
ROIperf : A Framework to Rapidly Validate Workload Sampling
Methodologies

Alen Sabu

alen@u.nus.edu

National University of Singapore

Harish Patil

harish.patil@intel.com

Intel Corporation

Wim Heirman

wim.heirman@intel.com

Intel Corporation

Trevor E. Carlson

tcarlson@nus.edu.sg

National University of Singapore

ABSTRACT
Estimating workload performance for a future processor is a daunt-

ing task, as traditional cycle-accurate simulation techniques used by

architects are extremely slow. Workload sampling can significantly

speed up this process, assuming the regions of interest (ROIs) or the

representative sample found can be proven to accurately represent

the behavior of the full workload. One standard way to validate

the regions of interest is to measure the prediction error, which

is the difference in the performance of the full workload and the

predicted performance obtained using the representative. Perfor-

mance is typically obtained using simulation. However, simulation

of long-running workloads is infeasible, taking months to years.

In this work, we propose ROIperf, a framework that assesses the

quality of workload sampling methodologies based on hardware

performance counters by evaluating both the full and representa-

tive workloads using real hardware systems. ROIperf allows for the

accurate validation of regions of interest by measuring the perfor-

mance using real hardware instead of simulation. The work aims

to present a methodology for long-running programs for which

the prevailing simulation-based validation technique is not feasible.

We demonstrate the efficacy of ROIperf by evaluating various sam-

ple selection methodologies across a wide range of workloads. We

evaluate single-threaded and multi-threaded SPEC CPU2017 bench-

marks as well as the NAS Parallel Benchmarks to test the proposed

technique. ROIperf provides a significant speedup in validating

regions selected for simulation, allowing for more widespread use

of sample verification, especially for long-running workloads.

1 INTRODUCTION
Cycle-accurate, detailed simulation of computer systems can be

rather slow, with simulation speeds of complex, modern proces-

sor designs as low as a few thousand instructions per second, or

100,000× slower than native speeds. Simulating large modern appli-

cations with trillions of instructions in their entirety is, therefore,

not practical when using these methods directly. Instead, simu-

lating regions of interest (ROIs) from large application runs and

extrapolating whole-program performance is a standard technique

employed [26, 23, 30, 28, 3, 7, 6, 22]. To gain confidence in the ex-

trapolated results, it is necessary to validate that the ROIs selected

closely represent whole-program behavior [11, 29, 9]. Traditionally,

such validation is done by comparing the simulated performance

of the entire program with the performance extrapolated from ROI

simulations. However, since whole-program simulation for most

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SS
N_s.

1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_s

.1

62
8.p

op
2_s

.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_s
.1

65
7.x

z_s
.2

102

104

106

W
al

l T
im

e 
(in

 se
co

nd
s)

1 minute

1 hour

1 day
1 week

Simulation ROIperf

Figure 1: A comparison of the total wall-time required to
validate the representativeness of the sample identified for
multi-threaded SPEC CPU2017 benchmarks using train in-
puts (the gap is expected to increase for ref inputs). The bars
show the time taken to validate LoopPoint [22] methodology
using a cycle-accurate simulator and using the ROIperf tool,
assuming infinite resources.

realistic applications are impractical, to begin with, such simulation-

based validation is limited to either short-running programs and/or

using fast but inaccurate simulators.

A much faster alternative to using architecture simulators for

validation is performance monitoring on native hardware. Figure 1

shows how the validation of representative regions using our pro-

posed ROIperf methodology can be much faster than simulation-

based validation. Selecting the most representative regions in an

application requires tuning the parameters used for region selection

and re-validating the newly selected regions. This is an iterative

process that is impractical without extremely fast techniques like

the one proposed in this work, thus validating the efficacy of a

workload sampling methodology.

While measuring the whole-program performance on native

hardware today can be straightforward [20, 12], performing these

measurements for regions of interest can be tricky. To keep simu-

lation times in check, ROIs are typically very small compared to

the whole-program execution: a few million instructions running

for mere milliseconds on real hardware. Precisely gathering perfor-

mance information for just the ROIs on native hardware with high

accuracy can be challenging. For example, the loop-based represen-

tation of ROIs is considered highly accurate and reproducible [22].

However, identifying such representation of the regions on na-

tive hardware is not straightforward. In an attempt to address this



sabu et al.

challenge, we present ROIperf, a methodology that incorporates a

lightweight instrumentation technique that provides the required

control and precision for this methodology. A Pin probe tool [14]

is very low overhead as it works by patching an in-memory image

of the application instead of using just-in-time (JIT) compilation

that can exhibit high overheads [4] that interfere with the work-

load itself. While the instrumentation capability of a Pin probe

tool is limited, its low overhead makes it ideal as a building-block

for ROIperf. ROIperf uses the Pin probe to merely hook into the

application execution at the beginning and register callbacks based

on hardware performance counters using the ROI specification.

The repeatability challenge
With profile-based simulation region selection techniques such as

SimPoint [23], at least two executions of the test program are in-

volved. In the first execution of the program, the profiling results

are collected, which are used for selecting ROIs. The second exe-

cution uses the regions selected for simulation. The assumption

is that the two runs are identical in all respects. However, such

strict repeatability is hard to guarantee in practice, especially for

multi-threaded programs. This can be due to machine differences

(for example, different ISA support leading to scalar vs. vectorized

runs), different system libraries (because machines in a simulation

pool have different operating systems or even slightly different

patch levels), or timing-dependent control flow (for example, work

stealing in parallel applications).

The PinPlay work [18] proposes a record and replay framework

to guarantee the repeatability of program executions during multi-

ple analyses. The authors show how to enable repeatable analyses

of parallel programs by recording the entire program execution, and

then, the profiling and simulation are done using a deterministic

replay of the whole-program recording. However, the overhead of

PinPlay replay is high (≈ 50×), so performance counter-based eval-

uation becomes inaccurate. Other efforts to improve repeatability

include using static binaries, checkpoints [8], or ELFies [17]. Still,

none of these techniques can guarantee fully repeatable execution,

especially in multi-threaded scenarios where timing-dependent

control flow and the resulting execution divergence can happen

more often [19, 2]. We, therefore, need tools that can detect the

divergence and allow for mitigation (by debugging machine/library

differences, retrying the run, selecting a different and more reliable

representative from a cluster, etc.).

With ROIperf, we perform the quality evaluation of the ROI

using a native program run. We, therefore, cannot guarantee that

the program run under ROIperf is identical to the earlier run during

region selection either. We can minimize the effects of the repeata-

bility challenge by performing ROI selection, and ROIperf runs in

the exact same environment. We describe tests for the applicability

of ROIperf prior to the measurement in Section 5. In our evaluations,

we find that ROIperf succeeds in finding the regions accurately in

most cases.

Contributions
In this paper, we present ROIperf, a framework to evaluate the

efficacy of workload sampling methodologies quickly. We show its

usage in validating ROIs of long-running single and multi-threaded

ROIperf

Compute Sampling 
Error

ExtrapolateROI 
Specification

Workload

Region 
Statistics

Whole Program 
Statistics

Sampling

Figure 2: An overview of the working of ROIperf tool.

workloads. The ROIs were selected using the PinPoints [15] (for

single-threaded executions) and LoopPoint [22] (for multi-threaded

programs) methodologies. Both these selection methodologies use

deterministic replay [18] based profiling for region selection. For

accurate ROI validation, it is ideal to have the control flow during

the ROIperf-based run be exactly the same as during the profiling

run during ROI selection. This is very hard to achieve, especially

for multi-threaded programs. We use sanity tests (see Section 5.1)

to verify reproducibility and to rule out extreme cases of control

flow diversion. We will open-source the ROIperf tools for use in

the community.

2 BACKGROUND
2.1 Hardware Performance Counters
Modern microprocessors have special hardware registers called

hardware performance counters formonitoring various performance-

related metrics [21]. These counters provide the ability to measure

performance in real time and are typically used by software per-

formance tools to measure metrics like the number of instructions

executed, cache misses, page faults, etc [24]. By measuring these

metrics, performance tools can help developers identify bottlenecks

and other performance issues in their software. Because these coun-

ters are built into the hardware, they are able to provide measure-

ments of performance-related metrics with very low overhead.

2.2 Workload Sampling Techniques
Single-threaded Workloads. SimPoint [23] is a well-established

technique for sampling single-threaded programs for simulation. It

requires the collection of signature vectors (typically basic-block-

vectors, BBVs) every sampling period (slice-size). The BBVs gener-

ated are then clustered using the k-means clustering algorithm to

find up to maxk phases. A representative region is selected from

each cluster that is assigned a weight proportional to the number

of regions that belong to the cluster. PinPoints toolkit was first

introduced in [15], where Pin was used for BBV generation of x86

applications. Noticing the problem of repeatability of some regions,

a deterministic replay-based version of the PinPoints kit (for x86)

was introduced in [18]. The overall flow of the PinPlay-based x86

PinPoints toolchain is described in Figure 3.

Multi-threaded Workloads. The problem of sampling multi-

threaded workloads is even more challenging, and naive extensions

of single-threaded workload sampling techniques cannot be applied

directly due to the presence of thread interactions, spin-loops, etc.

There are several techniques proposed to sample multi-threaded

workloads [3, 7, 6, 22], each having its own limitations. In this



ROIperf : A Framework to Rapidly Validate Workload Sampling Methodologies

PinPlay
Logger

Parallel 
Simulation

PinPlay
Re-logger

Profiler + 
SimPoint PinPoints

Workload Region 
Pinballs

Whole Program 
Pinball

Figure 3: The overview of PinPoints methodology with Pin-
Play and SimPoint applicable to single-threaded workloads.

Per-thread 
BBVs

Workload

Program Execution Capture

Whole Program 
Pinball

Region Simulation and Extrapolation

Looppoints

Loop-based 
Profiling Combine Clustering/ 

Selection

Deterministic Workload Analysis

Simulation Metric / Perf. 
Extrapolation

Sync. 
Filter

Flow 
Control

Figure 4: The workflow of LoopPoint sampled simulation
methodology that applies to multi-threaded workloads.

work, we evaluate a recently proposed generic multi-threaded sam-

pled simulation methodology, LoopPoint [22]. LoopPoint identifies

regions bounded by loop entries and can achieve high speedups

without compromising on the sampling accuracy. Figure 4 shows

the overall flow of the LoopPoint methodology. The analysis and

region identification is done using a deterministic analysis of the

workload. The simulation of the identified representative regions

is performed to estimate the performance of the individual regions,

which are used along with the corresponding multiplier to estimate

the performance of the whole workload.

3 IMPLEMENTATION
We describe the details of implementing the ROIperf methodology

in this section. We also present and compare the different ways to

use the tool for single-threaded and multi-threaded applications.

3.1 Pin instrumentation modes
Pin [14] is a well-known dynamic instrumentation and analysis

framework. It offers an application programming interface (API) for

adding extra code at various program points. The API differs based

on the mode specified during Pin initialization. Pin supports two

modes: (1) a just-in-time (JIT) mode which translates the test pro-

gram in memory and adds instrumentation during the translation,

and (2) a probe mode which merely patches an in-memory copy of

the program with extra code. The JIT mode API is quite rich and

allows for very sophisticated run-time analyses but at the cost of

translation overhead. The probe mode API is limited to adding extra

code only at specific program points, although the overhead of such

an addition is very low. ROIperf uses Pin in probe mode due to its

low overhead, which minimizes perturbation during performance

measurement of the target application.

3.2 Region of Interest (ROI) specification
We select the simulation regions of single-threaded applications

using a variation of SimPoint [23] methodology where an applica-

tion is profiled to generate signature vectors, typically basic-block

vectors, after every execution slice (indicating unit of work), and the
resulting vectors are clustered to form multiple phases. A represen-

tative ROI is selected for each phase, and the ROI carries a weight

proportional to the size of the phase it represents. The selected ROIs

are then used to drive architectural simulation. The assumption is

that the ROIs selected are reached precisely during the simulation

as they were during the initial profiling run.

We factor in the repeatability aspect of the programs while eval-

uating ROIperf so that the ROIs remain representative of the origi-

nal application. Single-threaded program runs may not always be

repeatable [18]. The main reasons for non-repeatability for single-

threaded programs are changes in the shared library version and

the load and stack locations. Therefore, to ensure ROI validity, one

needs to make sure the exact same shared libraries are used, and the

library load and stack start location are made to match those during

the profiling run used to find ROIs. On Linux, that can be achieved

by turning off address space layout randomization (ASLR).
1

A single-threaded ROI can be simply represented by the retired

instruction count at the beginning and the end of the region. As

long as regions are repeatable, ensured by using fixed shared li-

braries and by turning off ASLR, capturing hardware performance

counter values at ROI boundaries is sufficient for performance pro-

jection (Figure 1) of single-threaded programs. For multi-threaded

programs, a significant source of non-repeatability is the synchro-

nization among threads [18]. Instruction counts are, therefore, not a

reliable way to specify ROI boundaries. The LoopPoint [22] method-

ology ensures that the ROIs found are repeatable by choosing units

of work that start and end at a worker loop (not-spinloop) entry, a

loop that is not doing synchronization and representing ROI start

and end as (PC, count) pairs for the corresponding loop entry ad-

dresses.With ROIs, starting/stopping at worker loop entries ensures

that the start and end counts will be invariant across executions.

ASLR needs to be turned off during profiling and measurements

for ROI boundary PCs to be repeatable.

3.3 ROI handling in ROIperf
The goal of the ROIperf methodology is to output interesting hard-

ware performance counter values at the beginning and the end of

each ROI. ROIperf uses the Linux function call perf_event_open()

to program hardware performance counters. The performance

counters of interest are specified based on the Linux header file

/usr/include/linux/perf_event.h. The specification is done by set-

ting an environment variable ROIPERF_LIST as a comma-separated

list of number pairs perftype:counter, where perftype is either 0

(indicating a hardware counter) or 1 (indicating a software counter).

Other perftypes are currently not supported. The counter values

are set based on the information in the perf_event.h file. For exam-

ple, the perftype:counter pair 0:0 indicates hw_cpu_cycles, and 1:2

indicates sw_page_faults.

1
This can typically be done globally by modifying /proc/sys/kernel/
randomize_va_space, or on a per-process basis by prepending the command line

with setarch x86_64 --addr-no-randomize.



sabu et al.

Program execution
Region of interest 

(ROI)

Region Start Region End

counter_start
icount or (PC,count)

Program Start Program End

counter_end
icount or (PC,count)

User-specified counters (ROIPERF_PERFLIST)

Program Start : Start all counters
Region Start : Output RDTSC and all ROIPERF_PERFLIST counter values; disable counter_start
Region End : Output RDTSC and all ROIPERF_PERFLIST counter values; disable counter_end; 

exit if –early_out

Figure 5: The Execution flow of an application under the
ROIperf tool.

ROIperf works on an application and its ROI specification, as

shown in Figure 2. Hardware performance counters are programmed

in two ways: (a) sampled counting of retired instructions or pro-

gram counters; and (b) continuous monitoring of performance coun-

ters specified with ROIPERF_LIST. The sampled counting is pro-

grammed using an overflow value and a call-back function name.

For an instruction-count-based ROI specification, two counters

are programmed to measure PERF_COUNT_HW_INSTRUCTIONS

in user mode with an overflow value equalling the start and end

instruction count for the ROI. When the counter overflows, the

call-back function registered gets called. The callback function out-

puts the current value system-wide time-stamp counter using the

Read Time-Stamp Counter (RDTSC), which reads the current value

of the processor’s time-stamp counter. It also outputs the current

values of the interesting performance counters programmed in the

continuous mode. Various actions taken by the ROIperf tool are de-

scribed in Figure 5. For (PC, count) ROI specification, two counters

are programmed with perftype PERF_TYPE_BREAKPOINT with

the PCs of the start and the end of the ROI. Overflow values are

set to the count values for the start and end specifications. The call-

back function outputs RDTSC values and the values of performance

counters from ROIPERF_LIST.

We noticed that PERF_COUNT_HW_INSTRUCTIONS count-

ing and overflow handling are very efficiently handled in all the

x86 processors we tested. PERF_TYPE_BREAKPOINT, on the other

hand, is quite expensive to use. Every time the programmed PC

is executed, there is a trap in the operating system kernel, which

checks the overflow using a software counter. This causes a lot

of perturbation in performance measurements, especially if the

PCs involved in the ROI specification are frequently executed.

We, therefore, think using (PC, count) specification only for the

start of the ROI and then using a relative instruction-count-based

PERF_COUNT_HW_INSTRUCTIONS for getting the ROI end is the

best compromise. Since we are only interested in the delta between

starting and ending performance metrics for an ROI, reaching the

ROI start with a precise but expensive (PC, count) mechanism and

reaching the ROI end with a fast albeit imprecise (particularly for

multi-threaded programs) is acceptable.

In the case of multi-threaded programs, only the main thread

(thread 0) is running at this point; hence ROIperf only starts hard-

ware performance counters for the core/processor where the main

thread is running. Pin probe does not monitor thread creation;

hence there is no callback to the ROIperf tool when threads are

created later during program execution. Therefore ROIperf cannot

monitor any children threads in a multi-threaded program. RDTSC

values that ROIperf outputs do, however, capture time for the entire

ROI, including all threads. As long as the main thread (thread 0) is

active inside all ROIs being tested, ROIperf’s approach of monitor-

ing only thread 0 execution will suffice. The counters specified with

ROIPERF_PERFLIST will only be counted for the core/processor

where the main thread runs through.

4 EXPERIMENTAL SETUP
Workloads Used. We use two benchmarks for our evaluation,

SPEC CPU2017 and NAS Parallel Benchmarks (NPB). For our single-

threaded evaluations, we use the rate version of SPEC CPU2017

benchmarks using training (train) inputs and reference (ref) inputs.

For our multi-threaded evaluations, we use the multi-threaded

subset of SPEC CPU2017 benchmarks (speed version). These bench-

marks can spawn several threads that synchronize and share mem-

ory. We configure the benchmarks with eight OpenMP threads. We

also use NPB version 3.3 (OpenMP-based) for our multi-threaded

evaluations that are configured to Class C inputs with eight threads.

We present the evaluation results for all but dc (data cube) bench-

mark in the NPB benchmark suite as it generates a huge amount

of data. We use active thread wait-policy for evaluating the SPEC

CPU2017 benchmarks, which means that the threads spin (user-

level) at the synchronization point, whereas passive policy is used

for the NPB benchmarks for which the threads go to sleep while

waiting for the other threads at a synchronization point.

Sample Selection. For single-threaded sampling, we use PinPlay-

based profiling methodologies involving the PinPoint [15] tool, de-

rived from the SimPoint [23] methodology. We split the application

every 200million instructions.We also use a maxk of 50 for k-means

clustering. For sampling multi-threaded applications that use eight

threads, we use the LoopPoint methodology [13] with default set-

tings. We split the applications targeting multi-threaded regions

of size 800 million global (all-threads) instructions, always align-

ing with a loop entry. The regions are represented as basic-block

vectors (BBVs), clustered using k-means clustering with a maxk of

50. PinPlay processing, especially logging, is quite expensive, and

therefore running region selection in a controlled environment was

not practical. Instead, region selection was done on machines with

varying microarchitectures and run-time libraries. But, in an ideal

case, we are required to (a) run all the experiments (region selection,

simulation, ROIperf validation, etc.) on the same microarchitecture

and (b) package and reuse the system libraries so that we are sure

we control the simulation. For ROIperf-based evaluations, we chose

two machines with Broadwell and Skylake microarchitectures.

Simulators Used.We use two different simulators for our ex-

periments. For our experiments with the SPEC CPU2017 bench-

mark, we use an in-house simulator derived from Sniper [5], called

CoreSim, for evaluations. CoreSim allows for rapid yet fairly accu-

rate simulation of x86 many-core systems that use SDE [10] as the

simulation front-end. We simulated both Intel Skylake and Intel

Cascade Lake microarchitectures using CoreSim.We also use Sniper

multi-core simulator [5, 25] version 8.0 (using Pin [14] front-end)



ROIperf : A Framework to Rapidly Validate Workload Sampling Methodologies

50
0.p

erl
be

nch
_r.1

50
0.p

erl
be

nch
_r.2

50
0.p

erl
be

nch
_r.3

50
0.p

erl
be

nch
_r.4

50
0.p

erl
be

nch
_r.5

50
2.g

cc_
r.1

50
2.g

cc_
r.2

50
2.g

cc_
r.3

50
5.m

cf_
r.1

52
0.o

mne
tpp

_r.1

52
5.x

26
4_r

.1

54
1.l

ee
la_

r.1

54
8.e

xch
an

ge
2_r

.1

55
7.x

z_r
.1

55
7.x

z_r
.2

0.0

2.5

5.0

7.5

10.0

ab
s. 

pr
ed

ict
io

n 
er

ro
r%

sim:runtime roiperf:broadwell roiperf:skylake

Figure 6: Sampling error in predicting cycles-per-instructions
(CPI) for single-threaded SPEC CPU2017 benchmarks that
use train inputs

for our evaluations with NPB benchmarks. We configured Sniper

to simulate a microarchitecture similar to Intel Gainestown.

5 EVALUATION
In this section, we aim to demonstrate the effectiveness of the

ROIperf methodology across different benchmarks.

5.1 Testing ROIperf applicability
As discussed in Section 1, the repeatability of application results can

be an issue for a number of applications, both single-threaded and

multi-threaded. For our evaluations, we selected the applications

that were not prone to this issue. We devised a pre-test for the

applications for repeatability which is two-fold:

(1) Does the thread-0 instruction count match between the
region-selection run and the ROIperf run?
The cases where we found a difference of more than 10%

were ruled out from ROIperf evaluations. This test works

well for single-threaded applications. For multi-threaded

programs, where run-to-run variation is expected due to

different amounts of synchronization code, the instruction

count test may not be adequate.

(2) Do the regions described using (PC, count) specification
get reached on the test machine?
We tested this with a Pin-based tool to report ROI start

and end events based on (PC, count) ROI specification. (PC,

count) specified ROIs not getting reached implies subtle

control flow diversion between the region-selection and

ROIperf runs. Any cases with a substantial number of ROIs

missed were ruled out. Note that instruction-count-based

ROI specification will not catch control flow divergence as

the (PC, count) specification does.

We demonstrate the ROIperf methodology using simulation-based

region validation as the base case and compare the prediction errors

reported by the simulation to those reported by ROIperf. We do

this for relatively shorter train input for SPEC CPU2017 runs as the

simulation of ref inputs is otherwise not practical.

5.2 Single-threaded evaluation
We use the rate setup from SPEC CPU2017 benchmarks. The bina-

ries used were compiled using GCC to use the AVX vector instruc-

tions. The simulator used was, CoreSim, an SDE-based simulator

modeling an Intel Skylake processor. ROIperf evaluations were

done on two test machines, one with a Broadwell processor and

another with a Skylake processor. The region selection was done

using the PinPoints methodology with a slice-size of 200 million

instructions and a maximum cluster count (maxk) of 50.

SPEC CPU2017 with train input. We first simulated the bi-

naries running train input with CoreSim in two ways (1) for the

entire program execution and (2) once each for each ROI selected

by PinPoints (instruction-count-based specification). Prediction

error for each benchmark was computed using the simulated run-

time, whole-program, and region-projected. The longest-running

whole-program simulation took five weeks to finish. We then used

ROIperf using the exact region specification and found prediction

errors on two different test machines, one with a Broadwell x86

processor and another with a Skylake x86 processor. We evaluated

ROIperf with the whole-program and each region and computed

prediction error based on cycles-per-instruction (CPI) values re-

ported as shown in Figure 2. The measurement was repeated several

times, and the average values were considered. The entire evalu-

ation took a few hours, which is a significant improvement over

the simulation-based validation methodology. Figure 6 reports the

prediction errors for simulation and ROIperf-based validation. We

see that while the absolute prediction error values differ, the trends

in prediction errors are the same between simulation-based and

ROIperf-based validation. This gives us confidence in using ROIperf

as a much faster alternative to simulation-based ROI validation.

SPEC CPU2017 with ref input. SPEC CPU2017 runs with

ref input are much longer running compared to train input runs.

Simulation-based validation for ref input is therefore not practical as

it would take a number of months to finish whole-program ref runs

simulations with CoreSim. This is where ROIperf-based simulation

adds value. Since we are using native hardware as the simulator, the

evaluation times are much shorter. Figure 7 reports the prediction

errors for ROIperf-based validation of SPEC CPU2017 ref input runs

on running Broadwell and Skylake servers. The missing entries (×××)
are where we encountered the repeatability challenge described

in Section 1. ROIperf applicability testing (described earlier in Sec-

tion 5.1) shows test machine native-run instruction count shows

more than 15% variation from the profiling run instruction count

for the ××× cases. On the Skylake machine, all runs of 503.bwaves

showed more than 50% difference between instruction count dur-

ing profiling and during ROIperf run. We observed the Skylake

machine happened to have a different version of the math library

than the Broadwell machine, and the code executed on the two

machines was quite different, as measured by the instruction mixes

on both machines. The libm library on the Broadwell machine had

an optimization that removed the canonical input check from pow(),

which led to a 2.4× reduction in the instruction count.



sabu et al.

50
0.p

erl
be

nch
_r.1

50
0.p

erl
be

nch
_r.2

50
0.p

erl
be

nch
_r.3

50
2.g

cc_
r.1

50
2.g

cc_
r.2

50
2.g

cc_
r.3

50
3.b

wav
es_

r.1

50
3.b

wav
es_

r.2

50
3.b

wav
es_

r.3

50
3.b

wav
es_

r.4

50
5.m

cf_
r.1

50
7.c

act
uB

SS
N_r.1

50
8.n

am
d_r

.1

51
0.p

are
st_

r.1

51
1.p

ov
ray

_r.1

51
9.l

bm
_r.1

52
0.o

mne
tpp

_r.1

52
1.w

rf_
r.1

52
3.x

ala
ncb

mk_r
.1

52
5.x

26
4_r

.1

52
5.x

26
4_r

.2

52
5.x

26
4_r

.3

52
6.b

len
de

r_r
.1

52
7.c

am
4_r

.1

53
1.d

ee
psj

en
g_r

.1

54
1.l

ee
la_

r.1

54
4.n

ab
_r.1

54
8.e

xch
an

ge
2_r

.1

54
9.f

oto
nik

3d
_r.1

55
4.r

om
s_r

.1

55
7.x

z_r
.1

55
7.x

z_r
.2

55
7.x

z_r
.3

0.0

2.5

5.0

7.5

10.0

ab
s. 

RD
TS

C 
er

ro
r%

roiperf:broadwell roiperf:skylake

Figure 7: Prediction errors in cycles-per-instructions (CPI) computation for the single threaded SPEC benchmarks using ref
input. For the cases marked ×××, ROIperf is not applicable due to repeatability challenges.

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SS
N_s.

1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_s

.1

62
8.p

op
2_s

.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_s
.1

65
7.x

z_s
.2

0

5

10

15

ab
s. 

pr
ed

ict
io

n 
er

ro
r%

sim:runtime roiperf:rdtsc

Figure 8: A comparison of RDTSC estimation error using
ROIperf and runtime estimation error using CoreSim simu-
lator. The benchmark suite is SPEC CPU2017, and the bench-
marks use 8 threads, train inputs, and active wait policy. The
ROIs are identified using LoopPoint methodology.

5.3 Multi-threaded evaluation
Evaluating synchronizing multi-threaded applications can be quite

challenging [1]. Tools like PinPlay [16] offer deterministic analy-

sis of multi-threaded applications. While using ROIperf, we esti-

mate the performance using native hardware. For multi-threaded

evaluation, we used the OpenMP subset of the speed version of

SPEC CPU2017 benchmarks. The regions of interest (ROIs) of the

benchmarks were selected using LoopPoint methodology using the

settings as described in Section 4.

SPEC CPU2017 with train input. Figure 8 shows a compari-

son between the RDTSC prediction error using ROIperf and run-

time prediction error using CoreSim. The ROIs were simulated on

CoreSim with Cascade Lake microarchitecture specifications. We

use 8-threaded SPEC CPU2017 benchmarks that use train inputs for

this evaluation. The benchmarks use active thread wait policy. We

can observe very similar trends in the estimation errors, especially

for applications like 627.cam4_s.1.

bt.C cg.C ep.C ft.C is.C lu.C mg.C sp.C ua.C
0.0

2.5

5.0

7.5

10.0

12.5

ab
s. 

pr
ed

ict
io

n 
er

ro
r%

sim:runtime roiperf:cycles roiperf:rdtsc

Figure 9: A comparison of simulation-based prediction errors
with ROIperf results for both HW_CPU_CYCLES and RDTSC
projections on a Skylake Server. We use NPB benchmarks
that use Class C inputs, 8 threads and passive wait policy.

NPB using Class C inputs.We repeat the comparison of pre-

diction errors from ROIperf and simulation for NAS Parallel Bench-

marks (NPB) Class C input size. Figure 9 shows the runtime pre-

diction errors obtained from simulation (Sniper:Gainestown), and

prediction errors for user-level hardware CPU cycles and RDTSC

using ROIperf. Again the error bars show similar trends which

signify the reliability of the results obtained using ROIperf.

6 RELATEDWORK
The overhead of the Linux perf_event counter interface that ROIperf

uses is described in priorworks [27]. ROIperf uses the self-monitoring

interface as described earlier and hence is prone to various over-

heads, namely overheads for performance counter starting, reading,

reading multiple times, and stopping. The paper suggests turning

off dynamic frequency scaling to avoid affecting the RDTSC instruc-

tion results. We did that for our test machines. They also suggest

using static linking to avoid dynamic link overhead of the read()

system call used to read performance counters.

Hardware performance counter-based simulation region valida-

tion was reported in [15] for single-threaded SPEC2000 Itanium

programs. Region selection was done with SimPoint [23] with a

fixed region length of slice-size instructions. For evaluation, a JIT-

mode Pin tool was used that ran till the beginning of an ROI using

instruction count and then detached from the underlying applica-

tion. Thus the run till the beginning of the ROI was under Pin and



ROIperf : A Framework to Rapidly Validate Workload Sampling Methodologies

on native hardware afterward. The Pintool run was launched with

a performance monitoring Linux tool sampling specified hardware

performance counters at slice-size intervals. Thus, the first sample

after Pin detached from the application roughly corresponded with

the ROI. ROIperf does not detach from the application, but since it

is a Pin probe tool, it has negligible overhead. ROIperf can monitor

ROI boundaries more precisely, especially if (PC, count) specifica-

tions are used. ROIperf also handles variable-sized ROIs from both

single and multi-threaded programs.

7 CONCLUSION
We present ROIperf, a technique to estimate the quality of workload

sampling methodologies. ROIperf validates the representativeness

of a chosen workload sample utilizing hardware performance coun-

ters, which can be used in several ways to study the workload

characteristics, core interactions, cache behavior, etc., without the

need for a simulator.

Our analyses show that the program behavior needs to be repeat-

able across multiple executions of the workload to obtain a stable

measurement. Simulators provide a controlled environment for per-

formance estimation and, especially in the case ofmulti-threaded ap-

plications, control the thread progress. Using ROIperf, the quick val-

idation of regions chosen for large workloads, like SPEC CPU2017

benchmarks using ref inputs, is now possible, which enables to

estimate the efficacy of several workload sampling methodologies.

REFERENCES
[1] A.R. Alameldeen and D.A. Wood. 2006. IPC considered harmful for multipro-

cessor workloads. IEEE Micro, 26, 4, 8–17. doi: 10.1109/MM.2006.73.

[2] A.R. Alameldeen and D.A. Wood. 2003. Variability in architectural simulations

of multi-threaded workloads. In International Symposium on High-Performance
Computer Architecture (HPCA). (Feb. 2003), 7–18.

[3] E. K. Ardestani and J. Renau. 2013. ESESC: a fast multicore simulator using time-

based sampling. In International Symposium on High Performance Computer
Architecture (HPCA). (Feb. 2013), 448–459.

[4] Moshe Bach et al. 2010. Analyzing parallel programs with pin. Computer, 43, 3,
34–41.

[5] T. E. Carlson, W. Heirman, and L. Eeckhout. 2011. Sniper: exploring the level

of abstraction for scalable and accurate parallel multi-core simulation. In Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC) Article 52. (Nov. 2011), 52:1–52:12.

[6] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout. 2014. Barri-

erPoint: sampled simulation of multi-threaded applications. In International
Symposium on Performance Analysis of Systems and Software (ISPASS). (Mar.

2014), 2–12.

[7] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. 2013. Sampled simula-

tion of multi-threaded applications. In 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2–12.

[8] Trevor E. Carlson, Wim Heirman, Harish Patil, and Lieven Eeckout. 2014. Effi-

cient, accurate and reproducible simulation of multi-threaded workloads. eng.

InWorkshop on Reproducible Research Methodologies (REPRODUCE). Orlando,
FL, USA, (Feb. 2014).

[9] Haiyang Han and Nikos Hardavellas. 2021. Public release and validation of

spec cpu2017 pinpoints. arXiv preprint arXiv:2112.06981.
[10] [n. d.] Intel Software Development Emulator (Intel SDE). https://www.intel.co

m/software/sde. ().

[11] Humayun Khalid. 2000. Validating trace-driven microarchitectural simulations.

IEEE Micro, 20, 6, 76–82.
[12] Andi Kleen and Beeman Strong. 2015. Intel processor trace on linux. Tracing

Summit, 2015.
[13] 2022. LoopPoint source code. https://github.com/nus-comparch/looppoint.

(2022).

[14] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:

building customized program analysis tools with dynamic instrumentation. In

Conference on Programming Language Design and Implementation (PLDI). (June
2005), 190–200.

[15] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. 2004. Pin-

pointing representative portions of large Intel Itanium programs with dynamic

instrumentation. In International Symposium on Microarchitecture (MICRO).
(Dec. 2004), 81–92.

[16] Harish Patil and Trevor E. Carlson. 2014. Pinballs: portable and shareable user-

level checkpoints for reproducible analysis and simulation. eng. InWorkshop
on Reproducible Research Methodologies (REPRODUCE). Orlando, FL, USA.

[17] Harish Patil, Alexander Isaev, Wim Heirman, Alen Sabu, Ali Hajiabadi, and

Trevor E Carlson. 2021. ELFies: executable region checkpoints for performance

analysis and simulation. In International Symposium on Code Generation and
Optimization (CGO). (Feb. 2021), 126–136.

[18] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James

Cownie. 2010. PinPlay: a framework for deterministic replay and reproducible

analysis of parallel programs. In International Symposium on Code Generation
and Optimization (CGO). (Apr. 2010), 2–11.

[19] C. Pereira, H. Patil, and B. Calder. 2008. Reproducible simulation of multi-

threaded workloads for architecture design exploration. In IEEE International
Symposium on Workload Characterization (IISWC). (Sept. 2008), 173–182.

[20] 2012. Perf: linux profiling with performance counters. https://perf .wiki.kernel

.org/. (2012).

[21] [n. d.] Performance monitoring in the intel 64 and ia-32 architectures software

developers manual, volume 3b. https://www.intel.com/content/www/us/en/ar

chitecture-and-technology/64-ia-32-architectures-software-developer-vol-

3b-part-2-manual.html. ().

[22] Alen Sabu, Harish Patil, Wim Heirman, and Trevor E. Carlson. 2022. Loop-

point: checkpoint-driven sampled simulation for multi-threaded applications.

In International Symposium on High Performance Computer Architecture (HPCA).
[23] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002.

Automatically characterizing large scale program behavior. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). San Jose, California, (Oct. 2002), 45–57.

[24] Brinkley Sprunt. 2002. The basics of performance-monitoring hardware. IEEE
Micro, 22, 4, 64–71.

[25] [n. d.] The Sniper multi-core simulator. https://snipersim.org. https://github.co

m/snipersim/snipersim. ().

[26] Rajat Todi. 2001. Speclite: using representative samples to reduce spec cpu2000

workload. In Proceedings of the Fourth Annual IEEE International Workshop on
Workload Characterization (WWC-4). IEEE, 15–23.

[27] Vincent M. Weaver. 2015. Self-monitoring overhead of the linux perf_event

performance counter interface. In 2015 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), 102–111.

[28] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C.

Hoe. 2006. SimFlex: statistical sampling of computer system simulation. IEEE
Micro, 26, 4, 18–31. doi: 10.1109/MM.2006.79.

[29] Qinzhe Wu, Steven Flolid, Shuang Song, Junyong Deng, and Lizy K John. 2018.

Invited paper for the hot workloads special session hot regions in spec cpu2017.

In 2018 IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 71–77.

[30] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.

2003. SMARTS: accelerating microarchitecture simulation via rigorous statisti-

cal sampling. In International Symposium on Computer Architecture (ISCA). San
Diego, California, (June 2003), 84–97.

https://doi.org/10.1109/MM.2006.73
https://www.intel.com/software/sde
https://www.intel.com/software/sde
https://github.com/nus-comparch/looppoint
https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://snipersim.org
https://github.com/snipersim/snipersim
https://github.com/snipersim/snipersim
https://doi.org/10.1109/MM.2006.79

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware Performance Counters
	2.2 Workload Sampling Techniques

	3 Implementation
	3.1 Pin instrumentation modes
	3.2 Region of Interest (ROI) specification
	3.3 ROI handling in ROIperf

	4 Experimental Setup
	5 Evaluation
	5.1 Testing ROIperf applicability
	5.2 Single-threaded evaluation
	5.3 Multi-threaded evaluation

	6 Related Work
	7 Conclusion

