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ABSTRACT
In VLSI systems, Rent’s rule characterizes the locality of
interconnect between different subsystems, and allows an ef-
ficient layout of the circuit on a chip. With rising complex-
ities of both hardware and software, Systems-on-Chip are
converging to multiprocessor architectures connected by a
Network-on-Chip. Here, packets are routed instead of wires,
and threads of a parallel program are distributed among pro-
cessors. Still, Rent’s rule remains applicable, as it can now
be used to describe the locality of network traffic. In this
paper, we analyze network traffic on an on-chip network and
observe the power-law relation between the size of clusters
of network nodes and their external bandwidths. We then
use the same techniques to study the time-varying behav-
ior of the application, and derive the implications for future
on-chip networks.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures—
Distributed architectures

General Terms
Algorithms, Measurement, Performance

Keywords
Rent’s rule, locality, characterization, network-on-chip, net-
work traffic behavior

1. INTRODUCTION
In 1971, Landman and Russo described the relation be-

tween the number of terminals (T ) at the boundaries of
an electronic circuit and the number of internal compo-
nents (G), such as logic gates or standard cells [6]. This
remarkable trend was discovered earlier by E. F. Rent, an
IBM employee, who studied this relation on IBM’s inte-
grated circuit designs. The same trend can be found on
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the parts of a hierarchical partitioning (with minimal inter-
partition communication) of a single circuit. Over a wide
range of (sub)circuit sizes, this relation follows a power law:

T = tGp

Christie and Stroobandt later theoretically derived this pre-
viously empirical rule for homogeneous systems [1]. They
point out the meaning of the parameter p, the “Rent expo-
nent”: smaller values of p correspond to a larger fraction of
local interconnects.

While VLSI systems steadily increased in size, following
Moore’s law, Rent’s rule remained applicable over a wide
range, from small circuits of just a few tens of gates up to
multi-million gate designs. Nowadays, ad-hoc global wiring
structures are being replaced by more modular interconnects
such as Networks-on-Chip (NoCs), as predicted by Dally and
Towles in [2]. Their philosophy is to route packets, not wires:
a generic communication structure, such as a mesh, connects
all entities on a chip. Communication between specific en-
tities is no longer done by connecting them directly using a
dedicated set of wires, but rather by sending packets, which
are routed through the network to their destination.

One can therefore ask the question: is there an equivalent
of Rent’s rule for communication that does not use global
wires, but a packetized network? This indeed turns out
to be the case. Following Greenfield et. al. [4], we define
a bandwidth based alternative to Rent’s rule, in which the
bandwidth (B), sent and received by a cluster of network
nodes, is dependent on its size (number of nodes, N):

B = bNp (1)

Note that, when N = 1, this equation yields B = b. The
parameter b is thus the average bandwidth per node. The
exponent p will again be dependent on communication lo-
cality: smaller values of p will correspond to more localized
communication. This will have an influence on the mapping
of functional blocks to network nodes, similar as to how
placement is affected in traditional VLSI design.

In [4], the implications of localized network traffic on NoC
design was studied, assuming that network traffic follows
Rent’s rule. In this paper, we will investigate whether this
is indeed the case. Therefore, we simulate the execution of
a parallel benchmark program on a network of up to 64 pro-
cessors. This illustrates the case of a Chip Multi-Processor
(CMP) connected by a NoC. We estimate the Rent expo-
nent by hierarchically partitioning the network nodes and
correlating the bandwidth sent and received by each result-
ing cluster with its size. It turns out that this relationship



does follow a power law, with a Rent exponent of 0.55–0.74,
depending on the application and the total network size.
This proves that communication is indeed localized.

We also investigate network traffic behavior through time,
by slicing up the program execution into separate intervals.
We partition the network and estimate the Rent exponent
for each time interval. By comparing the partitionings made
in different intervals, we find that, for some benchmarks,
the behavior can change quite radically through time. Both
changes in traffic locality, and in partitioning are found.
This last observation would implicate that different place-
ments are needed through time, suggesting that, for some
benchmarks, a single placement of program threads on net-
work nodes can only be optimal during some time intervals,
while being sub-optimal during other periods. This shows
that solutions like dynamic thread movement or reconfig-
urable networks are indeed necessary.

The remainder of this paper is structured as follows. Sec-
tion 2 describes our simulation platform, how we estimated
Rent exponents, and defines the various metrics that were
used throughout this work. In Section 3 we show estimated
Rent exponents and use them to determine communication
locality in the different benchmark applications. Section 4
looks at how network traffic, and its locality, vary through
time. We analyze the effect of changing traffic patterns on
node placement in Section 5. Finally, Section 6 provides
some insights into how this work can be used in NoC design
and Section 7 summarizes our conclusions.

2. METHODOLOGY

2.1 Simulation platform
Our simulation platform uses the commercially available

Simics simulator [7]. It models a multiprocessing architec-
ture with 16, 32 or 64 processors. Each processor, with its
cache memories and a part of main memory, has a network
interface. This structure forms one network node. A shared
memory paradigm is used, so main memory on all nodes is
viewed as one global address space, accessible by all proces-
sors. When a processor makes a memory access to a data
word that is stored on a different node, this results in net-
work traffic. As opposed to a machine using message pass-
ing, in our case not only application data will pass through
the network but also operating system data, synchronization
variables and program code. This will have an effect on the
communication patterns observed. More details about our
simulation platform are described in [5].

The processors run one of the parallel applications from
the SPLASH-2 benchmark suite [10], which consists of a
number of scientific and technical kernels and programs that
represent a typical workload of large shared-memory multi-
processing machines. The programs are partitioned into
threads, each is run by one processor. For each of the bench-
marks, the execution is simulated on three network sizes (16,
32, and 64 nodes). From all simulations, a trace (timestamp,
source, destination and size of each packet) is collected of
all network traffic. The benchmarks, and the input sizes
that were used, can be found in Table 1. For some of the
benchmarks we added a *scale variant in which the size
of the data set is scaled linearly with the number of pro-
cessors (because the fft benchmark performs a 2-D FFT
transformation, its input set has to change in multiples of
four which is why we did not run fftscale on a 32-node

Benchmark Input size
barnes 8192 particles
cholesky tk15.O
cholesky29 tk29.O
fft 256K points
fft4M 4M points
fftscale 256K / - / 1M points
lu 512×512 matrix
luscale 5122 / 10242 / 20482 matrix
ocean.cont 258×258 ocean
ocean.contscale 2582 / 5142 / 10262 ocean
radix 1M integers, 1024 radix
radixscale 1M / 2M / 4M integers, 1024 radix
water.sp 512 molecules

Table 1: SPLASH-2 benchmarks and input sizes
that were used in this study. When multiple in-
put sizes are given, they are for 16, 32 and 64-node
networks respectively

network). While results for larger networks would be inter-
esting, doing these simulations with the current platform is
not feasible in practice. A 64 processor simulation of one
benchmark execution can already take several days.

2.2 Estimating the Rent exponent
For each traffic trace, we do the following analysis. First,

a traffic matrix is constructed. This matrix gives, for each
node pair, the total amount of communication (measured in
bytes) with one of the nodes as the source and the other
node as destination. The communication in the system can
also be modeled as a graph, with all nodes as the vertices
and the bandwidth between corresponding node pairs, taken
from the traffic matrix, as weights on the edges. Since most
nodes tend to communicate with all other nodes, this graph
is usually fully connected.

We do a top-down, min-cut partitioning of the commu-
nication graph using the hMETIS partitioning tool [8]. In
each step we divide the partition into two roughly equal
parts1. For each partition, we record the number of nodes it
contains, and the external bandwidth (i.e., the sum of com-
munication between all node pairs where one node of the
pair is in the partition and the other node is not). This
gives us a list of (number of nodes, bandwidth) or (N, B)
pairs.

On all (N, B) pairs, we do a least-squares fit of the func-
tion B = bNp, determining the b and p parameters. The
weight of each (N, B) data point is such that each hierarchi-
cal partitioning level has an equal weight on the total error,
i.e., we compensate for the fact that each lower level will
have twice the number of partitions.

2.3 Temporal behavior
To study the temporal behavior of the network traffic, we

divide the traffic trace into intervals of equal length. On each
interval, the same analysis is done as before to estimate the
Rent exponent and the average node bandwidth. We then
plot the Rent exponent p and the bandwidth b through time.

1We used hMETIS version 2.0pre1, with the default unbal-
ance factor of 5%.
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Figure 1: Distribution of node count and bandwidth for all hierarchical partitions, with network sizes ranging
from 16 to 64 processors executing the cholesky, ocean.cont or radix benchmark application. Rent exponent
p and average node bandwidth b (in MB/s) are fitted to this distribution using the power law B = bNp

This allows us to study the temporal variability of traffic
locality and bandwidth requirements.

When mapping program threads to network nodes, the
partitioning made in the previous section can be used advan-
tageously. To investigate how this partitioning, and the re-
sulting node placement, change through time, we construct
an interval similarity function. This function should be a
measure for how well the partitionings of two distinct inter-
vals agree. Since the bandwidth requirements have a large
impact on performance – when two nodes communicate only
sparsely, moving them around between partitions will have
little influence – the communication intensity should there-
fore have a large impact on the similarity metric.

Non-local communication has the largest influence, so we
only look at the topmost two levels of partitioning. Defining
partA as the partitioning made for interval A, and trafficB

as the traffic matrix in interval B, we derive the similarity
metric as follows. From partA, the topmost two levels of the
partitioning are selected as part2A, this gives us six clusters
of nodes. We then compute the total traffic that crosses all
cluster boundaries in part2A, assuming the traffic pattern is
trafficB , this is T (partA, trafficB) or just TA,B . When A =
B, then TA,B is the sum of six of the same external cluster
bandwidths that were measured in section 2.2. For A 6= B, it
provides a measurement of how good the partitioning made
in interval A is, when the traffic pattern changes to that
observed in interval B.

To construct a bandwidth-independent metric that can be
compared across intervals, we compute:

sim′
A,B =

TB,B

TA,B

Assuming the min-cut partitioning is done optimally, TB,B ≤
TA,B so sim′

A,B ≤ 1. To make the metric symmetrical, we
define our similarity metric between intervals A and B as:

simA,B =
TA,A + TB,B

TB,A + TA,B

which again will be in the range 0..1. Note that, when the
bandwidth in interval A is much larger than that in inter-
val B, the T∗,A terms will dominate such that:

simA,B ' TA,A

TB,A

In this case, only the deviation of the partitioning in B for
traffic A will be of importance, the fact that partitioning A

may be suboptimal for traffic B is much less relevant since
the low-intensity interval B will not have a big influence
on network performance. This is reflected in our similarity
metric simA,B .

Finally, we asses the optimality of a single placement for
the whole program. We assume this placement will be de-
rived from a given partitioning P . We define the suitability
of the placement derived from P for the traffic measured in
interval A as:

suitP,A =
T (partA, trafficA)

T (P, trafficA)

We average this over the course of the program, considering
that intervals with less traffic are less important, by com-
puting:

suitP =

P
A T (partA, trafficA)P

A T (P, trafficA)

3. NETWORK TRAFFIC LOCALITY
As detailed in Section 2, we simulate the execution of all

benchmarks on networks of up to 64 processor nodes. On the
resulting traffic traces, traffic matrices are computed which
are then used to do a top-down min-cut partitioning of the
nodes. We record the size and external bandwidth of each
cluster. In Figure 1, the distribution of bandwidth versus
node count is plotted for all partitions on network sizes of
16, 32 and 64 processors. On a log-log scale, the power law
relation is clearly visible. Still, between individual nodes,
there can be a large variation.

With the cholesky29 benchmark, one node has a much
higher than average bandwidth. For all cluster sizes, the
cluster containing this node clearly sticks out. This would
mean that this one node is heavily communicating with most
other nodes. Indeed, when analyzing the benchmark’s be-
havior we can find that a very important and high-traffic
data structure, a task queue from which all processors re-
trieve work items and insert new work, is located on this
node. This causes communication between the memory on
this node and the processors on all other nodes. Other
benchmarks, such as radix, have much more uniform com-
munication bandwidths.

The Rent exponent p and average node bandwidth b are
fitted to the distributions of Figure 1 for all benchmarks.
The resulting Rent exponents are shown in Table 2. We find
that p varies between 0.55 and 0.74. Its exact value depends



Benchmark Rent exponent
16 nodes 32 nodes 64 nodes

barnes 0.61 0.69 0.72
cholesky 0.61 0.69 0.67
cholesky29 0.65 0.69 0.71
fft 0.59 0.71 0.74
fft4M 0.62 0.59 0.66
fftscale 0.59 0.72
lu 0.61 0.71 0.72
luscale 0.61 0.71 0.73
ocean.cont 0.55 0.73 0.74
ocean.contscale 0.55 0.70 0.67
radix 0.56 0.69 0.71
radixscale 0.57 0.69 0.70
water.nsq 0.61 0.71 0.71
water.sp 0.61 0.70 0.74

Table 2: Estimated Rent exponents for all bench-
marks and network sizes

on the application, but even more on the network size: the
16-node networks yield significantly lower exponents than
the 32- and 64-node networks. This last observation is re-
markable. For most of the benchmarks, the amount of work
done is the same, independent of the network size. Even
when the same work is spread out over more processors,
communication should still scale in the same way, yielding
a constant Rent exponent. Moreover, for the benchmarks
ending in scale, where the input data is scaled with the
network size, a similar change in Rent exponent is visible.
Most likely, the deviating exponents for the 16-node network
are due to the fact that we have only four partitioning levels,
and can therefore not estimate the exponent reliably.

Still, the exponents obtained this way are higher than
what would be expected when analyzing the algorithms on
which the applications are based. ocean.cont, for instance,
consists of the simulation of oceanic currents, where the
ocean is split up into squares, each of which is assigned to a
processor. When laid out on a 2-D grid, communication is
nearest-neighbor only, resulting in a Rent exponent of 0.5.
During the execution on a small, 16-node network, we mea-
sured an exponent of 0.55 which is rather close to our expec-
tations. Yet, when executing the same program on a larger
machine, the exponent jumped to 0.74. This means that the
communication patterns are not nearest-neighbor only. We
can therefore conclude that the partitioning of work and
data across network nodes was not done optimally, yield-
ing more, and less localized communication than expected.
The fact that some data structures, such as synchronization
primitives, operating system structures and program code,
are global, certainly contributes to this effect.

Comparing these results to the Rent exponents assumed
by Greenfield in [4], the 0.89 exponent of the semi-random
task graphs generated by Task Graphs For Free [3] is clearly
not representative for the communication behavior of the
realistic parallel applications we have observed here. Of the
two scenarios used for NoC load when scaling to higher node
counts, p = 0.7 seems the most realistic one. Note that, in
Table 2, the value of p is rather stable when going from 32
to 64 nodes, so we would expect p to remain constant when
increasing the network size beyond 64 nodes.

4. TEMPORAL BEHAVIOR
Most software is known to have time-varying behavior [9].

Therefore, we should ask the question whether the Rent ex-
ponents measured in Section 3 are constant through time.
Figure 2 shows that this is not the case. Here, the traffic
trace was divided into intervals of one million cycles each.
For each interval a new Rent exponent was estimated. The
graphs show, from left to right, the Rent exponent p that
was fitted for each of the intervals, the average node band-
width br (relative to the global average bandwidth b), and
a distribution of p versus br for all intervals.

The leftmost set of graphs show that the Rent exponent
p is not constant through time: periods of global communi-
cation are followed by periods of more localized communi-
cation. One should keep in mind though that, if only little
traffic is being exchanged on the network, small variations
in traffic can cause a large change in the estimated value
of p. Therefore, the bandwidth br, which is plotted in the
next set of graphs, is of equal importance. Here we see that
momentary bandwidths can be up to ten times the average
bandwidth, followed by periods of very little communica-
tion. The situation is even more pronounced when we look
at individual nodes. This observation supports the claim
that a packetized communication network is able to achieve
much higher utilization factors than would be the case when
using global wiring as dedicated connections. Finally, in the
third column we look at the correlation between p and b.

For fft4M, we see large variations in p throughout the exe-
cution. The bandwidth is usually relatively low, with several
peaks near the end. This can be explained by the ‘butter-
fly’ pattern of the Fast Fourier Transform algorithm, and
the way data is distributed across network nodes. At first,
each processor works only on data located on its own node.
Later, the butterfly pattern expands to include data stored
on other nodes, so communication is required. Since there is
only limited communication in the first part, the estimated
p values are more influenced by ‘noise’: memory accesses not
related to the main data, but for instance to synchroniza-
tion primitives or operating system structures. The right-
most graph shows this: at low communication bandwidths,
there are both intervals with highly localized and with global
communication. The data streams during high bandwidth
phases are much more localized.

For the water.sp benchmark, different behavior can be
observed. Periods of high and low communication follow
each other in a regular sequence. When bandwidth require-
ments are high, p remains at around 0.7–0.8. During times
that communication rates are lower, the background noise of
operating system structure accesses is much more visible and
causes p to fluctuate. Again, this behavior can be explained
by analyzing the algorithm behind the water.sp benchmark.
The program simulates molecular interactions in liquid wa-
ter during a number of time steps. Each of the proces-
sors is responsible for part of the 512 molecules. Per time
step, several phases can be distinguished. The first phase
simulates interactions between all molecules and computes
the forces they exert on each other. Here communication is
global because each molecule influences all other molecules.
In the second phase, interactions inside the molecule are
computed. This requires no communication since proces-
sors should have the data for their ‘own’ molecules cached.
Finally, the forces are integrated and molecule velocities and
positions are updated, again requiring little communication.
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Figure 2: Left to right: estimated Rent exponent p and relative per node bandwidth br through time, and p
versus br for all intervals. Top to bottom: barnes and fft4M on 16 nodes, radix and ocean.cont on 32 nodes
and water.sp on 64 nodes



Figure 3: Similarity matrices of all interval pairs per benchmark. The coloring runs from white (simx,y = 1,
equal partitioning), to black (simx,y = 0, dissimilar partitioning). barnes, cholesky29 and fft4M are shown for
a 16 node network, and water.sp for 16, 32 and 64 nodes. Below each, the relative per node bandwidth br is
repeated from Figure 2 for reference

5. NODE PLACEMENT

5.1 Optimal placement variation
Just as in VLSI design, the top-down partitioning of the

nodes can be a basis for solving the placement problem, in
this case by assigning program threads to network nodes,
minizing long-distance communication. On the other hand,
we just concluded from Figure 2 that network traffic can
change drastically through time. We should therefore ask
the question: will the optimal node placement change just
as drastically? And, when a placement is used that is non-
optimal during some of the time, how will this affect perfor-
mance?

We try to answer this question using the similarity metric
simA,B defined in Section 2.3. It provides a way to compare
two partitionings, accounting for bandwidth requirements
(i.e., moving low-bandwidth nodes across partitions has lit-
tle influence). Figure 3 is constructed by dividing the traffic
trace into one million cycle intervals. We again partition the
nodes in each of the intervals. The similarity metric simA,B

was then used to compare each pair of intervals. Interval
numbers run on both X and Y axes, the square at each in-
tersection point is colored according to the value of simx,y:
white when simx,y is one, black for zero. Since the similar-
ity of an interval with itself is always one, all points on the
x = y diagonal are white.

Again, different applications have clearly different behav-
ior. In barnes, an N-body simulation program, four similar
phases are caused by the simulation to run over four time
steps. In each step, a similar calculation is done, involv-
ing the same data. The lightly colored squares along the
diagonal mean that the partitioning, and thus the commu-
nication pattern, remains very similar during intervals of
about 60 million cycles (60 intervals of one million cycles
each, on either the X or Y axis). Next, a period with a very
different and quickly changing communication pattern is en-
countered, involving much higher bandwidths. The large,
lightly colored squares off the diagonal are also interesting:
this means that, for instance, the node placement that is
optimal during the 100M-160M cycles interval is very close



to the optimum for the traffic present during the interval
from 230M to 280M cycles. For barnes, one node place-
ment is therefore very close to optimal for a large fraction
of time. This only concerns the low-bandwidth phases of
the application though. The high-bandwidth phases, which
have much more effect on total performance, have highly
erratic communication. Even though the momentary Rent
exponent for these high-bandwidth phases is quite low (this
is visible in Figure 2), the communication partners change
rapidly. Doing a good static node placement for barnes is
therefore not possible.

For the fft4M benchmark, we might have concluded from
Figure 2 that it has an ‘easy’ communication pattern: only a
few high-bandwidth phases which all have a very low Rent
exponent, i.e., with highly localized communication. Yet,
in Figure 3, we see that these same phases are very unlike
their immediately neighboring phases. So although commu-
nication is highly localized when viewed at short intervals, a
little while later the communication partners have changed
causing the communication at a longer time scale to be much
more global.

The lower half of Figure 3 shows the similarity graphs for
the water.sp benchmark when scaling the network size. On
a 64-node network, comparison of the similarity matrix with
the bandwidth requirements shows that for this benchmark,
the high-bandwidth periods correspond to large white re-
gions in the similarity graph. So for water.sp, a single
good placement does exist that is effective throughout all
high-bandwidth phases of the application. This is true on
all networks, although the fraction of time spent in peri-
ods of intense communication increases significantly when
moving to larger networks. We can assume that during the
low-bandwidth periods (communication now only consists
of some ‘random’ accesses to operating system structures,
therefore these periods correspond to darkly colored regions)
the processors are mainly performing computation on local
data. Since on larger networks, there are more processors
to do the same work, the computation time decreases (the
black periods shorten, from 30M cycles on 16 processors
to 10M cycles on 64 processors). The total program run-
time, on the other hand, remains at just above 100M cycles.
This shows that the water.sp application does not scale fa-
vorably to 64 processors, i.e., although more resources are
available, the time required to compute the solution does
not reduce accordingly, taking into account that the input
data remains constant at 512 molecules. Communication is
the limiting factor here, but we also see that communica-
tion is very regular and it should therefore be possible to
solve this bottleneck by designing a suitable interconnection
topology.

5.2 Optimality of a single placement
To asses the optimality of a given placement, derived from

a single partitioning, we use the suitability metric defined
in Section 2. suitP,A determines the suitability of the par-
titioning P for the traffic pattern in interval A, while suitP

provides a global metric. Figure 4 plots suitP,A for the op-
timal partitioning, this is the partitioning with the maximal
suitP . It can be shown that this partitioning is equal to the
one made on the global traffic matrix, which was done in
Section 3.

As could be expected from Figure 3, the optimal partition-
ing for barnes is very close to optimal for most of the time.

Benchmark suitA for optimal partitioning
16 nodes 32 nodes 64 nodes

barnes 0.84 0.89 0.90
cholesky 0.69 0.85 0.93
cholesky29 0.63 0.81 0.93
fft 0.78 0.89 0.94
fft4M 0.38 0.79 0.91
fftscale 0.78 0.91
lu 0.86 0.91 0.95
luscale 0.86 0.87 0.88
ocean.cont 0.95 0.97 0.98
ocean.contscale 0.95 0.90 0.90
radix 0.84 0.90 0.93
radixscale 0.87 0.90 0.88
water.nsq 0.82 0.92 0.92
water.sp 0.77 0.92 0.94

Table 3: Suitability of the optimal partitioning, av-
eraged over time, for all benchmarks and network
sizes

Some drops are visible, not surprisingly, during the periods
of high, irregular communication. fft4M and cholesky have
irregular communication all of the time, no single placement
can therefore be optimal. The optimal partitioning chosen
for water.sp, corresponds to that of the periods of high
communication. This is the case even in the 16-node case,
even though there the high-bandwidth phases are very short.
Still, since most of the data is exchanged during those peri-
ods, they will influence performance most.

Table 3 summarizes the global suitability suitP for the
best partitioning, for all benchmarks and all network sizes.
fft4M on 16 nodes has very irregular communication causing
its suitP to be only 0.38. For water.sp, the relative frac-
tion of regular communication increases when making the
network larger, suitP follows this trend by going from 0.77
to 0.94. ocean.cont has extremely regular communication
which is causing it to score 0.95–0.98 on all network sizes.

6. FUTURE WORK
This analysis presents the network designer with a new

tool for analyzing network traffic and communication re-
quirements. Since Rent’s rule essentially remains valid when
using packetized on-chip networks, many of the ideas based
on Rent’s rule, such as placement, a priori estimation of
‘wirelength’ (now routing distance) and congestion (of pack-
ets instead of wires), can be re-used. Also, by highlighting
the temporal variability of network traffic, it becomes clear
that, when the scope and complexity of single chips expands
to include more, and more diverse, applications, reconfigu-
ration, in one of its forms, will probably gain importance
and should therefore be the object of further exploration.

7. CONCLUSIONS
We have shown that, when ad-hoc global wiring struc-

tures are being replaced by packetized communication over
regular on-chip networks, Rent’s rule remains applicable: a
power-law relationship is clearly visible when partitioning
network nodes and comparing their size versus their external
bandwidth. The exponent does change when the network
size is increased. For small networks this can be attributed
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Figure 4: Suitability of the optimal partitioning through time for barnes, cholesky29 and fft4M on a 16 node
network, and for water.sp on 16, 32 and 64 node networks

to the limited number of data points, which precludes a reli-
able estimate of the Rent exponent. For larger networks, the
higher than expected exponent shows that the distribution
of work and data across network nodes was not always done
optimally in the SPLASH-2 benchmarks we studied. Still,
from the Rent exponent, and the partitioning with which it
was derived, a lot can be learned about the communication
behavior of an application. Most of this behavior can be
traced back to the algorithm executed by the program, and
the way data is located across network nodes. Repeating
this analysis on different time scales also learns that network
traffic can often change dramatically through time, and that
static node placements, for several important applications,
may no longer be sufficient.

8. ACKNOWLEDGMENTS
This paper presents research results of the Inter-university

Attraction Poles program photonics@be (IAP–Phase VI),
initiated by the Belgian State, Prime Minister’s Service, Sci-
ence Policy Office.

9. REFERENCES
[1] P. Christie and D. Stroobandt. The interpretation and

application of Rent’s rule. IEEE Transactions on Very
Large Scale Integration Systems, 8(6):639–648,
Dec. 2000.

[2] W. J. Dally and B. Towles. Route packets, not wires:
On-chip interconnection networks. In Design
Automation Conference, pages 684–689, June 2001.

[3] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task
graphs for free. In Proceedings of the 6th International
Workshop on Hardware/Software Codesign,
pages 97–101, Seattle, Washington, Mar. 1998.

[4] D. Greenfield, A. Banerjee, J.-G. Lee, and S. Moore.
Implications of Rent’s rule for NoC design and its

fault-tolerance. In Proceedings of the First
International Symposium on Networks-on-Chips,
pages 283–294, Princeton, New Jersey, May 2007.

[5] W. Heirman, J. Dambre, I. Artundo, C. Debaes,
H. Thienpont, D. Stroobandt, and
J. Van Campenhout. Predicting the performance of
reconfigurable optical interconnects in distributed
shared-memory systems. Photonic Network
Communications, 15(1):25–40, Feb. 2008.

[6] B. S. Landman and R. L. Russo. On a pin versus
block relationship for partitions of logic graphs. IEEE
Transactions on Computers, C-20(12):1469–1479,
Dec. 1971.

[7] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. IEEE Computer, 35(2):50–58,
Feb. 2002.

[8] N. Selvakkumaran and G. Karypis. Multi-objective
hypergraph partitioning algorithms for cut and
maximum subdomain degree minimization. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 25(3):504– 517, Mar. 2006.

[9] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 45–57, San Jose, California, Oct. 2002.

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings of
the 22th International Symposium on Computer
Architecture, pages 24–36, Santa Margherita Ligure,
Italy, June 1995.


