
49

PCantorSim: Accelerating Parallel Architecture Simulation through
Fractal-Based Sampling

CHUNTAO JIANG, Huazhong University of Science and Technology
ZHIBIN YU, Shenzhen Institute of Advanced Technology, CAS
HAI JIN, Huazhong University of Science and Technology
CHENGZHONG XU, Shenzhen Institute of Advanced Technology/Wayne State University
LIEVEN EECKHOUT, WIM HEIRMAN, and TREVOR E. CARLSON, Ghent University
XIAOFEI LIAO, Huazhong University of Science and Technology

Computer architects rely heavily on microarchitecture simulation to evaluate design alternatives. Unfortu-
nately, cycle-accurate simulation is extremely slow, being at least 4 to 6 orders of magnitude slower than real
hardware. This longstanding problem is further exacerbated in the multi-/many-core era, because single-
threaded simulation performance has not improved much, while the design space has expanded substan-
tially. Parallel simulation is a promising approach, yet does not completely solve the simulation challenge.
Furthermore, existing sampling techniques, which are widely used for single-threaded applications, do not
readily apply to multithreaded applications as thread interaction and synchronization must now be taken
into account. This work presents PCantorSim, a novel Cantor set (a classic fractal)–based sampling scheme
to accelerate parallel simulation of multithreaded applications. Through the use of the proposed methodol-
ogy, only less than 5% of an application’s execution time is simulated in detail. We have implemented our
approach in Sniper (a parallel multicore simulator) and evaluated it by running the PARSEC benchmarks
on a simulated 8-core system. The results show that PCantorSim increases simulation speed over detailed
parallel simulation by a factor of 20×, on average, with an average absolute execution time prediction error
of 5.3%.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Design Studies, Measurement Tech-
niques, Modeling Techniques; B.8.2 [Performance and Reliability]: Performance Analysis and Design
Aids

General Terms: Measurement, Algorithms, Performance

Additional Key Words and Phrases: Microarchitecture simulation, parallel simulation, sampled simulation,
fractal, Cantor set, performance evaluation

ACM Reference Format:
Jiang, C., Yu, Z., Jin, H., Xu, C., Eeckhout, L., Heirman, W., Carlson, T. E., and Liao, X. 2013. PCantorSim:
Accelerating parallel architecture simulation through fractal-based sampling. ACM Trans. Architec. Code
Optim. 10, 4, Article 49 (December 2013), 24 pages.
DOI: http://dx.doi.org/10.1145/2555289.2555305

This work is supported by the National High Technology Research and Development Program of China
(863 Program) under Grant No. 2012AA010905, and the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 259295.
Author’s addresses: C. Jiang, H. Jin, and X. Liao, Services Computing Technology and System Laboratory/
Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University
of Science and Technology, Wuhan, China; Z. Yu (corresponding author), C. Xu, Research Center for Cloud
Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; L. Eeckhout, W.
Heirman and T. E. Carlson, Department of Electronics and Information Systems, Ghent University, Belgium;
email: {yuzhibinh, chuntjiang}@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481 or permissions@acm.org.
c© 2013 ACM 1544-3566/2013/12-ART49 $15.00

DOI: http://dx.doi.org/10.1145/2555289.2555305

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:2 C. Jiang et al.

1. INTRODUCTION

Architects rely heavily on microarchitecture simulation to explore the design space.
Unfortunately, single-threaded detailed simulation is at least 4 to 6 orders of magnitude
slower compared to real hardware, leading to weeks or months spent simulating even
a single industry-standard benchmark (e.g., SPEC CPU2006). In the multi-/many-core
era, this problem is further exacerbated because single-threaded performance, and
hence sequential simulation speed, does not improve much, while having to simulate
many more cores along with various shared resources such as shared caches, on-chip
interconnection network, memory controllers, and so on; furthermore, the design space
is dramatically enlarged requiring many more simulations to be conducted.

Parallel simulation is a promising approach to accelerate multi-/many-core simu-
lation, but it is challenging to construct parallel simulators with good trade-offs in
speed, accuracy, and ease-of-use. Graphite [Miller et al. 2010] and Sniper [Carlson
et al. 2011] are two recently proposed parallel multi-/many-core simulators, and while
both simulators report great simulation speeds—for example, Sniper achieves a sim-
ulation speed of 1 to 2 Million Instructions Per Second (MIPS) on an 8-core host—the
rapid progress toward many-core architectures, with hundreds and up to thousands of
cores, requires additional innovation and progress to further accelerate architectural
simulation [Sanchez and Kozyrakis 2013].

Sampling is a popular and proven technique to accelerate single-threaded applica-
tion simulation. However, it cannot be readily applied to parallel simulation of mul-
tithreaded applications. It is well known that the execution path of multithreaded
applications running on multicore processors may vary substantially due to timing
variations (nondeterminism) in conjunction with operating system scheduling and
synchronization (e.g., lock) effects [Alameldeen and Wood 2003]. This indicates that
the number of dynamically executed instructions of the same multithreaded workload
may vary significantly from run to run on the same machine. As a result, the prereq-
uisite of Instructions Per Cycle (IPC) as a valid performance metric—the number of
instructions of a workload is a constant across different runs or microarchitectures—is
broken [Alameldeen and Wood 2006]. However, most previous sampling techniques
sample some instruction intervals to simulate in detail, calculate the IPC for each
sampled interval, and extrapolate the IPCs from these intervals to the overall IPC of
a workload. With the inappropriateness of IPC for multithreaded workloads, existing
sampling techniques that work well for single-threaded applications naturally become
invalid.

To address this issue, Carlson et al. [2013] and Ardestani and Renau [2013] intro-
duce the concept of time-based sampling, where sample selection is guided by execu-
tion time1 rather than instruction count. However, there still are some limitations in
these methodologies. In particular, the periodic sampling approach proposed in Carlson
et al. [2013] needs a fairly complicated preprocessing step to determine valid sampling
parameters. The goal of this preprocessing step is to identify an application’s period-
icities (phase behavior or time-varying execution behavior) and determine a sampling
regime that aligns well with these periodicities so as to avoid aliasing problems (e.g., a
low-IPC region is used to predict the performance of a high-IPC region, or vice versa).
Moreover, some applications do not have regular phase behavior, whereas others have

1Instead of IPC, execution time is the ultimate metric to compare different configurations’ relative speed
[Alameldeen and Wood 2006]. Throughout this article, we also use the term execution time or running time
to refer to the total running time of the simulated workload, while simulation time is used to refer to the
time used to simulate an application on a microarchitecture simulator. For example, the simulation time of
NPB-lu running on an 8-core simulated system with the class A input is 49.15 hours (using Sniper) and its
predicted execution time is 11.27 seconds.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:3

time-varying execution behavior at different time scales, which either excludes them
from being amenable to periodic sampling using the previously proposed methods, or
incurs high sampling errors.

In this article, we propose a novel sampling approach by leveraging the fractal na-
ture of program execution behavior to accelerate parallel simulation of general multi-
threaded applications. This methodology employs the generation procedure of the Can-
tor set—a classical fractal—to determine which parts of an application are simulated
in detail. As in the periodic sampling methodology, we perform sample selection on the
basis of running time (i.e., execution time) rather than instruction count to maintain
compatibility with parallel multithreaded workloads, and we simulate thread interac-
tion through synchronization and shared memory in detail even while fast-forwarding.
We have integrated the Cantor set–based sampling scheme into Sniper, a parallel
multicore simulator, and named it PCantorSim. We evaluate PCantorSim by running
the PARSEC benchmarks and predict their execution time on an 8-core simulated pro-
cessor target. The results show that PCantorSim can significantly speed up parallel
simulation with high accuracy in a relatively easy manner.

More specifically, we make the following contributions.

—We propose a novel fractal-based sampling scheme to accelerate parallel simulation
of multithreaded workloads. We also verify that there exists fractal behavior during
the execution of multithreaded applications, and that using fractals to guide sample
selection can avoid the aliasing problem present in periodic sampling.

—We have integrated our sampling scheme PCantorSim into Sniper, a parallel multi-
core simulator.

—We evaluate PCantorSim by running the PARSEC benchmarks on an 8-core simu-
lated system to predict their execution time. The results show that our approach can
speed up parallel simulation by a factor of 20×, on average, and up to 32×, with
an average execution time prediction error of only 5.3% when compared to detailed
simulation.

The remainder of this article is organized as follows. Section 2 describes the back-
ground. Section 3 presents the fractal-based sampling approach. Section 4 describes
the experimental set-up, and Section 5 presents the results and analysis. The related
work and conclusions are given in Sections 6 and 7, respectively.

2. BACKGROUND

In this section, we first introduce the different simulation modes used in sampled
simulation. Subsequently, we describe fractals and the Cantor set. Finally, we analyze
program execution behavior from a fractal perspective.

2.1 Simulation Modes

Sampling is a well-known acceleration technique used in microarchitecture simulation.
It reduces simulation time by selecting a small yet representative subset of an applica-
tion’s instruction stream to be simulated in detail. The remainders of the instruction
stream are simulated in other, faster simulation modes.

In sampled simulation, the original dynamic instruction stream of a workload is bro-
ken up into three kinds of nonoverlapping chunks. Each kind of chunk is simulated in
one of three simulation modes: (1) fast-forwarding, (2) warm-up, and (3) detailed sim-
ulation mode. The fast-forwarding mode guarantees that the execution of a workload
is functionally correct, while no microarchitectural events are recorded during simula-
tion. (Fast-forwarding can be replaced by checkpointing, or by taking a snapshot of the
architecture state, i.e., registers and memory.) In detailed simulation, the events per-
taining to all microarchitectural structures such as reorder buffers, functional units,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:4 C. Jiang et al.

Fig. 1. Two classical fractals.

reservation stations, caches, TLBs, prefetchers and branch predictors are simulated in
detail. Since the fast-forwarding mode does not maintain the state of microarchitec-
tural structures, these structures such as caches are empty when detailed simulation
starts. This is referred to as the so-called “cold-start” problem in microarchitecture
simulation. To eliminate the “cold-start” problem, warm-up mode is employed between
fast-forwarding and detailed simulation chunks. Unlike detailed simulation, warm-up
only considers events related to a few well-selected (usually large) structures such
as caches (and TLBs) and branch predictors. This simulation mode is also known as
functional warming [Wunderlich et al. 2003].

The simulation speed of the three modes is dramatically different. According to the
earlier definition of simulation modes, detailed simulation is the slowest, warm-up is
faster, and fast-forwarding is the fastest. For example, in Sniper, the simulation speeds
are on the order of 1,000MIPS, 10MIPS and 1MIPS for fast-forwarding, warm-up, and
detailed simulation, respectively. By simulating the nonsampled parts of an application
in the much faster warm-up and/or fast-forwarding modes, we can significantly speed
up microarchitecture simulation compared to fully detailed simulation while retaining
high accuracy.

2.2 Fractals and the Cantor Set

Our sampling scheme is based on the Cantor set—a classical fractal. The term “frac-
tal” was invented by Benoit Mandelbrot to identify fragmented and irregular shapes
[Mandelbrot 1983]. It is defined as follows:

Definition 1. Fractals are shapes made of parts similar to the whole.

In other words, a fractal is an object or quantity that displays self-similarity at
all scales, where self-similarity means they are “the same from near and from far”
[Gouyet and Mandelbrot 1996]. The object does not necessarily exhibit exactly the same
structure at all scales, but the same “type” of structure should appear. For example,
Figure 1 illustrates two famous fractals: the Cantor set and the Koch curve. They are
nearly the same at different scales.

The Cantor set is a famous set, and an exact fractal, which was first constructed by
Georg Cantor in 1883 [Peitgen et al. 2004]. It can be best characterized by describing
its generation. It is typically created by repeatedly deleting the open middle thirds of a
set of line segments. As illustrated in Figure 1(a), starting with the interval [0, 1], the
first step removes the open middle third (1/3, 2/3), leaving two line segments: [0, 1/3]
∪ [2/3, 1]. Next, the open middle thirds of these remaining segments are removed,
leaving four line segments. This process is continued ad infinitum. At every stage of
the process, the result is self-similar to the previous stage, i.e., identical upon rescaling.
After the nth step, there will be 2n segments of length 1/3n. In this work, we employ a

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:5

(slightly) modified Cantor set generation rule in our sampling scheme, as described in
Section 3.

2.3 Fractal Behavior in Programs

Fractals have and are being successfully used in the research of program behavior
(e.g., cache behavior prediction). Voldman et al. [1983] studied the clustering of cache
misses. Based on the sound conjecture that cache misses occur in hierarchical bursts in
the same way, the authors suggested that the interaction of software and caches can be
modeled as fractals. This line of research is continued by Thiébaut [1989], in which the
same theoretical framework is applied to the prediction of the miss ratio of programs
in fully associative caches. He et al. [2012] proposed a fractal model, FractalMRC,
and confirmed that it can accurately capture the shared cache behavior of applications
concurrently running on commercial multicore processors.

In our work, we use another program performance metric—IPC—as an example to
show the existence of fractals in multithreaded program behavior and demonstrate
that IPC can be accurately predicted by using fractal techniques. More specifically,
we observe that the IPC variations of many multithreaded applications exhibit fractal
or self-similarity behavior as a function of time. We then employ the classical fractal
Cantor set and its generation rule to select simulation samples.

3. CANTOR SAMPLING FOR PARALLEL SIMULATION

In this section, we first verify that fractal behavior does exist in multithreaded ap-
plications when we observe IPC variations over their execution time. Subsequently,
we describe how we leverage this fractal behavior to accelerate parallel simulation
of multithreaded applications through fractal-based sampling. We then present the
parameters for our sampling methodology and how we determine them. Finally, we
describe how we address the challenges in sampled parallel simulation.

3.1 Fractals in Multithreaded Application Behavior

Most single-threaded and multithreaded applications exhibit time-varying execution
behavior [Sherwood et al. 2001; Lau et al. 2004; Perelman et al. 2006; Carlson et al.
2013]. Previous work in workload characterization and simulation techniques focused
on detecting phase behavior and has reported that time-varying execution behavior
exists across different time scales. We observe that there exists the same “type” of
execution behavior appearing at different time scales. To illustrate this phenomenon,
we plot the IPC variation at different time scales for one of the eight threads from two
applications in Figure 2. Figure 2(a) shows the ft application from the NPB benchmark
suite with the class A input set. Figure 2(b) shows the swaptions application from
the PARSEC benchmark suite with the simlarge input data set. The top subfigures in
Figure 2(a) and Figure 2(b) show the IPC traces for the full application at a granularity
of 10M ns. The remaining three subfigures (from top to bottom) in Figures 2(a) and
2(b) show the IPC variations at smaller time scales—1M ns, 100K ns and 10K ns (each
one zoomed in 10×). As shown, the IPC variations at the four different time scales
are similar to each other. Although they are not exactly the same, the same “type” of
execution behavior appears. In other words, the shape of the IPC variations for the
smaller time scale is similar to that of the larger one. This so-called “self-similarity”
is the key property of fractals and is also the evidence of fractals existing in program
behavior of multithreaded applications. To confirm this observation, we performed the
same experiment for other applications and observed IPC variation at other time scales
(e.g., 8M ns, 500K ns, etc.), and we concluded that the same phenomenon appears.

To further verify the existence of fractal execution behavior in a more rigorous
way, we present statistical analysis to substantiate our self-similarity hypothesis by

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:6 C. Jiang et al.

Fig. 2. IPC variations over execution time for two multithreaded applications. (a) NPB-ft benchmark (thread
1 out of 8, class A input data set). (b) PARSEC-swaptions benchmark (thread 1 out of 8, simlarge input data
set). For both (a) and (b), the top subfigure shows the IPC traces for the full application at a granularity of
10M ns and the remaining three subfigures (from top to bottom) show the IPC variations at smaller time
scales—1M ns, 100K ns and 10K ns (each subfigure zoomed in 10×). Self-similarity, the key property of
fractal behavior, can be seen across the four time scales.

Fig. 3. Find H by performing the Rescaled Range Method. The data sizes of IPC series for the three
applications are 59,561, 1,026,725 and 3,669,940, respectively. We plot the (R/S)n values calculated for
multiple subsets of the data (10 subsets for each n, possibly overlapping). Dashed lines showing the slopes
corresponding to H = 1/2 and H = 1 are given for reference.

employing the classical Rescaled Range Method [Hurst 1951; Feitelson 2013]. The
Rescaled Range Method calculates the Hurst parameter H, which determines whether
a series is self-similar. If H is in the range 1/2 < H < 1, it indicates that the series is
self-similar [Hurst 1951; Feitelson 2013]. Figure 3 shows the values of H for time-based

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:7

IPC series of three applications: NPB-ft, NPB-sp, and SPEC OpenMP-ammp. The
selected three applications have significantly different lengths of execution time. We
calculate the IPC values per time unit of 10μs. Thus, the data sizes of IPC series
for the three applications are 59,561, 1,026,725 and 3,669,940, respectively. As can
be seen, by performing the Rescaled Range Method, the values of H for the three
representative applications are 0.746, 0.629, and 0.915, respectively, which are all in
the range of 1/2 and 1. The Hurst parameters for all other benchmarks also lie between
1/2 and 1 (not shown here due to the space constraints). These results illustrate that
the IPC variations over execution time for multithreaded parallel applications are self-
similar.

Given the existence of fractal behavior during multithreaded application execution,
we try to exploit this phenomenon to select representative samples in our parallel
sampling methodology. More specifically, we break up the entire execution time of an
application into many small time intervals based on a fractal rule (Cantor Set Gener-
ation Rule, CSGR), and select only a very small yet representative fraction according
to the fractal property. In the end, the selected samples are clustered and the distance
between the sample clusters varies throughout the execution. This is an important
property of fractals [Peitgen et al. 2004], which makes fractals amenable to phase be-
havior analysis. As mentioned before, most applications exhibit time-varying execution
behavior. However, the length of the various execution phases is typically dramatically
different. This makes periodic sampling difficult to align to phase boundaries [Carlson
et al. 2013]. In contrast, because of the clustering of samples, fractal-based sampling
can potentially better fit an application’s phase behavior, and avoid the aliasing prob-
lem present in periodic sampling.

3.2 Parallel Sampling Based on the Rule of Cantor Set Generation

We employ the CSGR to select samples in our sampled parallel simulation of mul-
tithreaded applications. Before going into details, we need to determine what the
samples are. In sampled microarchitecture simulation, the samples could be instruc-
tion intervals or execution time intervals. Most prior sampling methods for single-
threaded applications select intervals in terms of dynamically executed instructions.
Namely, they determine the size of intervals simulated in detailed or fast-forwarding
mode by the number of instructions. However, both Ardestani and Renau [2013] and
Carlson et al. [2013] independently proved that such methods are no longer reli-
able for general multithreaded applications because the number of dynamically ex-
ecuted instructions may vary significantly across different runs or microarchitectures
for the same workload. We therefore define our sampling parameters based on time
instead.

In our methodology, the total execution time of an application is assumed as a straight
line segment. Based on the trisection CSGR, we map the remaining and the removed
line segments as the time intervals simulated in detailed and fast-forwarding mode,
respectively.

However, it is unsuitable to strictly apply the trisection CSGR to accelerate parallel
simulation for two reasons. First, we cannot obtain the exact total execution time of
an application before the simulation is completed. Yet, the length of the straight line
segment must be known at the very beginning to perform the trisection CSGR. Second,
as the middle part of an application is more important than the initial and terminal
ones in microarchitecture simulation, it should be simulated in detailed mode. But if
we apply the first step of the trisection CSGR strictly, the middle third of an application
will be simulated in fast-forwarding mode.

We, therefore, modify the trisection CSGR in our study. Since we do not know
the entire execution time of an application upfront, we apply the CSGR in a time

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:8 C. Jiang et al.

Fig. 4. Cantor sampling methodology. The total execution time of an application is assumed as a straight
line segment and is divided into N time intervals (cantor intervals). In each cantor interval, we apply
the trisection CSGR. After K division steps performed by the CSGR, the cantor interval is broken up
into many subintervals, classified as either detailed or fast-forwarding intervals. Additionally, we enable
functional warm-up in front of each detailed interval. Therefore, the warm-up interval is part of fast-
forwarding interval. As illustrated, we set “K = 4” in the example. After 4 division steps, the black, white
and grey bars are detailed, fast-forwarding and warm-up intervals, respectively. We encode the detailed
and fast-forwarding intervals using different color numbers. These numbers are used to illustrate our IPC
prediction method in Section 3.4.2.

interval with fixed length (e.g., 100ms). We define this time interval as the cantor
interval. As a result, the entire execution time of an application can be divided into
N cantor intervals. In each cantor interval, we apply the CSGR strictly, as shown in
Figure 4.

After several division steps performed by the CSGR, each cantor interval is broken
up into many subintervals that can be classified into two kinds: detailed intervals that
are simulated in detailed mode, versus fast-forwarding intervals that are simulated
in fast-forwarding mode. Additionally, we also enable functional warm-up (i.e., warm-
up interval) prior to each detailed interval to eliminate the “cold start” issue during
sampled simulation [Wunderlich et al. 2003], see also Figure 4.

3.3 Cantor Sampling Parameters

We now introduce the sampling parameters in our Cantor set–based sampling scheme
and show how they can be determined. As mentioned in Section 3.2, there are four
kinds of time intervals: cantor, detailed, fast-forwarding, and warm-ups. We define
their lengths as Lc, Ld, Lf, and Lw, respectively. In fact, the total execution time of
an application is finally broken up into three kinds of time intervals: detailed, fast-
forwarding, and warm-up. We can thus perform sampling as soon as we know the
lengths of each of them—Ld, Lf, and Lw.

We determine the length of the detailed interval (Ld) empirically, through hundreds
of experiments. In a first set of trace-driven experiments, instruction and cycle counts
are recorded every 10μs (see Section 4.1 for details). This implies that the smallest time
interval that we can calculate its IPC for is 10μs. Thus, we start to explore Ld from
10μs. We have tried 41 different values for Ld in a very large range from 10μs to 100ms.
Figure 8 illustrates the IPC error variations along with different values of Ld. The IPC

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:9

Fig. 5. (a) The Algorithm that generates Lf values using the input parameters Ld and K. (b) The example
to illustrate the algorithm. We use “Ld = 1” and “K = 3” in the example to show the value of the list after
each step. The final generated Lf list is [1,3,1,9,1,3,1].

Fig. 6. The differences between nonsynchronization and synchronization during fast-forwarding and/or
warm-up intervals.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:10 C. Jiang et al.

Fig. 7. IPC prediction methods during fast-forwarding. The numbers are indexes for different kinds of
intervals in Figure 4: The even numbers represent detailed intervals, and the odd ones represent fast-
forwarding intervals. (a) The Last method does the prediction using the IPC of the last detailed interval.
(b) The L-WMA method uses the Last method for shorter fast-forwarding intervals and the simplified WMA
method for longer fast-forwarding intervals.

Fig. 8. IPC prediction errors (calculated according to Equation (7)) for eight applications using our cantor
sampling method with up to 41 different values of Ld.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:11

Fig. 9. We plot the IPC errors of different K for the same Ld in one column for the application N-ep. Thus,
there are 41 columns corresponding to 41 different values of Ld and in each column there are several IPC
errors corresponding to different K (from 1 to Kmax) for the same Ld.

error does not change significantly when we vary the Ld for the same multithreaded
program. In addition, smaller values of Ld indicate a smaller fraction of execution time
simulated in detail and thus a higher simulation speed-up. We, therefore, choose Ld =
10μs.

We then determine the length of the fast-forwarding interval (Lf) based on Ld. Lf
has a regular relationship with Ld through the strict application of the CSGR within
a cantor interval. To model this relationship, we define the parameter K, which is the
number of division steps performed by the CSGR. Figure 5(a) shows the algorithm that
generates a list of Lf values using the input parameters Ld and K. To illustrate the
algorithm more clearly, we use Ld = 1 and K = 3 as an example to show the value of
the Lf list after each step in Figure 5(b).

Now the problem is how to determine the parameter K. As we apply the CSGR in
each cantor interval, there is a regular relationship among Lc, Ld, and K, which can be
described by Equation (1). In turn, we can determine K using Equation (2), where K is
an integer.

Lc = Ld × 3K (1)

K =
⌊

ln(Lc/Ld)
ln 3

⌋
(2)

Therefore, to determine K, we first need to determine Lc. Obviously, Lc should be
less than the total execution time of the application (defined as Ltotal). Although we do
not know Ltotal at the start of a simulation, we can get an estimated value of it through
instrumentation tools or hardware performance counters [Bhadauria et al. 2009]. To
express the relationship between Lc and Ltotal, we introduce the parameter N, which is
defined as the number of cantor intervals in the entire execution time. The relationship
can be described by Equation (3).

Lc = Ltotal/N (3)

We have explored N in a large range (from 1 to 100,000) for several different mul-
tithreaded applications to find its proper value. The results show that the IPC er-
ror does not change much when we vary N for the same multithreaded program
(Figure 10). However, we would like to suggest a range for N—10 to 100—for two
reasons: (1) Very small N (e.g., 1 or 2) indicates that there are only one or two cantor
intervals in the entire execution time. In this case, after the first step of the trisec-
tion CSGR, large representative parts of interest of an application’s execution would
be simulated in fast-forwarding mode and the overall prediction error would be high.
Therefore, N should be sufficiently large (>10). (2) Very large N (e.g., 10,000) implies

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:12 C. Jiang et al.

Fig. 10. The IPC error variations along with different values of N for the N-ep application.

Table I. Descriptions and Examples for the Parameters in the Fractal-Based Sampling

Parameters Descriptions Examples (see Figure 4)
Ltotal Length of the entire execution

time of the application
The entire execution time is assumed
as a straight line segment with the
length Ltotal.

Lc Length of each cantor interval There are N cantor intervals in Ltotal,
each of them has the length Lc.

Ld Length of a detailed interval After K division steps, detailed
intervals all have the same length Ld.

Lf Length of a fast-forwarding
interval

After K division steps, fast-forwarding
intervals have different lengths Lf.

Lw Length of a warm-up interval PCantorSim enables functional
warm-up in front of each detailed
interval, its length equals Lw.

K Number of division steps
performed by the CSGR

Figure 4 shows the details of “K = 4”.

N Number of cantor intervals
in Ltotal

There are N cantor intervals in Ltotal.

many cantor intervals in the entire execution time. According to Equations (2) and (3),
both Lc and K would then be very small. This can reduce the simulation speed because
K determines the fraction of an application simulated in detail. Equation (4) describes
the fraction. Therefore, N should be smaller than 100.

f raction =
(

2
3

)K

(4)

We determine the length of the warm-up interval (Lw) based on our warm-up strat-
egy. Carlson et al. [2013] did not explore reduced warm-up and enabled functional
warming throughout simulation. In our experiments, we find that the prediction error
of execution time does not decrease significantly, when more than 10μs (the length
of Ld) is taken to warm up caches and branch predictors. This indicates that longer
warm-up intervals do not contribute much to error reduction, yet they decrease simu-
lation speed. Warm-up intervals that are as short as possible are therefore preferred.
We choose Lw to be the same length as that of a detailed interval (Ld). More details
about determining Lw are provided in Section 5.2.3.

In summary, we have determined the values of Ld, Lf and Lw through experimenta-
tion or equations. Table I shows the descriptions and examples for all the necessary
parameters required to find suitable values of Ld, Lf, and Lw in our Cantor set–based
sampling methodology. We will further discuss how we derive suitable parameters at
the beginning of Section 5.2.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:13

3.4 Fast-Forward Parallel Simulation during Fast-Forwarding Intervals

Sampling techniques achieve high simulation speed by simulating the vast majority of
an application’s dynamic instruction stream (about 90% to 99.9%) in fast-forwarding
mode. Previous work shows that the mechanism used to fast-forward the long fast-
forwarding intervals influences simulation speed and accuracy significantly [Carlson
et al. 2013]. In single-threaded sampling techniques, purely functional simulation
can be used to fast-forward through nonsampled intervals [Sherwood et al. 2002;
Wunderlich et al. 2003], while checkpointing strategies can be used to avoid simu-
lating them at all [Biesbrouck et al. 2006; Wenisch et al. 2006].

However, these techniques cannot be readily applied to sampled parallel simulation
of multithreaded applications for two reasons. First, the synchronization mechanisms
in multithreaded applications influence the progress of coexecuting threads. Therefore,
functional simulation during fast-forwarding intervals is not sufficient to maintain the
consistency in progress among threads. Second, time-based parallel sampling tech-
niques define the fast-forwarding intervals with respect to time. Therefore, one needs
to know how far each thread has progressed in a fast-forwarding interval and from
where (which instruction) the next detailed interval should start. We thus need to
predict the IPC of fast-forwarding intervals to pass through them properly.

To address these concerns, we perform synchronization in fast-forwarding intervals
and propose a novel IPC prediction method named L-WMA. We will introduce them in
detail in the following discussion.

3.4.1 Synchronization during Fast-Forwarding Intervals. In multithreaded applications, syn-
chronization mechanisms regulate communication and/or interaction among threads.
Therefore, if synchronization were disregarded during fast-forwarding intervals, sam-
pled simulation would distort the interaction between threads. In addition, the progress
of each thread could also start diverging compared to an unsampled execution. As il-
lustrated in Figure 6(a), if we ignore the synchronization events, threads would make
different progress from what they should do. This is particularly important when we
perform the warm-up strategy in the fast-forwarding intervals. The wrong overlap and
interference of threads could distort the ordering of memory references leading to an
incorrect cache state after warm-up. As a result, the sampled simulation might come
to an incorrect result, which might lead to wrong conclusions.

Previous work has proved the importance of the synchronization during fast-
forwarding intervals [Ardestani and Renau 2013; Carlson et al. 2013]. In our sampling
scheme, we use the existing synchronization mechanism proposed in Carlson et al.
[2013]. We maintain the inter-thread dependencies through shared memory and syn-
chronization events (pthread_mutex, futex system calls, etc.) during fast-forwarding
intervals. More specifically, threads waiting on the synchronization events do not exe-
cute instructions until they are woken up, that is, the waiting threads do not advance
time but inherit the time of the thread that later wakes them up. After all threads have
advanced in this way to the end of the fast-forwarding interval, a new detailed interval
starts (see Figure 6(b)).

3.4.2 IPC Prediction for Fast-Forwarding Intervals. As we mentioned earlier, IPC prediction
of fast-forwarding intervals is very important in time-based sampled simulation. Since
we know the length in time of each fast-forwarding interval, an accurate IPC prediction
can help us identify the instruction from where the simulator should switch to detailed
simulation.

Therefore, the main problem is how to predict the IPC of each fast-forwarding interval
accurately. To this end, several different methods have been proposed. For example, IPC
of 1 assumes the constant IPC value 1 for all threads and all fast-forwarding intervals.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:14 C. Jiang et al.

However, Carlson et al. [2013] and Ardestani and Renau [2013] show that this method
does not predict IPCs accurately. The Last method does the prediction using the IPC
of last detailed interval, and was used by Carlson et al. [2013]. As illustrated in
Figure 7(a), the numbers are indexes for different kinds of intervals in Figure 4:
The even numbers represent detailed intervals, whereas the odd ones represent fast-
forwarding intervals. Last method predicts IPC of the fast-forwarding #2, #4, #6, and so
on, using the detailed interval #1, #3, #5, and so on, respectively. The Weighted Moving
Average (WMA) method does the prediction using a weighted average of last h (3 or 5)
samples. The most recent sample has the highest weight, and the last hth sample has
the lowest. Because of the inherently larger noise presented in their relatively short
detailed intervals, Ardestani and Renau [2013] use the WMA.

In our sampling approach, we present a novel prediction method called L-WMA,
which combines Last and simplified WMA method (all the chosen samples have the
same weight). We can see that lengths of the fast-forwarding intervals in our sampling
are very different. Therefore, we use different prediction methods for fast-forwarding
intervals with different lengths—taking into consideration both locality and periodicity
behavior of applications. Specifically, for the fast-forwarding intervals that have the
same length as a detailed interval, we use the Last method to predict their IPC. This is
because these fast-forwarding intervals are very short, and there is a high probability
that they have the same IPC with that of the last detailed intervals due to the principle
of locality. For example, as Figure 7(b) shows, for the fast-forwarding intervals with
the index #2, #6, #10, #14, and so on, we predict their IPCs using the detailed intervals
with the index #1, #5, #9, #13, and so on. For the remaining longer fast-forwarding
intervals, we predict their IPCs using the simplified WMA method. More specifically,
we do the prediction using the average IPC of the last h samples (detailed intervals),
where h is the number of detailed intervals contained in the most recent period of time
with a length equal to that of the fast-forwarding interval being predicted. For example,
for the fast-forwarding interval with the index #4, we predict its IPC using the average
IPC of two detailed intervals with the indexes #1 and #3. All index numbers mentioned
here for different time intervals are shown in Figure 4, and Figure 7(b) describes the
details of the L-WMA method.

4. EXPERIMENTAL SET-UP

In order to comprehensively evaluate our sampling scheme for parallel simulation,
we have performed both trace-driven and execution-driven experiments. Although the
trace-driven evaluation method lacks flexibility, it is much faster than the execution-
driven method, while providing more initial insight and enabling us to explore the
impact of the sampling parameters quickly. Nonetheless, our main goal is to develop an
execution-driven framework to perform sampled parallel simulation for multithreaded
applications. We, therefore, integrated the proposed sampling scheme into the paral-
lel simulator Sniper—we refer to this implementation as PCantorSim. The detailed
experimental set-ups for the two evaluation methods are as follows.

4.1 Trace-Driven Experimental Set-Up

We obtained our multithreaded application trace files from the Sniper project.2 These
trace files were collected by running benchmarks on Sniper modeling an 8-core system
(the detailed configurations are provided in Table II). The performance metrics are
gathered at an interval of 10μs, including the number of instructions and cycles.

Benchmarks corresponding to these trace files are from different multithreaded
benchmark suites, the SPEC OpenMP (medium) suite (train inputs) [Aslot et al. 2001],

2http://snipersim.org/.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:15

Table II. Architectural Parameters

Item Specification
Processor 2 sockets, 4 cores per socket
Core 2.66GHz, 4-way issue, 128-entry ROB
Branch predictor Pentium M [Uzelac and Milenkovic 2009], 17 cycles penalty
L1-Data (private) 32KB ∗ 8, 4-way, 4-cycle access time
L1-Instruction (private) 32KB ∗ 8, 8-way, 4-cycle access time
L2 (private) 256KB ∗ 8, 8-way, 8-cycle access time
L3 (shared by four cores) 8MB ∗2, 16-way, 30-cycle access time
Main memory 8GB/s per socket, 65ns access time

Table III. Applications and Inputs of the Trace Files Used in Our Trace-Driven Experiments

Benchmark Suite Application Input size
NPB N-ep, N-sp, class A

N-ua, N-ft
SPEC OpenMP O-ammp, train

O-equake, O-art
PARSEC 2.1 P-dedup, simlarge

P-swaptions,
P-ferret

SPLASH-2 S-cholesky default

the NAS Parallel Benchmarks version 3 with OpenMP parallelization (class A inputs)
[Jin et al. 1999], the PARSEC 2.1 benchmark suite (simlarge inputs) [Bienia et al.
2008], and the SPLASH-2 benchmark suite [Woo et al. 1995]. We refer to the bench-
marks from these suites using the O-∗, N-∗, P-∗ and S-∗ notation, respectively. Because
of space limitations in the article, we report 11 randomly chosen applications from
these benchmark suites to evaluate our approach. Table III shows the details of the
selected applications. The reason for picking benchmarks from different benchmark
suites is to study and understand how widely applicable Cantor-based sampling is.

4.2 Execution-Driven Experimental Set-Up

We have integrated our newly proposed Cantor-based sampling approach into Sniper,
which is a fast parallel simulation infrastructure. There are three simulation modes
in Sniper: detailed, cache-only and fast-forward mode. The dynamic instrumentation
framework Pin [Luk et al. 2005] is used as the functional simulation front-end to send
detailed instruction information to the various Sniper simulation modes. We can switch
the simulator between the different modes during the simulation by determining which
analysis routines are enabled.

We use the existing detailed mode in Sniper during the detailed intervals in our
sampling. In order to enable synchronization during fast-forwarding intervals, we use
the synchronization mechanisms proposed in Carlson et al. [2013]. A modified sampling
indicator is added to Sniper to switch the simulator between the different simulation
modes based on the Cantor sampling method.

We configure the simulator to model an 8-core out-of-order processor. Table II shows
the detailed architectural parameters. The applications used in the execution-driven
experiments are from the PARSEC 2.1 parallel benchmark suite (simlarge inputs). We
limit the execution-driven simulation evaluation to a single benchmark suite to limit
the overall simulation time, which is the motivation of this work in the first place.
We failed to run some of the benchmarks because of the limitation of the simulator.
In our measurements, only the parallel Region of Interest (ROI) of each application
is included. The fast-forward mode is used to skip over the initialization and cleanup
phases.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:16 C. Jiang et al.

Table IV. Selected Values of the Sampling Parameter Ld in the Trace-Driven Experiments

Sampling methodology Detailed interval length (10μs)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
15, 20, 30, 40, 50, 60, 70, 80, 90, 100,

Cantor sampling 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
15, 20, 30, 40, 50, 60, 70, 80, 90, 100,

Periodic sampling 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000,
20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000.

5. EVALUATION

In this section, we present the evaluation results of both the trace-driven and execution-
driven experiments. In the trace-driven evaluation, we verify the robustness of the
proposed fractal-based sampling algorithm by performing a sweep of sampling param-
eters. We then compare our approach against the previous periodic sampling in terms
of the IPC prediction accuracy, the fraction of detailed simulation and the robustness
of the sampling algorithm. In the execution-driven evaluation, we first show the de-
tails how we derive suitable sampling parameters, and then provide the accuracy and
speed-up of our approach with respect to that of fully detailed simulation. We also
make a comparison with previous multithreaded sampling methodologies in terms of
accuracy and simulation speed. Finally, we discuss our warm-up strategy and evaluate
it through experimentation.

5.1 Trace-Driven Evaluation

In order to evaluate our fractal-based sampling thoroughly, we did thousands of ex-
periments using trace-driven simulation. Table IV shows the Ld values used in the
experiments. We choose Ld to cover a very large range, from 10μs to 100ms for Cantor-
based sampling, and from 10μs to 1s for periodic sampling [Carlson et al. 2013].

For each Ld in Cantor sampling, we sweep the parameter K from 1 to Kmax, where
Kmax can be calculated by Equation (5).

Kmax =
⌊

ln(Ltotal/Ld)
ln 3

⌋
(5)

(Note that Ltotal is known in the trace-driven experiments.)
For each Ld in periodic sampling, we sweep F/D in the suggested range from 5 to

10 [Carlson et al. 2013]. F/D is a parameter used in periodic sampling, which deter-
mines the length of fast-forwarding intervals based on that of detailed intervals using
Equation (6).

Lf = Ld × (F/D) (6)

To compare the IPC prediction accuracy between the two sampling methods, we use
Equation (7) to compute the IPC error.

Error =
∑n

1 (|IPC(dn) − IPC(fn)| × L(fn))
Ltotal

(7)

In Equation (7), n is the number of detailed and/or fast-forwarding intervals in
the entire execution time. The number of detailed intervals is equal to that of fast-
forwarding ones for both sampling methods. IPC(dn) and IPC(fn) is the predicted and
real IPC for the nth fast-forwarding interval, respectively. IPC(dn) is computed using
the IPCs of one or several detailed intervals according to different IPC prediction

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:17

Fig. 11. The comparisons of maximum, minimum and average error between cantor sampling and periodic
sampling.

strategies (see details in Section 3.4.2). L(fn) is the length of the nth fast-forwarding
interval. We believe the error calculated by Equation (7) reflects the IPC prediction
accuracy and provides a reliable way to compare different sampling methods.

5.1.1 Sampling Algorithm Robustness. Figure 8 shows the average IPC prediction error
(calculated according to Equation (7)) of our fractal-based sampling with 41 different
values for Ld (listed in Table IV). The results show that IPC errors of these applications
are very small and almost the same or fluctuate in a tiny range at different time scales
(i.e., different values of Ld). For example, in Figure 8, the IPC errors of O-ammp are
almost the same (0.06) and the IPC errors of P-dedup fluctuate in a tiny range (from
0.02 to 0.04) when we take different values of Ld. This indicates that our fractal-based
sampling is effective at different time scales, which also confirms our observation in
Section 3.1. That is, many multithreaded applications not only exhibit phase behavior,
but also exhibit fractal behavior.

Although Figure 8 shows the average IPC error for each Ld, it is still not sufficient to
draw the conclusion that the IPC errors stay almost the same at different time scales.
This is because there are several Ks (from 1 to Kmax) for each Ld, and the errors for the
same Ld with different Ks could fluctuate wildly but maintain the same average value.
To reveal the truth, we take N-ep as the example and plot its IPC prediction errors
of different Ks for the same Ld in one column (Figure 9). Thus, there are 41 columns
corresponding to 41 different values of Ld and in each column there are several IPC
errors corresponding to different Ks (from 1 to Kmax). The results show that the IPC
errors are also small and fluctuate only in a tiny range (from 0 to 0.035). We did
the same experiments for all the 11 applications (not shown here because of space
constraints) and reached the same conclusion.

Figure 10 shows the IPC error variations with different values of N. We find that
accuracy does not change much as we vary N.

In summary, these experiments demonstrate that our method for predicting IPC
during fast-forwarding in fractal-based sampling is effective and accurate. In addi-
tion, these results once more confirm that multithreaded applications exhibit fractal
execution behavior.

5.1.2 Comparison to Periodic Sampling. We now compare our fractal-based sampling with
the periodic sampling proposed by Carlson et al. [2013] along the following three cri-
teria: (1) the accuracy of IPC prediction for fast-forwarding intervals, (2) the fraction
of detailed simulation, and (3) the robustness of the sampling algorithm. We measure
the accuracy using IPC errors calculated by Equation (7). Figure 11 shows the compar-
isons of maximum, minimum and average errors between fractal-based versus periodic
sampling. In general, fractal-based sampling outperforms periodic sampling by a small
margin when it comes to the accuracy of IPC prediction of fast-forwarding intervals.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:18 C. Jiang et al.

Table V. The Prediction Error and Simulation Speed-Up for Different Ld, 100ns, 1μs, 10μs, 20μs, Respectively

Ld (100ns) Ld (1μs) Ld (10μs) Ld (20μs)
Error Speed-up Error Speed-up Error Speed-up Error Speed-up

Application (%) (×) (%) (×) (%) (×) (%) (×)
blackscholes 30.2 12.6 21.5 20.4 13.4 8.9 8.1 9.3
fluidanimate 25.1 16.7 10.3 27.4 2.7 18.9 3.0 13.1
streamcluster −2.5 16.8 −3.8 29.9 −0.6 18.1 −0.3 12.7
dedup 25.2 24.8 17.6 43.6 3.8 32.3 0.7 23.1
swaptions −4.4 16.0 −3.6 25.6 −2.4 18.9 −2.1 14.4
raytrace 9.2 15.7 4.6 23.2 2.9 13.8 2.6 9.7

For the fraction of detailed simulation, in Carlson et al. [2013], the parameter F/D was
set to 5 or 10. This means the length of a fast-forwarding interval is five or ten times as
big as that of a detailed interval. Hence, the fraction of detailed simulation is 16.67%
or 9.09%, respectively. In our sampling scheme, we take the parameter Ld as 10μs, the
value of Kmax is more than 10 for most of the applications. According to Equation (4),
the fraction of detailed simulation is only 1.74% or less, which is much less than that
for periodic sampling. In other words, Cantor-based sampling has greater potential to
improve simulation speed compared to periodic sampling.

Furthermore, we have shown the robustness of fractal-based sampling in Sec-
tion 5.1.1, as it applies to all benchmarks evaluated in this study. For periodic sampling
on the other hand, Carlson et al. [2013] demonstrated that some applications (N-lu and
O-ammp, etc.) are not suitable for periodic sampling because of a lack of regular phase
behavior, or it was found to be impossible to find a sampling period that matches the
application’s periodicities.

5.2 Execution-Driven Evaluation

As discussed in Section 3.3 and evaluated in Section 5.1.1, the fractal-based sampling
algorithm is more robust than periodic sampling and is less sensitive to the selection
of sampling parameters. For example, Figures 8, 9, and 10 illustrate the IPC error
variations along with changes of the parameters Ld, K, and N, respectively. The results
show that the parameter changes do not influence the prediction accuracy significantly.
Although we have discussed how we determine the sampling parameters in Section 3.3,
we still would like to provide more details about how to derive suitable sampling
parameters.

The most important parameter in our sampling scheme is the length of a detailed
interval Ld. Because we cannot divide the execution time of an application infinitely as
suggested by the Cantor set theory, we must determine when to stop the division. In
Section 3.3, we suggest to set “Ld = 10μs” for the reason that the smallest time interval
in our trace-driven experiments is 10μs. However, there is no limit in execution-driven
experiments. The Ld could be 5μs, 1μs, 100ns or smaller. To find its proper value for the
execution-driven mode, we have explored several different values of Ld. As illustrated
in Table V, we tried 100ns, 1μs, 10μs, and 20μs for Ld, and we chose six applications
randomly. We did not explore many values for Ld as we did on trace files because it is
time consuming in real simulation.

As we mentioned before, a smaller value for Ld implies a smaller fraction of the
application simulated in detail and, therefore, a higher simulation speed-up. However,
too small a value for Ld would partition the execution time into too many time inter-
vals, which would require the simulator to change simulation modes between detailed,
warm-up and fast-forwarding modes very frequently, ultimately affecting simulation
speed. The experimental results also confirm this. In Table V, the speed-up for Ld =
100ns is smaller than that for Ld = 1μs. Moreover, too small Ld will cause that there

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:19

Fig. 12. The accuracy of the proposed fractal-based sampled simulation in several performance metrics
compared with fully-detailed simulation, including L1-I cache miss rate, L1-D cache miss rate, L2 cache
miss rate, L3 cache miss rate and the branch predictor miss rate.

is very little program information in each detailed interval. For example, there is only
approximately 100 to 1,000 instructions in the time interval of 100ns, which leads to
an increase in prediction error. As shown in Table V, the error rate for Ld = 100ns is
relatively high. On the other hand, when Ld � 10μs, the error rate almost remains the
same or fluctuates in a tiny range. These results are consistent with what we obtained
through the trace-driven experiments.

We, therefore, suggest that one chooses Ld � 10μs in the proposed sampling scheme
(preferably Ld = 10μs with the consideration of simulation speedup). The remaining
parameters, for example, Lf, Lw, N, and K can be derived following the procedures in
Section 3.3. Additionally, we will discuss more about Lw in Section 5.2.3.

5.2.1 Accuracy and Speed of Fractal-Based Sampled Simulation. Figure 12 presents the accu-
racy of fractal-based sampled simulation compared to detailed (nonsampled) simulation
in several aspects, including L1-I cache miss rate, L1-D cache miss rate, L2 cache miss
rate, L3 cache miss rate, and the branch predictor miss rate. Fractal-based sampled
simulation accurately matches detailed simulation with respect to these performance
metrics. Additionally, when compared to detailed simulation, the average error of sam-
pled simulation regarding to the golden performance metric—execution time—is only
5.3%. Meanwhile, the average speed-up over detailed simulation equals 20× with a
maximum speed-up at 32×. Table VI presents the overview of all applications, the
chosen sampling parameters, simulation speed-up, and accuracy.

The results show that the proposed sampling methodology reduces simulation time
substantially, while providing a stable and accurate estimation in many important
performance metrics for most of the applications. However, for a couple applications,
the error is somewhat higher. For example, the execution time prediction error for
blackscholes and facesim exceeds 10%. The highest error (−17.56% for facesim) is
caused by our relatively simple warm-up strategy (see details in Section 5.2.3). We
experimentally verified that accuracy improves by increasing the length of the warm-
up intervals: The error goes down to −6.06% and 5.38% with a warm-up length of

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:20 C. Jiang et al.

Table VI. Overview of All Applications, the Chosen Sampling Parameters, and Their Speed-Up and Accuracy

Application Ld (μs) K Error Speed-up Sampled simulation time
P-blackscholes 10 6 13.37% 8.85× 0.06h
P-bodytrack 10 8 6.80% 17.67× 0.11h
P-canneal 10 7 0.89% 11.84× 0.07h
P-dedup 10 10 3.82% 32.27× 0.37h
P-facesim 10 8 −17.56% 20.59× 0.26h
P-ferret 10 10 −1.92% 30.49× 0.27h
P-fluidanimate 10 8 2.69% 18.88× 0.13h
P-raytrace 10 7 2.88% 13.85× 0.10h
P-streamcluster 10 8 −0.57% 18.12× 0.16h
P-swaptions 10 8 −2.43% 20.23× 0.13h

Fig. 13. Comparison of cantor sampling against periodic sampling in terms of simulation speed-up and
execution time prediction error.

270μs and full warm-up during the entire fast-forwarding intervals, respectively. The
second highest error (13.37% for blackscholes) is due to the relatively small detailed
simulation interval; Table V reports a smaller error with a longer detailed simulation
interval (8.1% for Ld = 20μs).

5.2.2 Comparisons of Fractal-Based Sampling Scheme against Previous Sampling Methodologies.
There are essentially two prior works proposing and evaluating sampled simulation of
multithreaded applications running on multicore systems. The first work by Carlson
et al. [2013] presented periodic sampling based on the regular phase behaviors in
multithreaded applications. They also implemented their sampling methodology in the
Sniper simulator and evaluated it with an 8-core architecture. The average speed-up of
periodic sampling for applications in the PARSEC 2.1 benchmark suite is 3× with an
average execution time prediction error of 4.05% (see Figure 13). Clearly, Cantor-based
sampling achieves higher simulation speed-up (20×, on average) while sacrificing very
little accuracy (the average error is 5.3%); see also Figure 13.

The second prior work by Ardestani and Renau [2013] proposed a statistical sam-
pling framework for the simulation of multithreaded applications. They evaluated their
sampling methodology using a single-threaded simulation infrastructure SESC [Renau
et al. 2005]. For applications in the PARSEC 2.1 benchmark suite with an 8-core ar-
chitectural configuration, the average execution time error of their approach is around
7%, with an average simulation speed of 9MIPS. In contrast, our fractal-based sam-
pling methodology in Sniper achieves an average simulation speed of 20MIPS, with an
average error of 5.3%.

5.2.3 Warm-up Strategy. In the periodic sampling methodology, functional warming of
caches and branch predictors is enabled all the way through the fast-forwarding inter-
vals. However, previous work shows that it is not necessary to enable warm-up at all

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:21

Fig. 14. Simulation speed-up as a function of warm-up length (10, 30, 60, 90, 120, and 270 μs).

Fig. 15. Predicted execution time as a function of warm-up length (10, 30, 60, 90, 120 and 270 μs).

Fig. 16. Execution time prediction error as a function of warmup length (10, 30, 60, 90, 120 and 270μs).

times. An effective warm-up strategy can select shorter warm-up intervals to achieve
substantially higher simulation speed with limited effect on accuracy [Eeckhout and
Bosschere 2006].

In this work, we present a simple and effective warm-up strategy. Based on our
experiments, larger warm-up intervals do not necessarily contribute much to error
reduction but rather decrease the simulation speed-up significantly. To evaluate it, we
change the length of warm-up intervals from 10μs to 270μs, and collect the speed-up,
the predicted execution time, and the execution time prediction error. Figures 14, 15,
and 16 illustrate these metrics as a function of warm-up length. The predicted execution
time and the execution time prediction error remain almost the same when we increase
the length of warm-up intervals from 10μs (the Ld we choose in our setting) to 270μs;
but the speed-up becomes significantly smaller. Therefore, we enable warm-up before
each detailed interval and choose the same length of detailed intervals (10μs).

6. RELATED WORK

Sampling is an effective and widely used technique to accelerate microarchitectural
simulation. A number of methodologies have been proposed to speed up the simulation

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:22 C. Jiang et al.

of single-threaded applications [Conte et al. 1996; Wunderlich et al. 2003; Sherwood
et al. 2002; Argollo et al. 2009]. Conte et al. [1996] were the first to apply sampling
theory on processor simulation. Wunderlich et al. [2003] (SMARTS) demonstrate that
periodic sampling with very small detailed simulation intervals (on the order of 1,000
instructions) leads to accurate performance predictions provided that functional warm-
ing is maintained throughout the simulation. Sherwood et al. [2002] propose a phase-
based sampling technique that chooses large representative intervals (on the order of
100M instructions) by using Basic Block Vectors (BBVs) to simulate in detail. All these
sampling approaches specify their sampling parameters in terms of the number of
instructions, which cannot be readily applied to sampled simulation of multithreaded
applications, as extensively argued in this article.

Van Biesbrouck et al. [2004] introduce the co-phase matrix as a reduction technique
for multiprogram workloads. Since the cophase matrix dimensions grow quadratically
with the number of cores, this method does not scale well. Wenisch et al. [2006] propose
SimFlex for multicore throughput applications based on statistical sampling. However,
these sampling techniques ignore the synchronization among the threads and depend
on the assumption that each thread is independent.

The work of Carlson et al. [2013] and Ardestani and Renau [2013] is closely related
to our approach. Carlson et al. [2013] propose a periodic sampling scheme for multi-
threaded applications based on application periodicity behavior. Prior to simulation, a
preprocessing step is needed to determine the length of application periodicities using
BBV-based tools. Misalignment between the sampling parameters and the applica-
tion’s periodicities may lead to aliasing problems, potentially compromising accuracy.
Or, applications that lack stable periodic phase behavior may not be amenable to sam-
pling through this method. Ardestani and Renau [2013] present Time-Based Sampling
(TBS). Determining the sampling parameters is done experimentally. The simulation
infrastructure of TBS itself is single-threaded, which significantly limits overall sim-
ulation speed. Both sampling methods recognize, for the first time, that TBS is an
accurate approach for sampled simulation of multithreaded applications.

Yu et al. [2009, 2010] find similarities between the Cantor set fractals and execution
behaviors of single-threaded benchmarks. They show that most single-threaded pro-
grams exhibit periodic behavior as a function of time but the length of these periods
may be dramatically different. Measuring behavior in terms of IPC or cache miss rates,
bursts or clusters of periodic behavior can be observed. They then propose a Cantor
set fractal approach to accelerate microarchitecture simulation based on this insight.
In contrast to this article, this prior work focused on single-threaded programs run-
ning on single-core machines. Additionally, their sampling parameters are specified in
terms of dynamically executed instructions, which is invalid in the context of parallel
simulation.

7. CONCLUSIONS

This work presents a fractal-based sampling to speed up parallel microarchitecture
simulation with multithreaded applications. We find that there exists fractal behavior
as well as phase behavior over the execution time of parallel programs. By leveraging
this observation, we propose a sampling scheme that reconstructs the execution time
of an application by selecting representative time intervals simulated in detail based
on a fractal rule—the rule of Cantor set generation. The sampling parameters are
specified regarding time and are easy to determine. We also enable synchronization
during fast-forwarding intervals and perform a simple yet effective warm-up strategy
to improve the runtime prediction accuracy while maintaining high simulation speed.

Cantor-based sampling enables simulating less than 5% of an application’s execution
time in detail, yielding substantial simulation speed-up at high accuracy. We have

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

PCantorSim: Accelerating Parallel Architecture Simulation through Fractal-Based Sampling 49:23

implemented Cantor-based sampling in Sniper (a parallel multicore simulator) and
evaluated it by running the PARSEC benchmarks on an 8-core simulated system.
Our experimental results show that Cantor-based sampling speeds up simulation by a
factor of 20×, on average, over detailed simulation, with an average absolute execution
time prediction error of 5.3%.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable and constructive comments.

REFERENCES

ALAMELDEEN, A. R. AND WOOD, D. A. 2006. IPC considered harmful for multiprocessor workloads. IEEE Micro
26, 8–17.

ALAMELDEEN, A. R. AND WOOD, D. A. 2003. Variability in architectual simulations of multi-threaded workloads.
In Proceedings of 9th Annual International Symposium on High Performance Computer Architecture
(HPCA’03). IEEE Computer Society, Washington, DC, 7–18.

ARDESTANI, E. K. AND RENAU, J. 2013. ESESC: A fast multicore simulator using time-based sampling. In
Proceedings of 19th Annual International Symposium on High Performance Computer Architecture
(HPCA’13). IEEE Computer Society, 448–459.

ARGOLLO, E., FALCON, A., FARABOSCHI, P., MONCHIERO, M., AND ORTEGA, D. 2009. COTSon: Infrastructure for full
system simulation. ACM SIGOPS Operat. Syst. Rev. 43, 1, 52–61.

ASLOT, V., DOMEIKA, M., EIGENMANN, R., GAERTNER, G., JONES, W. B., AND PARADY, B. 2001. SPEComp: A new
benchmark suite for measuring parallel computer performance. Shared Memory Parallel Programming,
R. Eigenmann and M. Voss, Eds., 2104, 1–19.

BHADAURIA, M., WEAVER, V. M., AND MCKEE, S. A. 2009. Understanding PARSEC performance on contemporary
CMPs. In Proceedings of IEEE International Symposium on Workload Characterization (IISWC’09).
IEEE Computer Society, 98–107.

BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. The PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques (PACT’08). ACM Press, New York, 72–81.

BIESBROUCK, M. V., CALDER, B., AND EECKHOUT, L. 2006. Efficient sampling startup for simpoint. IEEE Micro
26, 4, 32–42.

BIESBROUCK, M. V., SHERWOOD, T., AND CALDER, B. 2004. A co-phase matrix to guide simultaneous multi-
threading simulation. In Proceedings of IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS’04). IEEE Computer Society, 45–56.

CARLSON, T. E., HEIRMAN, W., AND EECKHOUT, L. 2013. Sampled simulation of multi-Threaded applications.
In Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS’13). IEEE Computer Society.

CARLSON, T. E., HEIRMAN, W., AND EECKHOUT, L. 2011. Sniper: Exploring the level of abstraction for scalable and
accurate parallel multi-core simulation. In Proceedings of International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC’11). ACM, New York.

CONTE, T. M., HIRSCH, M. A., AND MENEZES, K. N. 1996. Reducing state loss for effective trace sampling of
superscalar processors. In Proceedings of the International Conference on Computer Design (ICCD’96).
IEEE, 468–477.

EECKHOUT, L. AND BOSSCHERE, K. D. 2006. Yet shorter warmup by combining no-state-loss and MRRL for
sampled LRU cache simulation. J. Syst. Software 79, 645–652.

FEITELSON, D. G. 2013. Workload modeling for computer systems performance evaluation. Version 0.41.
HE, L., YU Z., AND JIN, H. 2012. FractalMRC: Online cache miss rate curve prediction on commodity systems.

In Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS’12). IEEE,
1341–1351.

HURST, H. E. 1951. Long term storage capacity of reservoirs. Tran. Am. Soc. Civil Eng. 116, 770–808.
JIN, H., FRUMKIN, M., AND YAN, J. 1999. The OpenMP implementation of NAS parallel benchmarks and its

performance. Tech. rep., NASA Ames Research Center.
LAU, J., SCHOEMACKERS, S., AND CALDER, B. 2004. Structures for phase classification. In Proceedings of IEEE In-

ternational Symposium on Performance Analysis of Systems and Software (ISPASS’04). IEEE Computer
Society, 57–67.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

49:24 C. Jiang et al.

LUK, C., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD, K.
2005. Pin: Building customized program analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Lauguage Design and Implementation (PLDI’05).
ACM, New York, 190–200.

MANDELBROT, B. B. 1983. The fractal geometry of nature. Free man.
MILLER, J. E., KASTURE, H., KURIAN, G., GRUENWAD III, C., BECHMANN, N., CELIO, C., EASTEP, J., AND AGARWAL,

A. 2010. Graphite: A distributed parallel simulator for multicores. In Proceedings of 16th Annual Inter-
national Symposium on High Performance Computer Architecture (HPCA’10). IEEE Computer Society,
1–12.

PEITGEN, H., JÜRGENS, H., AND SAUPE, D. 2004. Chaos and fractals: New frontiers of science. Springer.
PERELMAN, E., POLITO, M., BOUGUET, J.-Y., SAMPSON, J., CALDER, B., AND DULONG, C. 2006. Detecting phases in

parallel applications on shared memory architectures. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS’06). IEEE.

RENAU, J., BASILIO, F., TUCK, J., LIU, W., PRVULOVIC, M., CEZE, L., SARANGI, S., SACK, P., STRAUSS, K., AND

MONTESINOS, P. 2005. SESC: Cycle accurate architecutral simulator. Retrieved November 19, 2013 from
http://sesc.sourceforge.net/.

SANCHEZ, D. AND KOZYRAKIS, C. 2013. ZSim: fast and accurate microarchitectural simulation of thousand-core
systems. In Proceedings of 40th Annual International Symposium on Computer Achitecture (ISCA’13).
IEEE Computer Society.

SHERWOOD, T., PERELMAN, E., AND CALDER, B. 2001. Basic block distribution analysis to find periodic behavior
and simulation points in applications. In Proceedings of International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’01). ACM, New York, 3–14.

SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically characterizing large scale
program behavior. In Proceedings of 10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’02). ACM, New York, 45–57.

THIEBAUT, D. 1989. On the fractal dimension of computer programs and its application to the prediction of
the cache miss ratio. IEEE Trans. Comput. 38, 7, 1012–1026.

UZELAC, V. AND MILENKOVIC, A. 2009. Experiment flows and microbenchmarks for reverse engineering of
branch predictor structures. In Proceedings of IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS’09). IEEE Computer Society, 207–217.

VOLDMAN, J., MANDELBROT, B., HOEVEL, L. W., KNIGHT, J., AND ROSENFELD, P. 1983. Fractal nature of software-
cache interaction. IBM Journal of Research and Development 27, 2, 164–170.

WENISCH, T., WUNDERLICH, R., FERDMAN, M., AILAMAKI, A., FALSAFI, B., AND HOE, J. 2006. SimFlex: Statistical
sampling of computer system simulation. IEEE Micro 26, 4, 18–31.

WENISCH, T. F., WUNDERLICH, R. E., FALSAFI, B., AND HOE, J. C. 2006. Simulation sampling with live-points.
In Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS’06). IEEE Computer Society, 2–12.

WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. 1995. The SPLASH-2 programs: Characteri-
zation and methodological considerations. In Proceedings of 22th Annual International Symposium on
Computer Achitecture (ISCA’95). IEEE Computer Society, 24–36.

WUNDERLICH, R. E., WENISCH, T. F., FALSAFI, B., AND HOE, J. C. 2003. SMARTS: Accelerating microarchitecture
simulation via rigorous statistical sampling. In Proceedings of 30th Annual International Symposium
on Computer Achitecture (ISCA’03). IEEE Computer Society, 84–95.

YU, Z., JIN, H., CHEN, J., AND JOHN, L. 2010. CantorSim: Simplifying acceleration of micro-architecture simu-
lations. In Proceedings of the 18th Annual IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS’10). IEEE Computer Society,
370–377.

Received June 2013; revised August 2013, September 2013; accepted November 2013

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 49, Publication date: December 2013.

