
consumption of large numbers of designs. The simulation
infrastructure has a number of important requirements, which
at a high level can be described as:

« Efficiency both in time and space, by only simulating
relevant parts of the benchmark in detail, avoiding long
fast-forwarding or warmup; and maintaining a small disk
footprint for storing workloads.

e Accuracy: simulation results must be representative for
running the complete workload.

e Reproducible: the unit of work must be fixed across
architectures to allow for valid comparisons to be made;
workloads must be easily sharable while guaranteeing
(mostly) identical simulation results.

Bringing all these goals together in the context of parallel
workloads is a real challenge. Design of future many-core
processors with large cache capacities require the workload
to consist of highly parallel applications with large, realistic
input set sizes to both provide adequate scalability and prop-
erly exercise the memory subsystem. Additionally, execution-
driven simulation, and rather than trace-based simulation, is a
necessity to evaluate timing-dependent execution behavior of
these multi-threaded applications.

Application sampling is one solution to achieve simula-
tion efficiency, while maintaining an accurate representation
of the applications being studied. The ultimate goal is to
attain an ease of use by efficiently storing, distributing and
replaying workloads, in a reproducible fashion. For single-
threaded applications, the PinPoint methodology [6] satisfies
all of these requirements. It combines SimPoint [9] to reduce
the workload by selecting the most relevant sections, and
PinPlay [7] to provide deterministic, reproducible replay. The
result is a compact application snapshot starting at the begin-
ning of the SimPoint, and containing all I/O needed to replay
the execution exactly. PinPoint removes the need for online
application fast-forwarding — which for realistic applications
could otherwise result in trillions of executed instructions,
contributing a non-negligible amount of time to simulation.
Finally, the resulting PinPoint pinball (or PinBall) allows one
to replay the exact SimPoint without system library or other
dependencies, potentially across platforms [5].
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II. REPRODUCIBLE PARALLEL WORKLOADS

Unfortunately, parallel application requirements conflict
with many of the nice properties that the PinPoint methodol-
ogy provided for single-threaded workloads. One major issue
of multi-threaded applications is that it is much more common
for timing behavior, induced by changes in relative thread
performance (itself caused by e.g. NUMA effects), to affect the
execution path. Timing can, for instance, change the outcome
in races for entering critical sections, or can cause dramatic
shifts in the work executed by threads when an application
uses load balancing or work stealing. Architects will want
to see these effects occur in their simulation so they can
adapt their hardware or software design accordingly. Fully-
deterministic replay is thus no longer desirable as it may
impose a thread ordering that is unrealistic for the given
target architecture. Instead, timing feedback must be allowed
to affect the functional simulation during replay. This is in
contrast to PinPlay’s default replay behavior, in which all
thread orderings are enforced to match those recorded [8].

As application thread alignment can be different on different
architectures, taking a snapshot during the execution of an
application when running on one architecture does not neces-
sarily provide a valid ordering on the target architecture. One
approach, taken in the SimFlex methodology for commercial
workloads [10], is to state that any thread ordering is correct
as it will probabilistically occur on any architecture. This
assumption is valid for request-based parallel applications
where threads are independent and rarely interact. In the HPC
space, however, threads do interact, and we need to find
points in the application that represent safe thread orderings,
i.e., that are guaranteed to occur in all target architectures.
The BarrierPoint methodology [3] exploits the fact that in
barrier-based applications (which includes programs based
on fork-join parallelism such as OpenMP), whole-program
barriers are such safe points for checkpointing by definition.
BarrierPoint builds a multi-threaded analogue of SimPoint,
where simulation points are no longer delineated by fixed
instruction counts, but by whole-program barriers. This makes
the BarrierPoint methodology time-efficient and accurate, but
its current implementation does not satisfy the reproducibility
requirement. In the following section, we will explore what
components are missing and how these issues can be solved.



III. IMPLEMENTATION

The original implementation of BarrierPoint used in [3] runs
the complete application N times, once for each BarrierPoint.
Only the region of interest is simulated in detail, while fast-
forwarding is used to proceed past unneeded regions. This
simplified the implementation greatly and allowed for parallel
speedups by making the simulation of each BarrierPoint
independent. However, each BarrierPoint was collected on a
different run of the application, potentially even on a different
host machine with slightly different OS and libraries. In addi-
tion, even after disabling Linux’ address space randomization,
differences could occur in the memory layout both for shared
libraries and stack locations. Therefore, this implementation
does not necessarily provide the same virtual address starting
point across runs, undermining its reproducibility.

Our goal therefore is to add an additional level of repro-
ducibility without requiring strict determinism throughout the
application’s execution. We now describe two implementation
ideas that would eliminate virtual address differences across
runs, while adhering to execution-driven simulation where
timing feedback is still allowed to affect the execution path.

1) Linux Checkpoint/Restart: Starting with Linux version
3.11, native checkpoint/restart functionality is available for
user-space applications via the CRIU project [1] without
requiring additional kernel patches. This is the first step to
provide a means for user-space based functional-directed or
functional-first simulators to restore the state of an application
and restart simulation. Many simulators use Pin [4] as the
functional module to drive microarchitectural simulation. By
attaching to the process after it has been restored, one can
restart application execution and microarchitecture simulation
in a deterministic manner. Unfortunately, this solution works
only with versions of Linux 3.11 and newer, limiting its current
applicability.

2) PinPlay: As an alternative solution, one can use Pin and
PinPlay [7] as a means to load an application image and restart
execution even on earlier versions of Linux. By converting
snapshots captured by CRIU into the PinPlay format, we can
now take advantage of application replay capabilities across
Linux versions and even allowing the application to run on
other operating systems.

Although we describe user-space simulation solutions here,
full-system snapshot capabilities have existed for some time
and allows for BarrierPoint to be implemented on full-system
simulation platforms.

Limitations

Physical addresses can pose a simulation problem for repro-
ducibility with user-space simulation. Sniper [2] supports auto-
matic extraction of virtual-to-physical mappings as introduced
by the operating system to allow one to model data sharing
between processes. But these mappings will not be restored in
exactly the same way in C/R or PinPlay as the exact physical
page mapping location is not typically tracked, or would be
difficult to re-establish after application restoration. A solution
to this issue is to maintain virtual-to-physical mappings that

have been used and to restore those mappings to the simulator
at restore time.

The virtual to physical mappings used by the operating
system are normally not saved for Linux’s checkpoint-restart
system. Therefore, this data will need to be recorded and
injected into the simulator to maintain an accurate system
view.

IV. CONCLUSION

We provide a number of potential solutions that expands the
applicability of user-space sampling methodologies by provid-
ing determinism for the BarrierPoint methodology (and po-
tentially other sampling methodologies). With a two-pronged
approach though the use of reproducible program state, while
still allowing non-determinism for architectural exploration
and evaluation, we feel that this methodology holds promise
by reducing the number of simulations required to obtain high
statistical confidence in the simulated results.
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