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Abstract—Graph applications have specific characteristics that
are not common in other application domains and therefore
require thorough analysis to guide future graph processing
hardware design. In this paper, we analyze multiple graph
applications on current multi and many-core processors, and
provide conclusions and recommendations for future designs. We
restate well-known characteristics of graph applications, such as
a low compute to memory ratio and irregular memory access
patterns, but we also provide new important insights on executing
graph applications on many-core processors.

Our main novel observations are (i) some memory streams do
show locality, while others show no locality, (ii) thread imbalance
becomes a major problem with many threads, and (iii) many
threads are required to saturate high-bandwidth memories. The
first observation calls for a selective memory access policy, where
accesses with locality are cached and prefetched, while accesses
without locality can remain uncached to save cache capacity, and
can fetch only one element from memory instead of a full cache
line to save on memory bandwidth. The last two observations
are contradicting: more threads are needed, but they are not
used efficiently due to thread imbalance. Our recommendation
is therefore to thoroughly revise the graph analysis algorithms
to provide more scalable parallelism to be able to exploit
the potential of many-core architectures with high-bandwidth
memory. In addition, providing a few high-performance cores
can speed up sections with low parallelism.

Index Terms—graph applications, workload analysis, many-
core processors

I. INTRODUCTION

Graph applications for analyzing big data sets are gaining
importance. Many data sets can be represented as graphs,
where each vertex corresponds to an object and each edge
represents a relation between two objects. Examples are social
networks, road networks, physics models and co-preference
graphs. These graphs can be very large with millions to billions
of vertices and a multiple thereof of edges. Furthermore, the
reality modeled by these graphs changes quickly, so the graphs
need to be constantly updated, after which the analysis has to
run again, ideally presenting results (e.g., recommendations)
in real time. Therefore, researchers and industry are looking
at developing high performing graph analysis software and
hardware [9], [11], [14], [21], [25].

Graph applications are different from the conventional high-
performance scientific applications in that they are highly
irregular [18]. This is because graphs are inherently sparse:
the number of edges is a small fraction of the total amount of
possible connections. Therefore, the edges are not represented

as a sparse adjacency matrix, but instead as a list of neighbors
for each vertex. This list of neighbors has no regularity,
causing scattered accesses all over the graph data structure.
This behavior ruins memory locality and the predictability
of memory accesses and branch outcomes. Therefore, caches,
prefetchers and branch predictors have a low hit rate, elimi-
nating the main performance boosting techniques of today’s
high-performance processors. Designing processors that are
optimized for high-performance graph analysis is therefore a
challenging task.

In this paper, we analyze the performance of graph analysis
kernels on recent multi and many-core hardware (Intel Xeon
and Xeon Phi), and project how a potential future many-core
architecture would perform. We analyze the main performance
bottlenecks, and make some recommendations on how future
graph analysis targeted processors can optimize performance
for these applications.

Our findings confirm existing insights, such as irregular
accesses, and poor cache, prefetcher and branch predictor
efficiency, but we also gain new insights as these applications
enter the many-core era. Our main novel findings are:

• Some of the memory accesses do show locality, and
benefit from caching and prefetching. A mechanism to
handle accesses with and without locality differently has
the potential to largely improve cache efficiency, while
keeping its performance benefits.

• Because of the high cache miss rate, most applications
are memory bound. Providing high-bandwidth (on-chip)
memory can therefore boost performance, but in order
to saturate this bandwidth, access latency has to be kept
low, and a sufficient amount of threads need to be active
to generate many concurrent accesses.

• At high thread counts, algorithms that scale well on
current hardware start to scale worse because of load
imbalance and limited parallel tasks. Algorithms should
be revised to exploit more parallelism. Additionally, a
few high-performance cores can accelerate phases of the
application with low parallelism.

II. RELATED WORK

A. Graph Application Frameworks and Benchmark Suites
Several graph frameworks have been developed that relieve

the programmer from graph representation and data distribu-
tion details, in order to increase productivity. Graphlab [17]
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is a vertex-centric framework, where graph algorithms must
be expressed as a program running on a vertex, and on
its edges and neighbors. GraphBlas [14] uses sparse matrix
operations to perform graph algorithms. SociaLite [24] is
a database oriented graph framework, where operations are
specified in a declarative language. Galois [21] is a framework
for parallelizing irregular applications, and is therefore ideal
for graph applications. Giraph [3] runs on top of Hadoop and is
message based, while GraphX [11] is part of Apache Spark,
running in-memory distributed graph applications. Satish et
al. [23] compare multiple frameworks, and conclude that
Galois performs closest to a native implementation in C++,
which performs best.

The lack of a standard benchmark suite for graph ap-
plications has inspired multiple concurrent benchmark suite
proposals: GAP [5], GraphBIG [19] and CRONO [1] have
all been proposed in 2015. Pollard and Norris [22] have
compared multiple benchmarks and frameworks, and conclude
that on average, the GAP benchmark suite performs best on a
multicore processor. Therefore, we use the GAP Benchmark
Suite [5] for our analysis. GAP consists of high-performance
parallel implementations of six common graph kernels, imple-
mented in C++ and parallelized using OpenMP.

B. Graph Processors and Accelerators

The popularity of graph algorithms for analyzing big data
has led to graph optimized processors and accelerators. The
Cray Urika-GD graph processor [8] consists of multiple
ThreadStorm/XMT CPUs, connected by a memory-coherent
network, supporting multiple terabytes of memory. Motivated
by the irregular memory accesses, there are no large caches,
and each CPU supports 128 concurrent thread contexts to hide
memory latency [15]. The more recent Urika-GX platform
uses Intel Xeon nodes [9].

Song et al. [25] developed a graph processor based on sparse
matrix operations. Ahn et al. [2] propose a processing-in-
memory (PIM) solution for accelerating graph analysis appli-
cations. Ozdal et al. [20] propose a graph analytics accelerator
for vertex-centric operations. Jin et al. [12] present their first
steps in designing a dataflow based graph accelerator In this
paper, we focus on general purpose processors (using the x86
instruction set), and analyze how these can be optimized for
graph applications.

C. Graph Performance Analysis

A few papers discuss performance analysis of graph ap-
plications on commodity hardware. Beamer et al. [4] study
the performance of common graph applications on an Intel
Ivy Bridge server. They conclude that graph applications are
memory bound, but they do not consume the full memory
bandwidth. Furthermore, moderate cache locality exists and
multithreading has limited benefit. Eisenman et al. [10] also
study graph applications on the Ivy Bridge architecture. They
find that prefetching is beneficial even for graph applica-
tions, and that using huge page sizes significantly improves
performance. Liu et al. [16] compare the performance of
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Fig. 1. CSR graph representation

graph applications on an Ivy Bridge CPU, an NVidia GeForce
GPU and a Knight’s Landing (KNL) Xeon Phi processor.
They conclude that graph applications have a variable optimal
thread count, that only a few applications benefit from the
high-bandwidth MCDRAM memory, and that vector units are
underutilized.

All of these papers study the behavior of graph applications
on (a) specific architecture(s) using performance counters.
The goal of our paper is to discover insights into why this
behavior occurs, to guide the design of future many-core
architectures for graph analysis. Thereto, we complement
hardware measurements with simulations that allow for a much
deeper analysis on the root causes of certain observations, and
that enable projecting graph application performance to future
many-core designs.

III. EXPERIMENTAL SETUP

We evaluate the GAP benchmarks [5], consisting of 6
common graph kernels: pagerank (pr), triangle count (tc),
breadth first search (bfs), single source shortest path (sssp),
connected components (cc) and betweenness centrality (bc).
We only measure and simulate the actual parallel algorithm,
excluding reading the graph from disk and preprocessing steps.
As input graphs, we use the synthetic RMAT graphs from the
graphchallenge website1 with average degree 16 and scales 20,
22 and 24 (log2 of vertex count). We use synthetic graphs be-
cause their size can be controlled, which enables us to analyze
the impact of graph size on performance. These graphs have
a power law degree distribution, which is representative for
many real-life graphs, such as social networks. Typically, there
are a few vertices with many neighbors, and many vertices
with few neighbors. Next to its representativeness, a power law
degree distribution is more challenging to parallelize than for
example a uniform distribution, because of the load imbalance
it inherently causes.

All applications use the compressed sparse row (CSR) rep-
resentation to store the graphs in memory, see Figure 1. Each
vertex has an adjacency list, representing all other vertices it
is connected to (its outgoing edges). To increase locality and
avoid fragmentation, all adjacency lists are concatenated in one
adjacency array (bottom array in Figure 1). The index array
with size equal to the vertex count contains the index of the
start of the adjacency list of that vertex.

We execute all applications on an 26 core Intel Skylake
(SKX) processor (Xeon Platinum 8170) and a 64 core Intel
Knight’s Landing (KNL) processor (Xeon Phi 7250). To obtain
more in-depth performance analysis data—such as CPI stacks
through time, cache line efficiency and effective memory level

1http://graphchallenge.mit.edu



TABLE I
MACHINE AND CORE CONFIGURATIONS (OOO: OUT-OF-ORDER; IO:

IN-ORDER)

SKX KNL MSC
# cores 26 64 512
SMT/core 2 4 4
Execution pipeline
type OoO OoO IO
width (max IPC) 4 2 1

Frequency 2.4 GHz 1.4 GHz 1 GHz
L1 I cache 32 KB 32 KB 16 KB
L1 D cache 32 KB 32 KB 16 KB
L2 cache 1 MB 1 MB/2 cores -
Shared L3 39 MB - -
Main memory DDR4 MCDRAM MCDRAM
Bandwidth 115 GB/s 460 GB/s 400 GB/s

parallelism (MLP)—we also simulate the applications using
an in-house version of the Sniper multicore simulator [6] on
similar SKX and KNL configurations.

Furthermore, we simulate a hypothetical 512-core configu-
ration consisting of single-issue in-order cores (MSC: many
small cores). The latter configuration is inspired by the Cray
XMT/Threadstorm architecture [15], designed for graph ap-
plications, although with lower thread count per core (up to 4
instead of 128 threads). Note that each core is an independent
core with its own instruction stream, which is different from
a GPU, where instructions are shared between sets of cores.
Because of the data dependent diverging code paths in graph
applications, a many-core configuration is better suited than a
warp scheduled architecture such as a GPU. All configurations
support AVX512 vector instructions, to maximize compute
and memory load bandwidth per core. The details of the
configurations are in Table I.

All applications are compiled with the Intel icc compiler
(version 17.0.4) using the -O3 optimization flag. The same
binary is used for all experiments. Our simulator extends the
public version of Sniper with IP-protected micro-architectural
details of Intel processors, which cannot be released. However,
the public version of Sniper is flexible enough to simu-
late similar architectures (out-of-order cores, in-order cores,
heterogeneous configurations, cache hierarchy). Most of the
analyses in this paper can be done with the public version of
Sniper (e.g., CPI stacks) or require a few lines of additional
code to collect (e.g., cache efficiency histograms).

IV. RESULTS

A. Vectorization of tc and cc

As we will show in the next sections, graph application
performance is memory bound, due to the low compute
to memory ratio. It is therefore important to maximize the
number of in-flight memory operations and to exploit the
memory bandwidth, as this reduces the memory overhead.
Next to having more threads, per-thread memory parallelism
can also be increased by using vector operations. In particular,
Intel AVX512 can load 16 32-bit integers (the vertex id type
for our setup) using a single instruction.

It is however not straightforward for the compiler to
generate useful vector instructions from scalar source code,
especially irregular graph code [16]. For the GAP benchmarks,
only pagerank triggered automatic vectorization, using a gather
instruction to get the pagerank values of 16 neighbors in one
operation. We inspected the code, and found vectorization
possibilities for triangle count and connected components. The
other three applications (bfs, sssp and bc) are harder to
vectorize, due to their expanding and contracting working sets.

For triangle count, we applied the vectorized list intersection
algorithm proposed by Katsov [13], adapted to AVX512. For
connected components, we added a simd pragma, to tell the
compiler to ignore the potential cross-iteration dependencies.
Due to the iterative algorithm, this operation is allowed. We
also used the dynamic scheduling policy for OpenMP, instead
of the standard static scheduling (the other applications already
used dynamic scheduling).

The execution time on the KNL and SKX machines (hard-
ware measurements) reduces by 60% for tc and 80% for cc.
The number of instructions is halved for tc and quartered for
cc, but the number of LLC misses remains about the same as
in the scalar version. This means that the effective memory-
level parallelism (MLP) has increased, which was the goal of
our vectorization. In the remainder of the text, we show results
for the vectorized applications.

B. Performance Scaling on SKX and KNL

Figure 2 shows how each of the applications scale from
1 thread to the maximum thread count on SKX and KNL,
measured on the actual hardware. Multiple SMT contexts
(hyperthreading) are only used when thread count exceeds
core count. The execution time as a function of thread count
is shown in a log-log diagram, and some ideal scaling lines
(dotted lines; execution time proportional to 1 over thread
count) are added. If the scaling curve is parallel with a dotted
line, it exhibits ideal scaling.

Most applications scale well up to the core count, even for
the smallest input (scale 20). The applications do not profit
much or even suffer from having more than 1 SMT thread
per core (52 threads for SKX, and 128 and 256 threads for
KNL). At equal thread count, SKX performs about 4 times
higher than KNL, which is in line with the 2x wider pipeline,
1.7x higher frequency and the higher cache capacity (26 × 1
MB L2 and 39 MB L3 for SKX versus 32 × 1 MB L2 for
KNL). The three benchmarks at the right column scale worse
than those on the left column, especially for the scale 20 graph
and when using SMT, where performance even degrades. This
is because these applications have lower available parallelism,
especially in the beginning of the execution, as we will show
next.

C. Execution Profile

Figure 3 shows the CPI profile of selected applications,
generated by Sniper. The graphs show CPI stacks over time,
showing how much each event contributes to the total execu-
tion time. The bottom (dark) blue component is the time spent
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Fig. 2. Scaling behavior of graph applications on SKX and KNL. Log-log scale; dotted lines reflect ideal scaling.

in actually executing instructions. The lighter blue components
shows the time spent waiting on dependences, and the yellow
component the time spent in branch mispredictions. The green
components reflect the time the core waits for cache accesses,
and the top light and dark cyan part is the time waiting for
DRAM (DDR or MCDRAM; the latter is called IPM in the
graphs). The pink parts are idle cores due to synchronization,
implemented in Linux as a futex. The black line shows the
DRAM bandwidth usage over time.

The first two graphs are for pagerank, on SKX and KNL
respectively. Connected components has a similar profile, so
we omit it to save space. Performance for pr is dominated by
memory accesses (green and cyan). On SKX, most of them
are served by (remote) L2 caches or the L3 cache, which is
why bandwidth consumption is low. Most of the cycles are
spent in loading the pagerank value from neighboring nodes
to calculate the new value for the current node. The size of this
array of values is 34 MB, which means it can be kept in the
shared L3 cache of 39 MB. The DRAM time is due to accesses

to the adjacency lists, to find the vertex IDs of the neighbors.
These do not fit in the cache (1.9 GB), but because they are
kept in a linear structure (CSR representation, see Section III),
they can make use of spatial locality and prefetching, reducing
the number of misses to accessing the first element of each
adjacency list.

The KNL has less cache capacity, so all accesses need to
go to main memory, which is in this case the on-chip high-
bandwidth MCDRAM. Bandwidth consumption is therefore
much higher (note that the peak bandwidth of MCDRAM
is 460 GB/s, so 40% utilization equals 184 GB/s). However,
bandwidth consumption does not reach the maximum, despite
the large amount of DRAM accesses. We will discuss the
causes for this low bandwidth usage in the next section.

Triangle count (Figure 3(c)) is different from the other
applications, as its base component is large (it has an IPC of 2).
It also has the smallest memory component, though it increases
near the end. Triangle count fetches the adjacency lists of
two neighboring vertices, and looks for matches between
these lists. These matches are common neighbors, creating
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Fig. 3. CPI stack profile of selected applications

a triangle with themselves. Finding matches is a compute-
intensive task, even if all lists are sorted. As the graph is
sorted with decreasing degree, the lists for the first nodes are
long, having a high compute to memory ratio. As lists become
shorter (often size 1 at the end), the amount of calculation is
smaller, leading to more memory bound behavior. The high
compute fraction is also an explanation why SMT has no
benefit: the functional units are heavily used by one thread,
so there is no benefit of adding more threads to increase
functional unit occupation.

The next three graphs have a clear fraction of synchroniza-
tion penalties (pink part). The organization of these application
(bfs, sssp and bc (not shown because similar to the other
two)) is similar: they start from a single source vertex, and
then build up a queue with all its neighbors, continuing
with their neighbors, and so on. In the beginning, there is
not much parallelism (as the queue length is small), and as
the processing of each front ends with a barrier, there is

potential load imbalance at the end of each step. This explains
their inferior scaling behavior: as thread count increases,
the fraction of synchronization penalty increases (compare
Figure 3(e) and (f): from 26 threads on SKX to 64 threads on
KNL, the area in pink increases). It also explains why SMT
degrades performance: the longer running threads, which in
the end determine total performance, execute slower because
of sharing core resources with the co-running thread(s).

Breadth first search (Figure 3(d)) has a particularly high
branch miss component, although all other applications also
have a clearly visible branch component. Graph applications
have a large fraction of hard-to-predict branches due to the
irregularity of graphs. The branch with the largest penalty for
bfs is checking whether a vertex neighboring the current front
has been visited before. Because an edge can occur between
any pair of vertices, this branch is hard to predict, and will
switch from highly likely in the beginning of the execution
(when few vertices have been visited) to unlikely near the



end. At the very end, the base component gets big, and the
branch component disappears. This is due to an optimization
in the code: if the non-visited vertex count is low, it looks
for breadth first search tree parents of the non-visited vertices,
instead of looking for children of the already visited vertices.
This leads to more efficient code, because fewer vertices need
to be checked, and the probability that a vertex has a parent
that belongs to the current front is high.

D. Memory Bandwidth Usage

All applications, except for tc, are memory bound, indicated
by large cache (green) and DDR/IPM (cyan) components. Pr
on SKX (Figure 3(a)) has a working set that fits into the L3
cache, which explains why bandwidth consumption is low.
All other applications have a working set that is too large
for L3, indicated by a significant DDR/IPM component. Their
main bottleneck is waiting for main memory accesses. The
penalty of memory accesses can be reduced by exploiting
more memory-level parallelism (MLP) and using more of the
available memory bandwidth. However, the memory bound
applications have a bandwidth usage that is lower than 50% of
the available bandwidth (black line in the CPI stack profiles),
and even less than 15% for bfs, sssp and bc on KNL, which
means that they are not effective in exploiting MLP. To find
the cause for this low bandwidth usage, we use Little’s law,
stating that the bandwidth consumption equals the number of
outstanding requests (in bytes) divided by the average latency
of a single request:

BW =
outstanding B

latency
(1)

=
(LLC misses + prefetches)× #threads × cache line B

access + contention latency
(2)

The number of outstanding requests equals the number
of outstanding cache misses and prefetches per thread times
the number of threads times the cache line size (64 byte).
Outstanding cache misses per thread is related to the cache
miss rate, the available MLP in the application and the number
of concurrent accesses supported by the caches (the number
of miss status handling registers or MSHRs). All applications,
except tc, have a low amount of prefetches, because of the
irregular memory pattern that cannot be predicted by a stride
stream prefetcher. Tc has a more regular access pattern,
because it only loads adjacency lists and it has no per-vertex
data array that is indirectly accessed. The higher bandwidth
consumption at the end of the execution (Figure 3(c)) is mainly
caused by prefetches, which explains why the performance
impact of bandwidth saturation (the offchip-bw component) is
relatively small.

Bfs, sssp and bc have a relatively low amount of concurrent
misses compared to the other applications: Sniper reports an
effective MLP of 1 to 4, compared to 10 to 12 for the other
applications (there are 12 MSHRs on the DL1 cache). The
reason is that they use atomic operations (atomic add or
compare-and-swap). Atomic operations cannot be vectorized,

and they are also serialized to ensure their atomicity, limiting
the MLP. Furthermore, these applications also have regions
with low thread count, which limits the attainable bandwidth
consumption.

Finally, long latency accesses also limit the exploitable
bandwidth, which is what occurs for example for pr on KNL
(Figure 3(b)). The average load-to-use latency for an MC-
DRAM access (L2 miss) is 190 ns, which is composed of the
DL1, L2, tag directory and MCDRAM access time (150 ns),
TLB miss penalty and network-on-chip contention. The large
amount of TLB misses is caused by random accesses to the 1.9
GB adjacency list structure, whose address range does not fit
in the TLB. With an average MLP of 10, running on 64 cores
and 64 bytes per load, this results in a maximum bandwidth
consumption of 10×64×64

190 = 213 GB/s, or 46% of the peak
bandwidth. In fact, maximum bandwidth consumption can
only be reached by issuing enough prefetches next to the core
demand misses. However, the irregularity of the access stream
prevents issuing useful prefetches. The already high demand
miss MLP explains why SMT does not help performance: the
number of outstanding requests is close to maximum (10 out
of 12) and does not increase with more threads, so bandwidth
and performance does not improve.

Because most applications are memory bound (except tc
and pr on SKX), increasing bandwidth utilization improves
performance. A few recommendations to increase bandwidth
utilization are:

• Increase the available MLP per thread: avoid atomic oper-
ations, or implement vector versions of atomic operations.

• Increase the number of threads: can be done by increasing
core count or more threads per core through SMT. How-
ever, SMT does not work if a thread already uses (close
to) the maximum outstanding misses that the hardware
allows.

• Increase the parallelism: increasing thread count does
not help if there is not enough parallelism. Algorithms
should be revised to increase the exploitable parallelism,
certainly if even more cores are used. For example,
more parallel speculative work could be done (e.g., by
removing thread barriers), at the cost of needing more
iterations to reach stability. Another option is to use edge-
centric algorithms instead of the common vertex-centric
algorithms. Because the compute time per edge is more
constant than the compute time per vertex (which often
depends on the degree), edge-centric algorithms should
show less load imbalance.

• Decrease the latency per access: reduce the load-to-
use path for cache misses; reduce contention in shared
resources and networks; reduce TLB misses by using
larger page sizes.

• Implement prefetchers that are able to prefetch indirect
memory streams, for example the list prefetcher imple-
mented in the IBM Blue Gene/Q processor [7] or the
indirect memory prefetcher proposed by Yu et al. [26].
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E. Cache Line Efficiency and Prefetching

Figure 4 shows histograms of the cache line efficiency,
defined as the number of bytes used (read and/or written)
by the CPU of each 64-byte cache line fetched from main
memory (DDR or MCDRAM). In other words, of all cache
lines fetched from memory (by demand or prefetched), how
many are fetched uselessly (0 used bytes), and how many
provide 4, 8, 12, etc., up to the full 64 bytes to the core before
they are evicted. These fractions are collected by Sniper during
simulation. A low useful fraction means inefficient use of
cache capacity and memory bandwidth, while a high fraction
means that the application profits from spatial locality.

For most applications, there is a large fraction of cache lines

where no byte is used (leftmost ‘0’ column per application).
This is due to useless prefetches: the data is brought in by the
prefetcher, but it is never used. Figure 5 shows the accuracy
and coverage of the prefetcher at the L2 cache. Accuracy
is defined as the number of useful prefetches relative to the
total number of prefetches, and coverage is the number of
avoided cache misses (i.e., useful prefetches) relative to the
total number of misses in absence of a prefetcher (i.e., number
of misses with prefetcher plus the number of avoided misses).
For all applications except tc and bfs, accuracy and coverage
is relatively low. Most of the memory accesses for these
applications have an irregular access pattern to a large structure
that does not fit into cache, which explains their low accuracy.
For tc and bfs, most of the accesses are to the adjacency lists
of the vertices. These are stored consecutively in memory,
so for long adjacency lists, the prefetcher performs well.
However, most vertices have only a few neighbors, causing
the prefetcher to fetch too far, which is why even for tc and
bfs, accuracy and coverage is less than 60%.

This analysis seems to suggest that prefetching is useless
and may hurt performance (except for tc and bfs). To test
this statement, we execute all applications on the SKX and
KNL hardware with disabled hardware prefetchers. We find
that performance improves only for pr on KNL (20% higher
performance). For all other applications and on SKX, we see
performance degradations between 10% and 25%, and up to
45% for tc and bfs. Prefetching can hurt performance if it
causes memory bandwidth contention and/or wastes cache ca-
pacity that could be used more effectively. Because bandwidth
consumption is low and the memory access pattern is not
cache-friendly, useless prefetching does not hurt performance.
Therefore, even a 10% reduction in misses due to prefetching
(coverage) has a positive impact on performance. For pr
on KNL, disabling prefetching increases the L2 hit rate for
accesses to the pagerank value array. The combined L2 cache
capacity is 32 MB (32 times 1 MB), which is able to hold most
of the 34 MB array. When prefetching is enabled, adjacency
lists are prefetched, but often too far, evicting useful parts of
the pagerank value array.

Looking back to Figure 4 and disregarding the zero column,
we notice two peaks: one at 4 byte usage (except for tc) and
one at 64 byte usage (i.e., the full cache line is used). This
bimodal distribution can be explained by the data structures
used by the applications. There are two types of structures:
one that contains per-vertex data (e.g., pagerank values, bfs
tree parents, or cluster IDs) and the adjacency list array. The
per-vertex arrays are accessed in an irregular way, because
they are often indexed by the list of neighbors of a vertex,
which has no locality. Therefore, only one element (4 byte) of
that cache line is used before it is evicted. On the other hand,
adjacency lists are stored in a consecutive way, meaning that
there is high spatial locality, and all elements of a cache line
are useful. Tc has no per-vertex data, the only data structure
is the CSR, which explains the absence of 4-byte cache line
usages.

We can make the following recommendations:



• Current hardware prefetchers are mostly beneficial for
performance, but they generate many useless prefetches,
which could be a problem if memory bandwidth and/or
cache capacity are contended. As suggested in the previ-
ous section, an indirect memory prefetcher could largely
increase the accuracy and coverage of the prefetchers.

• There are two different memory access patterns: one
without locality, using only 4 bytes of a cache line, and
one with high spatial locality (adjacency list array). If
memory bandwidth and/or cache capacity are contended,
and if there is a mechanism to discern these two patterns
(either in software or through profiling in hardware), the
no-locality stream can be served by non-cached 4-byte
memory accesses, releasing cache capacity and memory
bandwidth (by fetching only 4 bytes instead of a full 64
byte cache line).

F. Extrapolation to Many Small Cores

Previous work (see Section II) on graph application perfor-
mance analysis reports two challenges for graph applications:
their memory-boundedness and the irregular access pattern.
This has inspired graph processor architects, such as the Cray
XMT architecture [15], to opt for a many small core design
with high thread count per core. To complete our analysis,
we simulate the applications on a hypothetical future many
small core (MSC) architecture, detailed in Table I. Because
most of the time is spent in waiting for memory, there is no
need for powerful out-of-order cores, so more energy-efficient
in-order cores can be used. The irregular access pattern is
not fit for caching and prefetching, so there are no L2 and
shared L3 caches, in favor of high-bandwidth memory to serve
many concurrent memory requests. In order to saturate this
high memory bandwidth with demand misses, we simulate
512 cores on one chip, which is possible because of the small
cores and caches. Additionally, having multiple threads per
core further increases the throughput and hides the latency of
the individual accesses. Because we notice diminishing returns
and even performance degradations at 4 threads per core, we
decided not to simulate more than 4 threads per core.

Figure 6 shows the simulated execution time of the ap-
plications on this architecture for 64 to 2048 threads. SKX
and KNL execution times (measured on hardware) are also
shown for reference. Figure 7 shows the CPI stack profile for
some applications on MSC at 512 threads. A lot of interesting
conclusions can be drawn from these graphs.

First, we compare the performance of KNL and MSC at
64 threads. For most applications, the performance of MSC is
only slightly worse than that of KNL: most applications are
memory bound, which means that the out-of-order pipeline of
the KNL cores is stalled most of the time. One exception is
tc, where MSC at 64 threads is more than 5 times slower than
KNL. Tc is compute bound, see Figure 3(c), so performance
is hit by using a single-issue in-order pipeline compared to
a 2-wide out-of-order pipeline. Furthermore, tc benefits from
prefetching (see Figure 5) and caching, which is absent in the
MSC architecture.

For pr and cc, performance scales well until 128 threads (us-
ing only 1/4 of the cores), after which performance saturates.
An analysis shows that from 256 threads, memory bandwidth
becomes the main bottleneck, see Figure 7(a). In order to
improve the scaling of pr and cc, either the available memory
bandwidth needs to increase or bandwidth-saving techniques
should be implemented, such as the 4-byte accesses discussed
in the previous section. For example, 90% of the DRAM
accesses for pr contain 4 or fewer useful bytes. Converting
them to 4 byte accesses reduces the number of bytes loaded
from DRAM by 85%. Figure 7(a) suggests that reducing
bandwidth contention might decrease the execution time by
as much as 80% (the size of the light cyan component). Note
that neither KNL nor MSC is able to beat SKX, despite the
lower core count of SKX. This is because of the large shared
L3 cache of SKX, which is able to hold most of the data and
has a lower latency and larger bandwidth than MCDRAM.

Tc continues to scale until 512 threads, because of its
low bandwidth requirements. However, because its per core
performance is much lower than that of KNL, 512 threads are
needed to beat KNL and SKX. This application clearly profits
from more powerful cores and caching. Using multiple threads
per core severely hurts performance. The reason is that vertices
are sorted by their degree, and the first thread processes the
vertex with the highest degree. Because that degree is much
higher than that of the other nodes (power law distribution),
and the process time is quadratical in the degree, this thread
usually lasts until the end of the application, while the other
threads process all other vertices. When multiple threads
execute on one core, each thread has lower performance than
when it runs alone on a core, especially for compute bound
applications such as tc. Therefore, the first thread is slowed
down, making it run longer. Near the end of the application,
it is the only thread running, and the application has to wait
until that thread has finished.

Bfs, sssp and bc stop scaling well at 256 threads. Although
they also suffer from bandwidth contention at some points in
their execution (see Figure 7), their main issue is the limited
parallelism. The beginning of the application uses only a single
thread, whose performance is lower than a single thread on
KNL, extending the single-threaded execution phase. The high
thread and core count is only beneficial for small parts of the
application, which does not compensate for the large parts
where active thread count is low.

We make the following recommendations for a graph many-
core processor:

• Except for tc, the choice of in-order cores is appropriate.
However, for some applications, it may be beneficial to
keep some of the high-performance core features, such
as prefetchers and a moderate L2 cache.

• Because of limited parallelism, it can be beneficial to in-
clude a few high-performance cores, i.e., a heterogeneous
design. If thread count is low, execution can be sped up
by executing these threads on the high-performance cores,
alleviating the Amdahl bottleneck.
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Fig. 6. Scaling behavior of graph applications on SKX, KNL and MSC (log-log scale)

• All of the other recommendations from the previous
sections are still valid: increase software parallelism, en-
able selective subline DRAM accesses, include dedicated
prefetchers, etc.

G. Heterogeneous Many-Core

Phases with low active thread count can be accelerated
by executing them on powerful ‘big’ cores. We therefore
simulate a heterogeneous many-core configuration, where in
the MSC configuration, we replace 64 small cores with 4
SKX cores (we verified that 1 SKX core is approximately
area-equivalent with 16 small in-order cores). Note that this
heterogeneous configuration has the same ISA in all cores,
and all threads perform the same algorithm (homogeneous
threads). Therefore, the initial mapping of the threads on
big or little cores has less impact than for heterogeneous
multithreaded applications and/or functionally heterogeneous
architectures (e.g., CPU and GPU). The scheduler is adapted
to maximize the usage of the big cores: when a thread that is

executing on a big core is stalled, another thread is ‘stolen’
from a small core to execute on that big core. When there are
only a few active threads, this ensures that these are executed
on the big cores, speeding up the phases with low thread count.
Note that all applications use the OpenMP dynamic schedule,
so the threads on the big core only stall when there is no
work left for the current iteration. This means that thread
migrations occur infrequently and only at the end of each
iteration, minimizing the overheads of thread migration, such
as cache warming and NUMA effects (which are modeled in
Sniper).

Figure 8 shows the CPI stacks for bfs and sssp on the
heterogeneous configuration (compare with Figure 7(c) and
(d)). We indeed notice a significant execution time reduction
in the phases with low parallelism, while the parallel phases
are slightly longer because of the lower overall thread count
(452 threads instead of 512 threads). Overall, the execution
time reduction is moderate, indicating that we can not rely
just on heterogeneity to solve the imbalance problem, and that
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Fig. 7. CPI stack profile on MSC with 512 threads of selected applications
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Fig. 8. CPI stack profiles on the heterogeneous configuration.

increasing parallelism in software is still needed.

V. CONCLUSIONS AND RECOMMENDATIONS

Our analysis of graph analysis applications on many-core
architectures has confirmed prior insights about the irregularity
of these applications, but it has also revealed novel insights that
guide the development of a future many-core graph processor.
We make the following recommendations:

• Implement two different memory access instructions: one
that exploits locality and regularity by using caching
and prefetching; and one that does not use caches or
prefetchers, and that fetches only 4 or 8 bytes from
memory instead of a full cache line. This leads to a more
efficient cache and memory bandwidth usage.

• Implement many cores to maximize the number of out-
standing misses and saturate high-bandwidth memory.

This needs to be combined with a limitation of the mem-
ory access latency to further increase memory bandwidth
usage, e.g., by eliminating TLBs and limiting the number
of cache levels. In our setup, adding more threads per
core (SMT) is not very beneficial and can even hurt
performance.

• In order to be able to efficiently use that many cores, the
algorithms need to be revised to increase parallelism and
decrease load imbalance.

• As not all load imbalance can be removed, add a few
high-performance cores to handle phases with low paral-
lelism.

We conclude that high-performance highly-parallel graph
analysis is a highly relevant and ongoing research and devel-
opment topic.
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